石墨/可发性聚苯乙烯的合成工艺及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国节能减排策略的深入,作为保温材料的可发性聚苯乙烯(EPS)板材备受人们的关注。保温材料EPS具有低导热系数、有一定的强度和韧性、可规模化成型、工艺成熟以及施工便利等优点。为了进一步降低导热系数,德国巴斯夫公司经过10年的不懈努力和研发,首先推出了石墨/可发性聚苯乙烯(Graphite/Expandable Polystyrene,G-EPS)复合材料,并在2010年推向市场,但其合成工艺技术保密,以此控制低导热系数G-EPS市场。因此,如何利用现有EPS的大生产工艺来制备出低导热系数的G-EPS是本论文的主要研究内容。
     第二章主要采用苯乙烯单体溶胀法,实现了线性低密聚乙烯(LLDPE)与苯乙烯单体的悬浮共聚合的工艺。阐述了LLDPE对PS的增韧改性机理,对不同配比的LLDPE与苯乙烯单体进行比较实验,确定了LLDPE与苯乙烯不同配比的最佳工艺条件,获得了分散性好、粒度分布均匀的增韧聚苯乙烯粒子(PS)。通过IR、SEM、DSC表征,考察了LLDPE加入量对聚合过程的接枝效率、成球率、粒子的形貌、平均粒径、粒度分布和共聚物玻璃化转变温度等性质的影响。
     第三章主要是寻找一种便利的石墨改性工艺,使得改性石墨在苯乙烯单体中有良好分散性。本章通过石墨在苯乙烯单体中的沉降实验,详细讨论了石墨的种类和粒径的影响;对石墨改性工艺中溶剂的选择进行了讨论,并对改性前后石墨在水中、单体、水和单体混合液中的分散稳定性进行表征,结果表明改性后的石墨和苯乙烯有良好的相容性。通过改变改性石墨不同加入顺序,用扫描电镜(SEM)分析了合成工艺中加入顺序对石墨在苯乙烯中分散性的影响。此外对石墨改性工艺中的设备进行了设计并投入了工业化生产,实现了年产800吨改性石墨的大生产工艺,从而为合成G-EPS提供基础和保证。
     第四章是在改性石墨的基础上,研究了一步法制备石墨/可发性聚苯乙烯(Graphite/Expandable Polystyrene,G-EPS)复合粒子的中试工艺,制备了黑色度均匀的G-EPS。本章详细讨论了水油比对G-EPS聚合反应体系粘度的影响;石墨添加量对G-EPS的粒径分布、分子量的变化进行了讨论;并研究了引发剂浓度对G-EPS的分子量和反应周期的影响;利用扫描电镜(SEM)对G-EPS原粒、泡粒进行了形貌分析;对G-EPS泡沫的导热系数和阻燃性能进行了测定,并对G-EPS具有低导热系数和高阻燃性从机理上进行了初步探讨。
     第五章研究了一步法制备石墨/可发性聚苯乙烯(Graphite/Expandable Polystyrene,G-EPS)复合粒子的工业化大生产工艺。主要解决了以下几方面的问题:优化了工业化生产试验的工艺参数及工艺流程;优化了工业化生产设备的选型和设计,实现了年产9万吨G-EPS的大生产工艺;将工业化生产的产品送到国家权威部门作性能测试,并在保温材料生产厂家做各种性能检验;综合分析了工业化生产G-EPS的经济效益。
     本论文主要研究了石墨改性的工业化大生产工艺和石墨/可发性聚苯乙烯复合材料合成的中试和大生产工艺,并对产品的性能进行系统的研究。打破了德国巴斯夫和韩国锦湖等公司对低导热系数G-EPS市场的垄断地位,拥有了国内自主研发的技术,填补了国内G-EPS生产技术的空白。
Along with our country energy-saving and emission-reduction strategy deeply, expandable polystyrene (EPS) board as thermal insulation material has some advantages, attracted much people's attention. Thermal insulation materials EPS has a low thermal conductivity coefficient, a certain strength and toughness, forming easily, mature technology and so on. In order to further reduce the thermal conductivity, after 10 years hard work, BASF of Germany firstly pushed out Graphite/Expandable Polystyrene (G-EPS) composite material to the market in 2010, but the process of synthesis is still confidential, in order to control the market of the low thermal conductivity of G-EPS. Therefore, how to use existing production process of EPS to prepare a low coefficient of thermal conductivity of G-EPS is the main research content of this paper.
     The second chapter realizes the suspension polymerization of linear low density polyethylene (LLDPE) and styrene monomer using styrene monomer swelling method. The toughening modification mechanism adout LLDPE to PS is expatiated. The optimum process conditions for different ratios of LLDPE and styrene monomer were compared and identified. The polystyrene particles (PS) with symmetrical particle size distribution are obtained.The effect of LLDPE quantity added on the grafting polymerization efficiency ,the ball ratio,particle morphology, average particle size, particle size distribution and the copolymer glass transition temperature properties has been studied by IR, SEM and DSC.
     In the third chapter, the main purpose is to find a convenient graphite modified process, which can make the modified graphite disperse well in styrene monomer. The effect of graphite type and particle size is discussed in detail by the sedimentation experiment of the graphite in styrene monomer, and the solvent of modifying graphite are selected. In addition, the dispersing stability of modified graphite in water, monomer and the mixture of monomer and water were characterized. The results show that the modified graphite and styrene has good compatibility. The effect of adding order of modified graphite on its dispersion in styrene are examined by SEM. Furthermore, the equipment of modifying graphite process was designed and put into industrial production. A modified graphite production process of annual output 800 tons is set up, which can provide a basis and guarantee for the synthesis of G-EPS.
     In the fourth chapter, based on the modified graphite, one-step preparation process of graphite/polystyrene is studied, and composite particles with the black uniform G-EPS are prepared. In this chapter the effect of the water-oil ratio of G-EPS polymerization reaction system on viscosity and graphite addition quantity on the G-EPS particle size distribution are discusseed detailedly. The effects of initiator concentration on the molecular weight of G-EPS and reaction cycle changes are also discussed. The morphology of G-EPS original and foam tablets are analized using the scanning electron microscope (SEM) .Thermal conductivity and flame resistant properties determined, and the mechanism of G-EPS with low thermal conductivity and high flame retardant from are discussed.
     In the fifth chapter, the one-step preparation manufacturing process of composite graphite/expandable polystyrene (G-EPS) particles is investigated. The main problems solved in this chapter are as follows: Process parameters, production process as well as equipment in industrial production are optimized, a production process of G-EPS with annual output of 90,000 tons is achieved, and performances of the industrial products are tested by both national authorities and manufacturers of insulation materials. Moreover, the economic benefits of industrial production of G-EPS are analysed integratively.
     The studies are focused on different processes, such as the manufacturing process of modified graphite, the pilot process and the manufacturing process of composite graphite/expandable polystyrene (G-EPS). Performances of the industrial products are evaluated systematically. Fourthermore, the production technology of G-EPS is self-developed, which filled the void of domestic industry. As a result of this breakthrough, the monopoly position of BASF and South Korea Kumho Group in low thermal conductive G-EPS market is broken.
引文
[1]张玮.一步法生产发泡聚苯乙烯(EPS)[J].现代塑料加工应用.2000,11(4):14-16
    [2]陈学江.可发性聚苯乙烯珠粒(EPS)的生产工艺.塑料科技,2000,2:16-18
    [3]周建,罗学刚.可发性聚苯乙烯(EPS)悬浮聚合研究进展.广东化工,2004,9-10(合刊):34-37
    [4] Eastmond G,Ledwith A.In Comprehensive Polymer Science[M],New York:Pergamon PRESS,1989,14:231
    [5]罗河胜,实用聚苯乙烯,广泛科学出版社,1991.3
    [6]巴斯福股份公司.发泡性聚苯乙烯粒子的制备工艺[P] .德国:99814252,2002
    [7]时运铭,周建国.二步法可发性聚苯乙烯的生产[J].河北化工,1995,3:15-16
    [8] Creveoeur,Nelissen,Lemstra.Water expandable polystyrene (WEPS)Part1.Strategy and procedures [J].Polymer,1999,40 (13) :3685-3689
    [9]积水化成品工业株式会社.生产聚苯乙烯型珠粒和可发泡聚苯乙烯型珠粒[P].日本:96104499,1996
    [10] Davis,Gahming,Schmolka.Method of making expandable polystyrene beads.US:1978
    [11]李正康.可发性聚苯乙烯的一步法生产技术[P].中华人民共和国,94113014,1995
    [12] lozachmeur,Didier.Aqueous suspension polymerization process of compositions containing styrene in the presence of rosin acid derivative and their salts and expandable or non expandable polystyrene obtained[P].US:295540,1989
    [13]徐红岩.一步法可发性聚苯乙烯工艺技术开发--无机分散体系[J].金陵石油化工,1994,1:8-12
    [14]巴洛瓦,鲁佩舍夫等.聚苯乙烯塑料的制备方法[P].俄罗斯,92105451,1994
    [15] Neustadt DE,Kirchheim DE,Hightatown NJ,Frandkenhal DE.Process for the preparation of expandable polystyrene[P].US:514643,1995
    [16] Carlier,Christophe.Expandable polystyrene composition, expanded beads and moulded parts [P]. US : 338584, 1999
    [17]李克友、张菊华,向福如.高分子合成原理及工艺学[M].北京:科学出版社,1999::24-236
    [18]董绍胜、魏月贞,白水平等,高分子材料科学与工程[M].北京:化学工业出版社,2000:151-153
    [19]潘祖仁,翁志学,悬浮聚合[M].北京:化学工业出版社,1997:164-166
    [20]复旦大学高分子科学系,高分子科学研究所,高分子试验技术(修订版)[M].上海:复旦大学出版社,1995:263-267
    [21] Church,J.m.and shinnar,R.,INDUSTRIAL AND ENGINEERING CHEMISTRY,53(1961),479-484.
    [22] Konno,M.Arai,K. and Saito.S. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN,15(1982),131-135. [23 ] Hohenstein,W.P.and Mark,H.,JOURNAL OF POLYMER SCIENCE,1 (1946)127-145.
    [24] Munzer,M.and Trommsdroff,E.,POLYMERIZATION PROCESSES ,Wiley New York, Chapter 5,106-141
    [25]大岛荣次田中真人,化学工学论文集,第8卷,第2号,(1982),188-193.
    [26]英国专利,2 039 921 A,(1980).
    [27]英国专利,2 075 994 A,(1981).
    [28]美国专利,2 594 913,(1947).
    [29]美国专利,2 673 194,(1951).
    [30]美国专利,4 129 706,(1978).
    [31]王志英.悬浮共聚粒径大小及分布的研究[J].天津化工,2002,(2):12-15.
    [32]陈林,李国珍,李琼.无机悬浮分散剂——活性磷酸钙的研制与表征[J].浙江大学学报,1992,26(5):544-550.
    [33]靳艳巧,李曦,张超灿等.微悬浮聚合法制备聚苯乙烯磁性微球的研究[J].高分子材料与工程,2006,22(6):87-89.
    [34]张建丽,迟长龙.苯乙烯悬浮聚合粒度的控制[J].河南工程学院学报(自然科学版),2008,20(1):57-58.
    [35]时刻,黄英.PS增韧改性的研究进展[J].合成树脂及塑料, 2004, 21, 57-59.
    [36]杨军,刘万军,刘景江.高抗冲聚苯乙烯的增韧机理[J].高分子通报, 1997, 3, 43-48.
    [37] Michel B., Michel L.B., Serge B. Thermoplastic Polyurethanes as Carbonization Agents in Intumescent Blends. Part 2: Thermal Behavior of Polypropylene/Thermoplastic Polyurethane/Ammonium Polyphosphate Blends[J]. Polymer Degradation and Stability, 1999, 64, 421-424.
    [38]郑文革.PP/EPDM共混体系脆韧转变的逾渗模型[J].科学通报, 1992, 37, 904-907.
    [39] Brannock G R, Barlow JW, PaulD R. Blends of Styrene/Maleic Anhydride Copolymers with Polymethacrylates[J]. J. Polym. Sci.: Part B: Polym. Phys. 1991, 29, 413-419.
    [40] William Y H, Wu S. The origin of chain entanglement: Correlations between entanglement and chain structure[J]. Polym Eng Sci, 1993, 33, 289-292.
    [41]唐卫华,唐键,金日光.国内外聚苯乙烯共混改性研究进展[J].塑料工业, 2002,30,15-17
    [42]张会轩,杨海东,罗靖.PS增韧改性的研究进展[J].吉林工学院学报, 1994, 15,45-47
    [43]王建,李杨,于国柱,吴一弦.集成橡胶增韧PS[J].合成树脂及塑料,2009,26:42-48
    [44]郝留成,冯焕丽.超微聚苯乙烯有机刚性粒子的合成工艺研究[J].涂料工业,2006,3,32-35
    [45]周琼.聚丁二烯与超细粒子P(st-D-BMMA)增韧聚苯乙烯研究及有机刚性粒子增韧机理初探.硕士学位论文,2005,青岛科技大学
    [46]吴其晔,高卫平,王庆国,乔玲玲,于青山.PMMA基核-壳型有机刚性粒子增韧改性R-PVC/CPE韧性体[J].高分子材料科学与工程, 2000, 16, 105-108.
    [47] Jing Yan, Xiaojie Miao, Xuejun Cui, Weiqun Jin, Hongwei Liang, Junfeng Li, Hongyan Wang. Process of Grafting Styrene onto LLDPE by Swelling and Suspension Copolymerization[J]. POLYM. ENG. SCI., 2010, 50, 1713–1720.
    [48] Juntao Yan, Xiaojie Miao, Qiaoyun Zhang, Xuejun Cui, Junfeng Li, Hongyan Wang. One-step preparation of black polystyrene particles via in situ suspension polymerization[J]. POLYM. ENG. SCI., 2011, 51, 294–301.
    [49]方征平,许承威,项义崇. BR和DCP在PS/LLDPE/SBS体系中的协同作用[J].高等学校化学学报, 1996, 17, 1959-1961.
    [50]方征平,查琳琳,马国维,许承威. EPDM和PE协同增韧聚苯乙烯[J].合成橡胶工业, 2002, 25, 251-251.
    [51]李东明,漆宗能.非弹性体增韧——聚合物增韧的新途径[J].高分子通报, 1989, 3, 32-38.
    [52]熊传溪,闻荻江,皮正杰.超微细A12O3增韧增强聚苯乙烯的研究[J].高分子材料科学与工程, 1994, 7, 4, 69-73.
    [53]杨利营,宋仁峰,盛京.在位分散聚合制备聚苯乙烯/凹凸棒土复合材料[J].中国塑料, 2002, 7, 16, 47-52.
    [54]王浩,张桥,邹头君,鄢国平,李亮,喻湘华,郭庆中,杜飞鹏,黄林芸.胶粉改性聚苯乙烯材料的制备与性能[J].武汉工程大学学报, 2011, 33, 22-24.
    [55] Yuan S H Y, Huang R, Wu T. Study on polystyreneblends of nano CaCO3 and SBS[J]. China synthetic rubber industry, 2003, 26, 2, 116-116.
    [56] Klempner D, Frich K C. Polymer AlloysⅡ, New York: Plenum Press, 1980, 87-137.
    [57]何晓燕,张健,黄辉,危大福,郑安呐.聚苯乙烯-聚甲基丙烯酸缩水甘油酯嵌段共聚物的合成与表征[J].功能高分子学报. 2009, 22, 173-178.
    [58]张红星,周晓山.苯乙烯-异戊二烯两嵌段对线型三嵌段聚合物性能的影响[J].弹性体, 2008, 18, 45-47.
    [59]夏攀登,路翠苹,王兴东,张书香.ATRP法制备聚甲基丙烯酸2,2,2-三氟乙酯-b-聚苯乙烯嵌段共聚物的研究[J].化工新型材料, 2008, 36, 16-19.
    [60] G.D. Jones, R.M. Nowak. [P] U.S. Patent 3, 1965, 177, 270.
    [61] Y. Gao, H.L. Huang, Z.H. Yao, and D.A. Shi. Morphyology, structure, and propertiesnof in situ compatibilized linear low-density polyethylende/polystyrene and linear low-density polyethylende/high-impact polystyrene blends[J]. J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 1837-1849.
    [62]张会轩,张明耀.PS增韧新机理[J].吉林工学院学报, 2001, 22, 1-3.
    [63]何小兵,王庭慰.可发性聚苯乙烯阻燃技术研究[J].中国塑料, 2002, 16, 15-18.
    [64] JOHN WIL EY. Fire retardants for readily combustible cellular polystyrene[J]. Advance in Polymer Technology, 1989, 57-67.
    [65] STOBBY WILL IAM G, et al. Fire resistant alkenylaromatic foams[P]. US WO9119758. 1991-12-26.
    [66] JOHN W. VANDERHOFF, et al. Method of Polymerizing a vinyl aromatic monomer in the presence of an organic bromide and an organic peroxide and a self-extinguishing vinyl aromatic polymer containing same[P]. U. S. Patent.3058929. 1962-10-16.
    [67]王元宏.阻燃剂化学及应用[M].上海:上海科学技术文献出版社,1988. 8. 277.
    [68] JACOB EICHHORN, et al. Foamed self–extinguishing alkenyl aromatic resin compositions containing an organic bromide and peroxide; and method of preparation [P]. U. S. Patent. 3058928. 1962-10-16.
    [69] WAL TER O. PILLAR, et al. Self-extinguishing polymer compositions containing hexabromo -2-butene [P]. U. S.Patent. 3819547. 1974-06-25.
    [70] SONNENBERG FRED M, et al. Process for the preparation of fire-retardantexpandable thermoplastic beads[P]. U. S. EP0436367. 1991-07-10.
    [71] SONNENBERG, et al. Process for the preparation of expandable vinyl aromatic polymer particles containing hexabromocyclododecane[P]. U. S. Patent. 4980382. 1990-12-15.
    [72] KIENZ LE CHARLES,et al. Particles of expandable polystyrene with improved flame-retardant properties [P]. U. S. EP0001830. 1979-05-16.
    [73] SONNENBERG, et al. Coating of flame retardants onto a seed bead[P]. U. S. Patent. 4761432. 1988-08-02.
    [74] Heinz Mueller-Tamm, et al. Flame proofed synthetic thermoplastic polymer containing an organic polybromine compound and method of making same [P]. U. S. Patent. 3093599. 1963-06-11.
    [75] BURGER,et al. Manufacture of particulate expandable styrenepolymers requiring shot minimum res idence times in the mold[P]. U. S. Patent. 3956203. 1976-05-11.
    [76] KIENZL E, et al. Method of polymerizing styrene[P]. U.S. Patent. 4281067. 1981-07-28.
    [77]彭紫云,国外阻燃聚苯乙烯的新发展.合成树脂及塑料,1988, 3, 49.
    [78] KIRK-OTHMER, Encyclopedia of chemical technology[J]. 3rd Edition, 1981, 15, 470-493.
    [79] HAHN, et al. Flame resistant, expandable styrene polymers and foams, and flame retardants[P]. U. S. Patent.5010111. 1991-04-23.
    [80] HERRMANN, et al. Expandable styrene polymers containing halogen-f ree flame retardants [P]. German.EP0834529. 1998-04-08.
    [81] PATRICK, et al. Flame retardant foamed and roamablepolymer compositions [P]. U. S. Patent. 3590014. 1971-06-29.
    [82] MURPHY MICHAEL, et al. Beads of a polymer of a vinylaromatic compound[P]. WO 9505414. 1995-02-23.
    [83] G B874144, Shell International Research Maatschappij N.V, No title available.
    [84] G B1170960, Monsanto Chemicals Limited, No title available. 1969-11-19.
    [85]舒中俊,等.聚合物阻燃新途径-聚合物/粘土纳米复合材料的特殊阻燃性[P].高分子通报.2000, 4, 65-70.
    [86] GILMAN, J W, Nanocompos ites: a revolutionary new flame retardant approach[P]. SAMPE Journal, July-Aug. 1997, 33, 4.
    [1] W. Strobel, Kunststoffe, 1987, 77, 967-971.
    [2] D. Romanini, Polym. Plast. Technol. Eng., 1982, 19, 201-206.
    [3] D. Heikens, N. Hoen, W. Barentsen, P. Piet, and H. Ladan, J. Polym. Sci. Polym. Symp., 1978, 62, 309-341.
    [4] H. Saechtling, International Plastics Handbook, Hanser, Munich, 1983.
    [5] D.W. VanKrevelen, Properties of Polymers, Elsevier, Amsterdam, 1976, p381.
    [6]. C.R. Lindsey, D.R. Paul, and J.W. Barlow, J. Appl. Polym. Sci., 1981, 26, 1-8.
    [7]. R. Fayt, R. Jerome, and P.H. Teyssie, J. Polym. Sci. Polym. Lett. Ed., 1986, 24, 251-262.
    [8]. M. Welandder and M. Rigdahl, Polymer, 1989, 30, 207-212.
    [9]. B.S. Kim and S.C. Kim, J. Appl. Polym. Sci., 1998, 69, 1307-1317. 11.
    [11] S.A. Xu, J.W. Xie, and M. Jiang, Polym. Int., 1999, 48, 1121-1128.
    [12] M.A. Ramos and E.P. Collar, J. Polym. Eng., 1987, 7, 137-147.
    [13] J.W. Teh and A. Rudin, Polym. Eng. Sci., 1991, 31, 14, 1033-1042.
    [14] G.S. Chen and S.Y. Guo, J. Appl. Polym. Sci., 2002, 86, 23-32.
    [15] H.L. Tae, Y.K. Tae, M.K. Dong, J.K. Won, and H.L. Je, Macromol. Mater. Eng., 2006, 291, 109-113.
    [16] W. Barentsen and D. Heikens, Polymer, 1973, 14, 579-583.
    [17] W.M. Barentsen, D. Heikens, and P. Piet, Polymer, 1974, 15, 119-122.
    [18] C.E. LoCk and D.R. Paul, J. Appl. Polym. Sci., 1973, 17, 2791-2800.
    [19] G.D. Jones and R.M. Nowak, U.S. Patent 3, 1965, 177, 270.
    [20] Y. Gao, H.L. Huang, Z.H. Yao, and D.A. Shi, J. Polym. Sci. Part B: Polym. Phys., 2003, 41, 1837-1849.
    [21] N. Roongkan, O. Shinzo, and K. Suda, J. Appl. Polym. Sci., 2003, 90, 3037-3050.
    [22] N. Roongkan, O. Shinzo, and K. Suda, J. Appl. Polym. Sci., 2006, 99, 1195-1206.
    [23] G. Xin, S. Atsushi, and E. Takeshi, J. Polym. Sci. Part A: Polym. Chem., 2001, 39, 453-458.
    [24] W. Li, X.B. Ding, Z.H. Zheng, and W.C. Zhang, J. Appl. Polym. Sci., 2001, 81, 333-339.
    [25] J.H. Yang, Z.H. Yao, and J.H. Yin. J. Appl. Polym. Sci., 2001, 79, 535-543.
    [26] Q. Shi, L.C. Zhu, J.H. Yin, and G. Costa. Polymer, 2006, 47, 1979-1986.
    [27] H. Jinho, K.H. Chang, and E.S. Sang, Colloids Surf A: PhysicoChem. Eng. Aspects, 2007, 302, 225-233.
    [28] D.C. Gupta, A.G. Beldar, and R. Tank, J. Appl. Polym. Sci., 2006, 101, 3559-3563.
    [29] D.L. Zhang, M.Y. Luan, Q. Lin, Q. Gu, Z.C. Cui, and B. Yang, Polym. Int., 2007, 56, 195-199.
    [30] A.E. Grulke, Encyclopedia of Polymer Science and Engineering, Vol. 16, Wiley, New York, 1989, 443-462.
    [31] A.F. Santos, E.L. Lima, and J.C. Pinto, J. Appl. Polym. Sci., 2000, 77, 453-462.
    [32] J.J. Cai and R. Salovey, Polym. Eng. Sci., 1999, 39, 1696-1705.
    [33] E.R. Greenberg, M.N. May, and J. Wise, Polym. Eng. Sci., 2004, 45, 1540-1544.
    [34] H.A. Sarvetnick, Polyvinyl Chloride-Plastics Applications Series, Reinhold, New York, 1969.
    [35] R. Pal, Polym. Eng. Sci., 2008, 48, 1250-1253.
    [36] L.N. Andre, A.F.M. Ricardo, and B.Q. Marintho, Macromol. Symp., 2006, 246, 398-402.
    [37] H. Buron, O. Mengual, G. Meunier, I. Cayre′, and P. Snabre, Polym. Int., 2004, 53, 1205-1209.
    [1] CHUNG D D L. Review Graphite [J]. Journal of Materials Science, 2002, 37: 1475– 1489.
    [2] AL-GHAMDI A A, EL-TANTAWY F. New electromagnetic wave shielding effectiveness at microwave frequency of polyvinyl chloride reinforced graphite/copper nanoparticles [J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(11): 1693-1701.
    [3] AZIM S, SATHEESH A, RAMU K, et al. Studies on graphite based conductive paint coatings [J]. Progress in Organic Coatings, 2006, 55(1): 1-4.
    [4] WANG T, CHEN G, WU C, et al. Study on the graphite nanosheets/resin shielding coatings [J]. Progress in Organic Coatings, 2007, 59(2): 101-105.
    [5] WU J. Improving colloidal graphite for electromagnetic interference shielding using 0.1μm diameter carbon filaments [J]. Carbon, 2003, 41(6): 1313-1315.
    [6]刘际伟,高晓敏,刘金诚.导电石墨丙烯酸系电磁屏蔽涂料的研制[J].涂料工业年, 1998, (10): 5-7.
    [7] PAN G L, GUO Q, DING J, et al. Tribological behaviors of graphite/epoxy two-phase composite coatings [J]. Tribology International, 2010, 43(8): 1318-1325.
    [8] FAWN M. UHL C A W. Polystyrene-graphite nanocomposites effect on thermal stability [J]. Polymer Degradation and Stability, 2002, 76: 111–122.
    [9] CHEN G. PMMA/graphite nanosheets composite and its conducting properties [J]. European Polymer Journal, 2003, 39(12): 2329-2335.
    [10] CHEN G, WU C, WENG W, et al. Preparation of polystyrene/graphite nanosheet composite [J]. Polymer, 2003, 44(6): 1781-1784.
    [11] DEBELAK B, LAFDI K. Use of exfoliated graphite filler to enhance polymer physical properties [J]. Carbon, 2007, 45(9): 1727-1734.
    [12] YASMIN A, LUO J-J, DANIEL I M. Processing of expanded graphite reinforced polymer nanocomposites [J]. Composites Science and Technology, 2006, 66(9): 1182-1189.
    [13] LIU Y B, HU J D, CAO Z Y, et al. Wear resistance of laser processed Al–Si–graphite composites [J]. Wear, 1997, 206: 83–86.
    [14] KANG S-C, CHUNG D-W. Improvement of frictional properties and abrasivewear resistance of nylon graphite composite by oil impregnation [J]. Wear, 2003, 254: 103–110.
    [15] PAN G, GUO Q, DING J, et al. Tribological behaviors of graphite/epoxy two-phase composite coatings [J]. Tribology International, 2010, 43(8): 1318-1325.
    [16] SLATTER T, LEWIS R, JONES A H. The influence of induction hardening on the impact wear resistance of compacted graphite iron (CGI) [J]. Wear, 2011, 270(3-4): 302-311.
    [17] SURESHA B, SIDDARAMAIAH, KISHORE, et al. Investigations on the influence of graphite filler on dry sliding wear and abrasive wear behaviour of carbon fabric reinforced epoxy composites [J]. Wear, 2009, 267(9-10): 1405-1414.
    [18] XIAN G, ZHANG Z. Sliding wear of polyetherimide matrix compositesII. Influence of graphite flakes [J]. Wear, 2005, 258(5-6): 783-788.
    [19] ZHANG X, LIAO G, JIN Q, et al. On dry sliding friction and wear behavior of PPESK filled with PTFE and graphite [J]. Tribology International, 2008, 41(3): 195-201.
    [20] ZHANG Z, BREIDT C, CHANG L, et al. Enhancement of the wear resistance of epoxy: short carbon fibre, graphite, PTFE and nano-TiO2 [J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(12): 1385-1392.
    [21]石玉,王东红.石墨改性尼龙66复合材料的摩擦磨损性能研究[J].化工新型材料, 2007, 35(6): 49-50.
    [22] GANGULI S, ROY A, ANDERSON D. Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites [J]. Carbon, 2008, 46(5): 806-817.
    [23] XIANG J, DRZAL L T. Thermal conductivity of exfoliated graphite nanoplatelet paper [J]. Carbon, 2011, 49(3): 773-778.
    [24] TSUMURA T, KATANOSAKA A, SOUMA I. Surface modification of natural graphite particles for lithium ion batteries [J]. Solid State Ionics, 2000, 135: 209–212.
    [25] YANG Y, PENG W, GUO H, et al. Effects of modification on performance of natural graphite coated by SiO2 for anode of lithium ion batteries [J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6): 1339-1342.
    [26] YOON S, KIM H, OH S M. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries [J]. Journal of Power Sources, 2001, 94: 68-73.
    [27] ZHANG H, MEYER F, MEYERIII H, et al. Surface modification and chemical sputtering of graphite induced by low-energy atomic and molecular deuterium ions [J]. Vacuum, 2008, 82(11): 1285-1290.
    [28] WU Y P, JIANG C, WAN C. Effects of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material [J]. Electrochimica Acta, 2003, 48: 867-874.
    [29] BOURELL E, KONNO H, INAGAKI M. Structural defects created on natural graphite surface by slight treatment of oxygen plasma STM observations [J]. Carbon, 1999, 37: 2041–2048.
    [30] DONG JIE LI, YU XIN WANG, XU L, et al. Surface modification of a natural graphite/phenol formaldehyde composite plate with expanded graphite [J]. Journal of Power Sources, 2008, 183: 571-575.
    [31] DONGIL A B, BACHILLER-BAEZA B, GUERRERO-RUIZ A, et al. Surface chemical modifications induced on high surface area graphite and carbon nanofibers using different oxidation and functionalization treatments [J]. Journal of Colloid and Interface Science, 2011, 355(1): 179-189.
    [32] GUNAWARDHANA N, DIMOV N, SASIDHARAN M, et al. Suppression of lithium deposition at sub-zero temperatures on graphite by surface modification [J]. Electrochemistry Communications, 2011, 13(10): 1116-1118.
    [33] NAKAJIMA T, GUPTA V, OHZAWA Y. Electrochemical properties and structures of surface-fluorinated graphite for the lithium ion secondary battery [J]. Journal of Fluorine Chemistry, 2002, 114: 209–214.
    [34] PYRZYFISKA K. Chemical modification of graphite surfaces for the determination of chromium by electrothermal atomic absorption spectrometry [J]. Spectrochimica Acta Part B, 1995, 50: 1595-1598.
    [35] OHZEKI K, SAITO Y, GOLMAN B, et al. Shape modification of graphite particles by rotational impact blending [J]. Carbon, 2005, 43(8): 1673-1679.
    [36]杨志红,罗时顺,吴爱美.石墨的表面改性方法研究[J].中国非金属矿工业导刊, 2006, (2): 14-16.
    [37] SARASWATI T E, MATSUDA T, OGINO A, et al. Surface modification of graphite encapsulated iron nanoparticles by plasma processing [J]. Diamond and Related Materials, 2011, 20(3): 359-363.
    [1] CREVECOEUR J J, COOLEGEM J F, NELISSEN L, et al. Water expandable polystyrene (WEPS)Part 3. Expansion behaviour [J]. Polymer, 1999, 40: 3697-3702.
    [2] CREVECOEUR J J, NELISSEN L, LEMSTRA P J. Water expandable polystyrene (WEPS)Part 1. Strategy and procedures [J]. Polymer, 1999, 40: 3685-3689.
    [3] CREVECOEUR J J, NELISSEN L, LEMSTRA P J. Water expandable polystyrene (WEPS)Part 2. In-situ synthesis of (block)copolymer surfactants [J]. Polymer, 1999, 40: 3691–3696.
    [4] GON ALVES O H, STAUDT T, DE ARA JO P H H, et al. Foaming of poly(methyl methacrylate) particles [J]. Materials Science and Engineering: C, 2009, 29(2): 479-484.
    [5] JONSSON M, NORDIN O, MALMSTR M E, et al. Suspension polymerization of thermally expandable core/shell particles [J]. Polymer, 2006, 47(10): 3315-3324.
    [6] KAN A, DEMIRBO?A R. A new technique of processing for waste-expanded polystyrene foams as aggregates [J]. Journal of Materials Processing Technology, 2009, 209(6): 2994-3000.
    [7] SHEN J, CAO X, JAMESLEE L. Synthesis and foaming of water expandable polystyrene–clay nanocomposites [J]. Polymer, 2006, 47(18): 6303-6310.
    [8] TEO M Y, YEONG H Y, LYE S W. Microwave moulding of expandable polystyrene foam with recycled material [J]. Journal ofMaterials Processing Technology, 1997, 63: 514-518.
    [9] CHEN G, WU C, WENG W, et al. Preparation of polystyrene/graphite nanosheet composite [J]. Polymer, 2003, 44(6): 1781-1784.
    [10] KIM H, THOMAS HAHN H, VICULIS L M, et al. Electrical conductivity of graphite/polystyrene composites made from potassium intercalated graphite [J]. Carbon, 2007, 45(7): 1578-1582.
    [11] UHL F M, WILKIE C A. Polystyrene/graphite nanocomposites: effect on thermal stability [J]. Polymer Degradation and Stability, 2002, 76(1): 111-122.
    [12] WANG W-P, PAN C-Y. Preparation and characterization of polystyrene/graphite composite prepared by cationic grafting polymerization [J]. Polymer, 2004, 45(12): 3987-3995.
    [13] XIAO M, SUN L, LIU J, et al. Synthesis and properties of polystyrene/graphite nanocomposites [J]. Polymer, 2002, 43(8): 2245-2248.
    [14] XIAO P, XIAO M, GONG K. Preparation of exfoliated graphite/polystyrene composite by polymerization-filling technique [J]. Polymer, 2001, 42(11): 4813-4816.
    [15] YANG X, MA L, WANG S, et al.“Clicking”graphite oxide sheets with well-defined polystyrenes: A new Strategy to control the layer thickness [J]. Polymer, 2011, 52(14): 3046-3052.
    [16] KLEMENS P G, PEDRAZA D F. Thermal conductivity of graphite in the basal plane [J]. Carbon, 1994, 32(4): 735-741.
    [17] LEONG K C, LI H Y. Theoretical study of the effective thermal conductivity of graphite foam based on a unit cell model [J]. International Journal of Heat and Mass Transfer, 2011, 54(25-26): 5491-5496.
    [18] SAR(?) A, KARAIPEKLI A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material [J]. Applied Thermal Engineering, 2007, 27(8-9): 1271-1277.
    [19] SUN K, STROSCIO M A, DUTTA M. Graphite C-axis thermal conductivity [J]. Superlattices and Microstructures, 2009, 45(2): 60-64.
    [20] WANG K, WU J Y, WANG R Z, et al. Effective thermal conductivity of expanded graphite–CaCl2 composite adsorbent for chemical adsorption chillers [J]. Energy Conversion and Management, 2006, 47(13-14): 1902-1912.
    [21] WANG L W, TAMAINOT-TELTO Z, METCALF S J, et al. Anisotropic thermal conductivity and permeability of compacted expanded natural graphite [J]. Applied Thermal Engineering, 2010, 30(13): 1805-1811.
    [22] XIANG J, DRZAL L T. Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material [J]. Solar Energy Materials and Solar Cells, 2011, 95(7): 1811-1818.
    [23] KUMAKAZU O, NAOKI N, MASATO S. The polymerization of styrene catalyzed by n-butyllithium in the presence of carbon black [J]. Carbon, 1980, 18(4): 277-280.
    [24] DOWDING P J, VINCENT B. Suspension polymerisation to form polymer beads [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 161(2): 259-269.
    [25] ALEXOPOULOS A H, KIPARISSIDES C. On the prediction of internal particle morphology in suspension polymerization of vinyl chloride. Part I:: The effect of primary particle size distribution [J]. Chemical Engineering Science, 2007, 62(15): 3970-3983.
    [26] ALVAREZ J, ALVAREZ J, HERN NDEZ M. A population balance approach forthe description of particle size distribution in suspension polymerization reactors [J]. Chemical Engineering Science, 1994, 49(1): 99-113.
    [27] HUKKANEN E J, BRAATZ R D. Measurement of particle size distribution in suspension polymerization using in situ laser backscattering [J]. Sensors and Actuators B: Chemical, 2003, 96(1-2): 451-459.
    [28] JAHANZAD F, SAJJADI S, BROOKS B W. Characteristic intervals in suspension polymerisation reactors: An experimental and modelling study [J]. Chemical Engineering Science, 2005, 60(20): 5574-5589.
    [29] KOTOULAS C, KIPARISSIDES C. A generalized population balance model for the prediction of particle size distribution in suspension polymerization reactors [J]. Chemical Engineering Science, 2006, 61(2): 332-346.
    [30] LANGNER F, MORITZ H U, REICHERT K H. Reactor scale-up for polymerization in suspension [J]. Chemical Engineering Science, 1980, 35(1-2): 519-525.
    [31] MAGGIORIS D, GOULAS A, ALEXOPOULOS A H, et al. Use of CFD in prediction of particle size distribution in suspension polymer reactors [J]. Computers & Chemical Engineering, 1998, 22, Supplement 1(0): S315-S322.
    [32] MAGGIORIS D, GOULAS A, ALEXOPOULOS A H, et al. Prediction of particle size distribution in suspension polymerization reactors: effect of turbulence nonhomogeneity [J]. Chemical Engineering Science, 2000, 55(20): 4611-4627.
    [33] PLATZER B, KLODT R D, HAMANN B, et al. The influence of local flow conditions on the particle size distribution in an agitated vessel in the case of suspension polymerisation of styrene [J]. Chemical Engineering and Processing: Process Intensification, 2005, 44(11): 1228-1236.
    [34] IGNATOV V N, KUZNETSOV A I, VASVEV V A. Polycondensation in the presence of a filler as a new way to create polymer multicomponent systems with prespecified properties [J]. International Journal of Heat and Mass Transfer, 1992, 25: 1652-1657.
    [35] XIAO P, XIAO M, GONG K C. Preparation of exfoliated graphitepolystyrene composite by polymerization-filling technique [J]. Polymer, 2001, 42: 4813–4816.
    [36] LI J R, XU J R, ZHANG M Q. Carbon black/polystyrene composites as candidates for gas sensing materials [J]. Carbon, 2003, 41(12): 2353-2360.
    [1] CREVECOEUR J J, NELISSEN L, LEMSTRA P J. Water expandable polystyrene (WEPS)Part 2. In-situ synthesis of (block)copolymer surfactants [J]. Polymer, 1999, 40: 3691–3696.
    [2] JONSSON M, NORDIN O, MALMSTR M E, et al. Suspension polymerization of thermally expandable core/shell particles [J]. Polymer, 2006, 47(10): 3315-3324.
    [3] SHEN J, CAO X, JAMESLEE L. Synthesis and foaming of water expandable polystyrene–clay nanocomposites [J]. Polymer, 2006, 47(18): 6303-6310.
    [4] TEO M Y, YEONG H Y, LYE S W. Microwave moulding of expandable polystyrene foam with recycled material [J]. Journal ofMaterialsProcessing Technology, 1997, 63: 514-518.
    [5]潘祖仁,翁志学,黄志明.悬浮聚合[M ].北京:化学工业出版社, 1997.
    [6]王凯,虞军,等.搅拌设备[M ].北京:化学工业出版社,2003.
    [7]李允明.工业聚合反应装置Ⅵ悬浮聚合反应器(上)[ J ].合成橡胶工业, 1995, 18 (2) : 114 - 117.
    [8]杨春辉,等.三叶后掠式搅拌器的流场试验研究[ J ].聚氯乙烯, 1999, (1) : 21 - 26.
    [9]关鉴图.三叶后掠桨在悬浮聚合中的应用[ J ].机电工程技术, 2001, (7) : 112 - 114.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700