纳米WC-MgO复合粉末的制备及其热压烧结研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硬质合金材料被誉为“工业的牙齿”,具有高的硬度、良好的耐磨性、耐热性和断裂韧性,受到国内外学术界、产业界的高度重视,成为新型工具材料和结构材料的研究热点之一。在硬质合金材料中,钨钴类(WC-Co)合金的研究和应用最广泛,特别是超细晶WC-Co硬质合金成为当今重点的研究发展方向。然而,WC-Co硬质合金中的主要粘结剂Co是一种昂贵而稀缺的金属,是一种重要的战略资源,世界储量极其有限,且添加Co虽然可以改善硬质合金的强韧性,但亦会使硬质合金的硬度和耐蚀性受到影响。因此,开发制备兼有高硬度和高韧性、原料易得的新型复合材料,成为WC-Co硬质合金的理想替代物,具有重要的战略和经济意义。
     本研究从粉末制备和粉末烧结两个方面开展代钴硬质合金的研究工作。以WC-MgO复合材料作为研究对象,采用固相反应合成、高能行星球磨和热压烧结方法,制备了具有纳米结构的WC-MgO复合粉末以及具有高硬度和高韧性的WC-MgO复合材料。在研制过程中,系统地设计了粉末合成工艺以及块体烧结制备工艺,对固相反应合成粉末的热力学、机械力活化粉末作用、高能行星球磨制备复合粉末过程、块体热压烧结制度及其增韧机理、稀土氧化物对烧结过程促进作用、热压烧结致密化成型机理等问题进行了深入的探讨,取得了以下研究成果:
     1、利用机械力活化粉末的作用,用钨氧化物(W03)和石墨混合粉末通过直接固相碳热还原反应合成了具有纳米结构的WC粉末。根据反应热力学计算结果,预测了合成过程的温度和产物,并结合实验验证分析了机械力活化原始粉末对反应过程的影响。研究结果表明:经过10小时机械力活化,W03-石墨粉末在1215℃真空条件下发生碳热还原反应合成纳米WC粉末。机械力活化过程使原始粉末的比表面积提高、反应活度增加,有助于合成过程进行,而且期间生成的Magneli中间相,也促进了合成制备过程。
     2、采用高能行星球磨方法制备WC-MgO复合粉末,利用反向传递(BP)神经网络方法建立了球磨工艺参数与粉末形貌特征性能之间的关系模型。选择球磨转速、球料比、磨球直径作为模型输入参量,合成粉末的形貌特征(晶粒尺寸、中值粒径、比表面积)作为模型的输出结果,利用实验结果对模型进行训练与评价,由此还进一步对球磨工艺参数进行优化。研究结果表明:BP神经网络方法可以建立球磨参数与产物粉末形貌特征之间的关系模型,在球料比为10:1时纳米WC-MgO复合粉体制备最佳工艺为球料比:300-350r/min、磨球直径:8-10mm。
     3、对制备获得的纳米WC-4wt%MgO复合粉末进行了热压烧结实验和性能表征,通过物相分析、显微结构观察、力学性能测定,研究了烧结工艺条件对块体材料性能的影响,分析了第二相MgO颗粒对烧结块体的增韧作用。结果表明:在烧结温度为1650。C、保温时间为90min、烧结压力为39.6MPa的真空条件下进行热压烧结,制备获得致密度为94.56%TD的WC-MgO块体,维氏硬度可达15.43GPa,断裂韧性可达9.58MPa-m1/2,抗弯强度为1065.3MPa。提高烧结温度或者延长保温时间会造成晶粒粗化和异常长大,反之,降低烧结温度或缩短保温时间会使块体难以实现致密化。观察烧结块体的微观形貌可知,第二相MgO颗粒分布于WC基体之中。结合断裂力学模型分析发现:较小的第二相颗粒粒径与均匀的第二相颗粒分布状态使裂纹在WC-MgO复合材料中扩展路径加长,发生偏转,产生一定的增韧效果。
     4、为了获得第二相颗粒分布匀细致密的WC-MgO烧结块体,在WC-4wt%MgO原始粉末中添加稀土氧化镧(La2O3)作为烧结助剂,分析了La203添加量对烧结块体性能和微观组织的影响和作用。研究结果表明:优化稀土La203添加量(0.1-0.5wt%)可阻碍WC基体烧结过程中的脱碳反应,细化WC基体和第二相MgO颗粒烧结组织,抑制第二相颗粒的团聚、合并、粗化,提高MgO颗粒分散的均匀性以及颗粒/基体界面结合性能。
     5、根据粉末烧结过程不同阶段的致密化机理,设计了二步热压烧结方法。通过控制烧结温度变化实现烧结样品致密化,并抑制烧结过程晶粒长大。研究结果表明:不添加任何烧结助剂的条件下,最高烧结温度(T1)为1750℃、最后保温温度(乃)为1550℃时,能使烧结块体致密度达到99%TD,基体WC晶粒细小(2.59μm),第二相MgO颗粒分布匀细。相对于传统热压烧结,二步热压烧结方法制备的WC-MgO复合材料具有更好的综合力学性能(维氏硬度18.4GPa,断裂韧性12.95 MPa·m1/2,抗弯强度1283.7MPa),与热压烧结方法制备的WC-Co硬质合金性能相当。
     本研究首次利用固相反应合成、高能行星球磨和热压烧结技术成功地制备了纳米WC-MgO复合粉末和具有良好力学性能的WC-MgO复合块体,运用XRD、TG-DTA、DLLS、SEM/EDXS、TEM/HRTEM、DIL、SPM等测试手段对纳米粉末和复合块体结构进行了表征,系统地分析了复合粉末制备过程的机理以及复合块体的致密化、增韧机理,对进一步研究WC-MgO复合材料的批量制备与应用奠定了较坚实的基础。
Among hard alloys, the ultra-fine WC-Co cemented carbides with superior hardness and toughness find wide industrial applications as tips for cutting tools and wear-resistant parts. The intrinsic resistance to oxidation and corrosion at high temperature also makes them desirable as protective coating for devices at elevated temperatures. Metallic binder (typically Co) is introduced to improve WC interparticle binding and to increase compact toughness. However, Co is expansive and rare and its reserves all over the world are very limited. Moreover, metallic binders result in reduced hardness and corrosion/oxidation resistance, and enhance grain growth, particularly in conventional liquid phase sintering due to rapid diffusion in the liquid phase. Therefore, efforts to obtain harder materials have attempted the preparation of WC with low amounts of Co and WC with no metal binder.
     A new composite material, WC-MgO is considered as an ideal material for use in industrial applications. Compared with the commercial micron- and submicron-grained structure WC-Co composites, the WC-MgO can achieve superior high value of hardness and toughness combination. In the current work, high energy planetary ball milling and its subsequent hot-pressing sintering were adopted to the synthesis of nanocomposite WC-MgO powders and the bulk material. The formation of nano-sized WC and WC-MgO composite powders were investigated at first. The solid-state reaction mechanism, the influence of its previous mechanical activation and the process of the composite powder synthesis were discussed. These were followed by an understanding on the hot-pressing sintering behavior and its improvements. Rare earth oxide addition and two-step-sintering method were selected for the further developing on the mechanical properties of the consolidated bulks. Some significant results have been achieved.
     Firstly, solid-state carbothermic reduction of tungsten oxide (WO3) to nano-sized tungsten carbide (WC) particles was obtained by calcining mechanically activated mixtures of WO3 and graphite at 1215℃under vacuum condition. By experiments and thermodynamic calculations, the intermediate phases, Magneli phase (WO2.72 and WO2) and metallic tungsten (W), were observed at 741℃, which decomposed to synthesize the final product (WC). Homogeneity increase and associated decrease in the diffusion path by mechanical milling and formation of these intermediates are mainly responsible for the successful production of WC. The process indicates that solid-state synthesis of WC nanoparticles directly from as-milled mixtures of tungsten oxide and graphite powder is possible.
     Secondly, a series of artificial-neural-network (ANN) models was developed for the analysis and prediction of correlations between processing (high-energy planetary ball milling) parameters and the morphological characteristics of nanocomposite WC-4wt%MgO powders by applying the back-propagation (BP) neural network technique. The input parameters of the BP network were milling speed, milling ball diameter and ball-to-powder weight ratio. The properties of the as-milled powders (specifically crystallite size, specific surface area and median particle size) were the output for three individual BP network models. These models were based on the mathematic statistical approach and seemed suitable for the complicated ball milling process which is difficult to be accurately described by physical models. Well acceptable performances of the neural networks were achieved. The model can be used for the prediction of properties of composite WC-MgO powders at various milling parameters. It can also be used for the optimization of processing and ball milling parameters.
     Thirdly, the obtained nanocomposite WC-4wt%MgO powders were consolidated into bulk materials via hot-pressing sintering. The influence of sintering regimes on the microstructures and properties of bulk materials was studied. It can be found that sintering temperature and holding time can greatly affect the properties of the as-sintered bulks. At lower sintering temperature and shorter holding time, the dense bulk structure cannot be obtained, while at higher sintering temperature or longer isothermal treatment, grains might coarsen. As a result, the mechanical properties of the as-sintered WC-MgO bulks might become unsatisfactory as well. The optimized sintering temperature can be determined regarding the bulk density and the best combination of hardness and fracture toughness. Hot-pressing sintering at the temperature of 1650℃with applied pressure of 39.6 MPa for 90 min can obtain a relative density of 94.56 %TD and the sintered compacts maintain their unique properties, i.e. superior hardness (HV= 17.78 GPa), toughness (Kc= 12.21 MPa·m1/2), and flexural strength (σ= 1065.3 MPa) combination. The improved toughness of WC-MgO composite can be attributed to the second phase toughening effects. The observations on the indentation cracks on the surface of the WC-MgO indicates that once the crack has reached particulate-matrix interface, the difference in the crack-tip opening displacement between the ductile particle and the brittle matrix would cause crack to be locally blunted, thus produce closure stress bridging the crack along its length. These effects require more external load to force the crack propagate further, thus induce improvement of toughness. In addition, crack deflections that enhance the energy for crack growth were also observed. It can be concluded achieving a high density and a small grain size are very important for the structural ceramic materials because it brings about an improvement of mechanical properties.
     Fourthly, a detailed investigation was carried out into the influences of the lanthanum oxide (La2O3) addition upon the microstructural characteristics and the mechanical properties of the WC-MgO composite bulk prepared by hot-pressing sintering. The results indicate that due to the unique properties of rare earth element such as high surface activity and large ionic radius, the addition of trace La2O3 can suppress the decarburization, promote the microstructural refinement and improve the particulate dispersion homogeneity and the particulate/matrix interfacial coherence. Consequently, the relative density of the sintered sample with 0.1 wt% La2O3 addition can be increased by 4.2% as compared with the sample without La2O3 addition. This indicates the possibility of preparing high-hardness (18.02 GPa) and flexural fracture strength (1265.9 MPa) WC-MgO composite material with adding the RE oxide (La2O3) using conventional hot-pressing sintering method.
     Fifthly, two-step hot-pressing sintering (TSS) was applied to consolidate nanocomposite WC-4wt%MgO powders. The first step sintering was employed at a higher temperature to obtain an initial high density, and the second step was held at a lower temperature by isothermal sintering for several hours to increase bulk density without significant grain growth. The experimental results showed the sintering temperature plays an important role in densification and grain growth of WC-MgO compacts. The optimum TSS regime consisted of heating at 1750℃(1st step) and 1550℃(2nd step), resulting in the formation of near full dense microstructure (99%TD) with suppressed grain growth (2.59μm). Accordingly, the improvement on the mechanical properties, including increase in the hardness (from 16.7 to 18.4 GPa), fracture toughness (from 10.2 to 12.95 MPa-m1/2) and flexural strength (from 976.6 to 1283.7 MPa), was also observed due to the grain refining and full dense bulk.
     In the current work, nanocomposite WC-MgO powders and the composite bulks, which achieve competitive values of hardness and fracture toughness, can be an ideal engineering material as the alternative of WC-Co. This study laid a solid foundation for the understanding of WC-MgO synthesis process and its batch-preparation application.
引文
[1]张凤林,王成勇,宋月贤.WC-Co硬质合金的强韧化.粉末冶金技术.2003,21(4):236-40
    [2]王国栋.硬质合金生产原理.冶金工业出版社,1982:4-5
    [3]Mortensen A, Suresh S. Functionally Gradient Metals and Metal-ceramic Composites Part 1: Processing. International Materials Reviews,1995,40(6):239-265
    [4]Lay S, Loubradou M, Daonnadieu P. Ultra Fine Microstructure in WC-Co Cermet. Advanced Engineering Materials.2004(6):811-4
    [5]葛启录,肖振声,韩欢庆.高性能难熔材料在尖端领域的应用与发展趋势.粉末冶金工业.2000,10(1):7-13
    [6]刘文彬.WC-Co复合粉末的原位合成与块体硬质合金的烧结.北京:北京工业大学博士学位论文.2009
    [7]丰成友,张德全.世界钻矿资源及其研究进展述评.地质论评.2002,48(6):627-33
    [8]Uhrenius B. On the composition of Fe-Ni-Co-WC-Based cemented carbides. International Journal of Refractory Metals and Hard Materials.1997,15:139-49
    [9]Xu Z H, Agren J. A modified hardness model for WC-Co cemented carbides. Materials Science and Engineering A.2004,386:262-8
    [10]Care J A. Superalloy-bonded hard metal. Metal Powder Report.1985,40(7-8):407
    [11]Perter C T, Brabyn S M. Properties of nickel substituted hard metals and their performance in hard rock drill bits. Metal Powder Report.1987,42(12):863-5
    [12]Eun K Y Kim D Y, Yoon D N. Variation of mechanical properties with Ni/Co ratio in WC-(Co-Ni) hard metals. Powder Metallurgy.1984,27(2):112-4
    [13]Voitovich V B, Sverdel V V, Voitovich R F, Golovko E L. Oxidation of WC-Co, WC-Ni and WC-Co-Ni hard metals in the temperature range 500-800 ℃. International Journal of Refractory Metals and Hard Materials.1996,14(4):289-95
    [14]Pator H. Present status and development of tool materials:Part 1 Cutting Tools. International Journal of Refractory Metals and Hard Materials.1987,6(4):196-209
    [15]Tracey V A. Nickel in hard metals. International Journal of Refractory Metals and Hard Materials.1992,11(3):137-49
    [16]Becher P F, Plucknett K P. Properties of Ni3Al-bonded titanium carbide ceramics. Journal of European Ceramics Society.1997,18:395-400.
    [17]Wittmann B, Schubert W, Lux B. WC grain growth and grain growth inhibition in nickel and iron binder hard metals. International Journal of Refractory Metals and Hard Materials. 2002,20(1):51-60
    [18]Sherif El-Eskandarany M, Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature. Journal of Alloys and Compounds.2000,296: 175-82
    [19]Zhang M L, Zhu S G, Ma J, Wu C X. Preparation of WC/MgO composite nanopowders by high-energy reactive ball milling and their plasma-activated sintering. Powder Metallurgy and Metal Ceramics.2008,47(9-10):525-30
    [20]Wu C X, Zhu S G, Ma J, Zhang M L. Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling. Journal of Alloys and Compounds.2009,478(1-2):615-9
    [21]Wang S W, Chen D L, Hirai T. Densification of A12O3 powder using spark plasma sintering. Journal of Material Research.2000,15(4):982-7
    [22]Ma J, Zhu S G, Wu C X, Zhang M L. Application of back-propagation neural network technique to high energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders. Materials & Design.2009,30:2867-74
    [23]Zhang M L, Zhu S G, Ma J, Wu C X, Zhu S X. Synthesis of nanosized WC/MgO powders by high energy ball milling and analysis of reaction thermodynamics. Powder Metallurgy. 2010,53(2):169-73
    [24]Ma J, Zhu S G, Di P, Zhang Y. Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites. Materials & Design.2011,32:2125-9
    [25]Zhu S G, Ma J, Zhang M L, Wu C X. Mechanical Alloying:For formation of nanocomposite materials. In Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications, Reddy B. ed. Intech, Viena,2011, pp.883-908
    [26]株洲硬质合金厂.硬质合金的生产.冶金工业出版社,1974:3-5
    [27]Arenas F, De Arenas I B, Ochoa J, Cho S A. Influence of VC on the microstructure and mechanical properties of WC-Co sintered cemented carbides. International Journal of Refractory Metals and Hard Materials.1999,17(1-3):91-7
    [28]Kear B H, McCandlish L E. Chemical processing and properties of nano-structured WC-Co materials. Nanostructured Materials.1993,3(1-6):19-30
    [29]Wang X, Fang Z G, Sohn H Y. Nanocrystalline cemented tungsten carbide sintered by an ultra-high-pressure rapid hot consolidation process. Engquist J edited. Proceedings of the 2007 International Conference on Powder Metallurgy & Particulate Materials, Denver, US, 2007. Princeton, New York, Metal Powder Industries:8-10
    [30]Porat R, Berger S, Rosen A. Sintering behavior and mechanical properties of nanocrystalline WC-Co. Materials Science Forum.1996,225-227:630-4
    [31]Bhaumik S K, Upadhyaya G S, Vaidya M L. Alloy design of WC-10Co hard metals with modification in carbide and binder phases. International Journal of Refractory Metals and Hard Materials.1992,11(2):9-22
    [32]Fukatsu T, Kobori K, Ueki M. Micro-grained cemented carbide with high strength. International Journal of Refractory Metals and Hard Materials.1991,10(1):57-60
    [33]Gille G, Szesny B, Dreyer K. Submicro and ultrafine grained hardmetals for microdrills and metal cutting insert. Kneringer G, Rodhammer P, Wildner H. edited Proceedings of 15th International Plansee Seminar, Tyrol, Austria,2001. Plansee holding AG:782-816
    [34]林晨光.中国超细和纳米晶WC-Co硬质合金的研究开发概况.中国钨业.2005,20(2):19-22
    [35]王兴庆,郭海亮,何宝山.纳米硬质合金制备技术的研究.硬质合金.2003,20(1):1-6
    [36]全峰.微波烧结WC-10Co硬质合金的结构与性能研究.武汉:武汉理工大学博士论文.2007
    [37]Zhu L H, Ma X M, Lei J X, Zhao H F. Development in research on nano-cemented carbide. Rare Metal Materials and Engineering.2004,33(4):349-53
    [38]Mukhopadhyay A, Basu B. Recent developments on WC-based bulk composites. Journal of Materials Science.2010,46(3):571-89
    [39]Benjamin J S. Mechanical alloying. Scientific American.1976,234(5):40-8.
    [40]李凡,吴炳尧.机械合金化-新型的固态合金化方法.机械工程材料.1999,23(4):22
    [41]Butler B G, Lu J, Fang Z Z, Rajamani R K. Production of nanometric tungsten carbide powders by planetary milling. International Journal of Powder Metallurgy.2007,43(1): 35-43
    [42]朱心昆,林秋实,陈铁力,程抱昌,曹建春.机械合金化的研究及进展.粉末冶金技术.1999,17(6):291-4
    [43]Wu N Q, Wu J M, Wang G X. Amorphization in the Al-C system by mechanical alloying. Journal of Alloys and Compounds.1997,260:121-6
    [44]Wu N Q, Lin S, Wu J M. Mechanically driven synthesis of nanophase TiC/Ti-Al composite powder. Material Letters.1997,32:259-62
    [45]Sherif El-Eskandarany M, Mahday A A, Ahmed A H, Amer A H. Synthesis and characterizations of ball-milled nanocrystalline WC and nanocomposite WC-Co powders and Subsequent Consolidations. Journal of Alloys and Compounds.2000,312(1-2): 315-25
    [46]Liu L, Li B, Ding X Z, Ma X M, Qi Z Z, Dong Y D. Preparation of nanocrystalline metal-carbides by mechanical alloying. Chinese Science Bulletin.1994,39(14):1166-70
    [47]宁阳.球磨WC-Co纳米复合末的合成和成形.稀有金属与硬质合金.2003,31(1):53-6
    [48]Tan G L, Wu X J. Mechanochemical synthesis of nanocrystalline tungsten carbide powders. Powder Metallurgy.1998;41:300-2.
    [49]缪曙霞,殷声,李建勇,赖和怡.自蔓燃高温合成法(SHS)制备碳化钨.中国有色金属学报.1994,4(2):79-81
    [50]Sherif El-Eskandarany M, Omori M, Ishikuro M, Konno T J, Takada K, Sumiyama K, Hirai T, Suzuki K. Sythesis of full-density nanocrystalline tungsten carbide by reduction of tungsten at room temperature. Metallurgical and Materials Transcations.1996,27A: 4210-3
    [51]李炯义,曹顺华,林信平,高海燕,李元元.反应热处理技术制备纳米晶WC-6Co硬质合金复合粉末.金属热处理.2005,30(7):56-9
    [52]张武装,高海燕,黄伯云.纳米晶WC-Co复合粉末制备的研究.稀有金属材料与工程.2007,36(7):1254-6
    [53]陈亚军,金松哲,周振华.用球磨法制取WC-Co纳米粉.吉林工学院学报.2001,22(1):11-4
    [54]Seegopaul P. McCandlish L E, Shinneman F M. Production capability and powder processing methods for nanostructured WC-Co powder. International Journal of Refractory Metals & Hard Materials.1997,15:133-8
    [55]Sadangi R K, McCandlish L E, Kear B H. Grain growth inhibition in liquid phase sintered nanophase WC/Co alloys. International Journal of Powder Metallurgy.1999,35(1):27-33
    [56]Zhang Z Y, Wahlberg S, Wang M S, Muhammed M. Processing of nanostructured WC-Co powder from precursor obtained by Co-precipitation. Nanostructured Materials.1999, 12(1-4):163-6
    [57]欧阳亚非,邬荫芳,彭泽辉.WC-Co复合粉末的流态化合成及其应用.中国钨业.1999,14(5-6):210-5
    [58]吴伯麟,邵刚勤,段兴龙,谢济仁,魏明坤,袁润章.纳米晶复合碳化钨-钻粉末的工业化制备技术.材料导报.2000,11(7):55-8
    [59]徐志花,马淳安,甘永平.超细碳化钨及其复合粉末的制备.化学通报.2003,8:544-8
    [60]Fang Z G, Wang X, Ryu T, Hwang K S, Sohn S Y. Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide-A review. International Journal of Refractory Metals and Hard Materials.2009,27(2):288-99
    [61]Hojo J, Oku T, Kato A. Tungsten carbide powders produced by the vapor phase reaction of the WC16-CH4-H2 system. Journal of the Less Common Metals.1978,59(1):85-95
    [62]Tang X, Haubner R, Kieffer B. Preparation of ultrafine CVD WC powders deposited from WC16 gas mixtures. Journal De Physique ⅣColloque.1995, C5:1013-20
    [63]Ryu T, Sohn H Y, Han G, Kim Y U, Hwang K S, Mena M, Fang Z G. Nanograined WC-Co composite powders by chemical vapor synthesis. Metallurgical and Materials Transactions. 2008,39B(1):1-6
    [64]李继刚,吴希俊,谭洪波,刘金芳.纳米碳化钨粉的制备及其热稳定性研究.稀有金属材料与工程.2004,33(7):736-9
    [65]谭国龙,吴希俊,甘波.化学气相法低温合成纳米WC-Co-VC粉体.中国有色金属学报.1998,8(Suppl.2):283-5
    [66]Medeiros F F P, De Oliveira S A, De Souza C P, Da Silva A G P, Gomes U U, De Souza J F. Synthesis of tungsten carbide through gas-solid at low temperatures. Materials Science and Engineering.2001,315A(1-2):58-62
    [67]Gao L, Kear B H. Synthesis of nanophase WC powder by a displacement reaction process. Nanostructured Materials.1997,9:205-8
    [68]刘珍,梁伟.纳米材料制备方法及其研究进展.材料科学与工艺.2000,8(3):103-8
    [69]Raghunathan S, Bourell D L. Synthesis and evlaution of advanced nanocrystalline tungsten-based materials. P/M Science & Technology Brief.1999.1(1):9-14
    [70]邱波.真空碳还原三氧化钨和人造白钨制取钨粉及碳化钨粉的工艺探索.铁合金.1999,2:23-9
    [71]郭琳.高温快速直接碳化制取超细碳化钨粉末.华南理工大学学报(自然科学版).2002,30(3):87-9
    [72]Rees E J, Brady C D A, Burstein G T. Solid-state synthesis of tungsten carbide from tungsten oxide and carbon and its catalysis by nickel. Materials Letters.2008,62(1-3):1-3
    [73]罗崇玲,易茂中,谭兴龙,戴煜.新型直接碳化法制备超细WC粉及其烧结体的结构与性能.粉末冶金技术.2007,25(4):243-50
    [74]Ban Z G, Shaw L L. Synthesis and processing of nanostructured WC-Co materials. Journal of Materials Science.2002, (37):3397-403
    [75]刘紫兰,李强,张钦钊,黄向东.机械与热综合活化法制备超细WC-Co粉末.中国有色金属学报.2005,15(6):929-34
    [76]刘瑞,易丹青.李荐.纳米WC粉末的制备研究.材料科学与工程学报.2006,24(3):418-22.
    [77]刘清才,王海波,孙亚丽.以紫钨为原料制备优质超细WC粉末的实验.重庆大学学报(自然科学版).2007,30(5):100-2
    [78]Koc R, Kodambaka K S. Tungsten carbide (WC) synthesis from novel precursors. Journal of the European Ceramics Society.2000,20:1859-69
    [79]Zhou Y T, Manthiram A. New route for the synthesis of tungsten carbide-cobalt nanocomposites. Journal of American Ceramic Society.1994,77(10):2777-8
    [80]Zawrah M F. Synthesis and characterization of WC-Co nanocomposites by novel chemical method. Ceramics International.2007,33(2):155-61
    [81]Subrahnanyam. Composites by combustion synthesis. Key Engineering Materials.1995, 108-110:105-22
    [82]Nersisyan H H, Won H I, Won C W, Lee J H. Study of the combustion synthesis process of nanostructured WC and WC-Co. Materials Chemistry and Physics.2005,94(1):153-8
    [83]Li Z Q, Zhang H F. Nanocrystalline tungsten carbide encapsulated in carbon shells. Nanostructured Materials.1998,10:179
    [84]Adorjan C, Bock A, Myllymaki S, Schubert W D, Kontturi K. WC/Co-composite powders via hydrothermal reduction of Co3O4-suspensions. International Journal of Refractory Metals and Hard Materials.2008,26(6):569-74
    [85]刘舜尧,张春友.纳米硬质合金开发与应用.矿冶工程,2000,20(1):70-2
    [86]张凤林,王成勇,宋月贤.纳米块体材料烧结技术进展.硬质合金.2002,19(3):177-81
    [87]Sun J F, Zhang F M, Shen J. Characterizations of ball-milled nanocrystalline WC-Co composite powders and subsequently rapid hot pressing sintered cermets. Materials Letters. 2003,57(21):3140-8
    [88]Jia C C, Sun L, Tang H, Qu X H. Hot pressing of nanometer WC-Co powder. International Journal of Refractory Metals and Hard Materials.2007,25(1):53-6
    [89]Lin C G, Kny E, Yuan G, Djuricic B. Microstructure and properties of ultrafine WC-0.6VC-10Co hardmetals densified by pressure-assisted critical liquid phase sintering. Journal of Alloys and Compounds.2004,383(1-2):98-102
    [90]齐志宇,李静,李成威,杨大正.高压热等静压工艺烧结超细WC-10Co复合粉烧结体.鞍山科技大学学报.2007,30(2):124-7
    [91]Azcona I, Ordonez A, Sanchez J M, Castro F. Hot isostatic pressing of ultrafine tungsten carbide-cobalt Hardmetals. Journal of Materials Science.2002,37(19):4189-95
    [92]Kim H C, Oh D Y, Jiang G J, Shon I J. Synthesis of WC and dense WC-5vol.%Co hard materials by high-frequency induction heated combustion. Materials Science and Engineering.2004,368A(1-2):10-7
    [93]Kim H C, Shon I J. Rapid sintering of ultra-fine WC-10wt%Co by high-frequency induction heating. Journal of Materials Science.2005,40:2849-54
    [94]Kim H C, Oh D Y, Shon I J. Sintering of nanophase WC-15vol.%Co hard metals by rapid sintering process. International Journal of Refractory Metals and Hard Materials.2004, 26(4-5):197-203
    [95]Kim H C, Jeong I K, Shon I J, Ko I Y, Doh J M. Fabrication of WC-8wt.%Co hard materials by two rapid sintering processes. International Journal of Refractory Metals and Hard Materials.2007,25(4):336-40
    [96]http://en.wikipedia.org/wiki/Hot_pressing#cite_note-1
    [97]Sivaprahasam D, Chandrasekar S B, Sundaresan R. Microstructure and mechanical properties of nanocrystalline WC-12Co consolidated by spark plasma sintering. International Journal of Refractory Metals and Hard Materials.2007,25(2):144-52
    [98]Michalski A, Siemiaszko D. Nanocrystalline cemented carbides sintered by the pulse plasma method. International Journal of Refractory Metals and Hard Materials.2007,25(2):153-8
    [99]Zhao J F, Holland T, Unuvar C, Munir Z A. Sparking plasma sintering of nanometric tungsten carbide. International Journal of Refractory Metals and Hard Materials.2009, 27(1):130-9
    [100]赵海锋,朱丽慧,黄清伟.放电等离子技术快速烧结纳米WC-10%Co-0.8%VC硬质合金.稀有金属材料与工程.2005,34(1):82-5
    [101]Huang B, Chen L D, Bai S Q. Bulk ultrafine binderless WC prepared by spark plasma sintering. Scripta Materialia.2006,54(3):441-5
    [102]解迎芳,王兴庆,陈立东,李晓东,郭海亮.放电等离子烧结纳米硬质合金的研究. 硬质合金.2003,20(3):138-42
    [103]Shi X L, Shao G Q, Duan X L, Yuan R Z. Atomic force microscope study of WC-lOCo cemented carbide sintered from nanocrystalline composite powders. Journal of Beijing University of Science and Technology.2005,12(6):558-63
    [104]史晓亮,邵刚勤,段兴龙,张卫丰,袁润章.纳米复合WC-6Co粉末的快速烧结.稀有金属材料与工程.2005,34(8):1283-6
    [105]Agrawal D K. Microwave processing of ceramics. Current Opinion in Solid State and Materials Science.1998,3(5):480-5
    [106]Huang S, Vanmeensel K, Vleugels J, Li L, Van edr Biest O. WC grain growth inhibition in microwave sintered WC-Co hardmetals prepared from nanopowders. Kneringer G, Roedhammer P and Wildner H edited Proceedings of 16th International Plansee Seminar, Tyrol, Austria,2001. Plansee holding AG:378-89
    [107]沈以赴,冯尚龙,李景新,黄因慧,杨明川.纳米WC/Co经激光烧结后的晶粒再细化.焊接学报.2005,26(1):9-11
    [108]卢芳云,蔡清裕,周新贵.碳化硅粉末的冲击波活化研究.高压物理学报.1999,13(2):115-9
    [109]张凤林.高能球磨法制备的纳米复合WC-Co及其烧结体的结构与性能.广州:华南理工大学博士学位论文.2003
    [110]Fumihiro W. Modeling and simulation of elementary processes in ideal sintering. Journal of American Ceramics Society.2006,89(5):1471-84
    [111]German G M.Supersolidus liquid phase sintering Part Ⅱ:Densification theory. International Journal of powder Metallurgy.1990,26(1):35-42
    [112]郑茂盛,赵更申,周根树.颗粒尺度对纳米材料相变的影响.稀有金属材料与工程.1996,25(1):10-2
    [113]Fang Z G, Eason J W.Study of nanostructured WC-Co composite. International Journal of Refraetory Metals & Hard Materials.1995,13:297-303
    [114]陶小平.超细晶硬质合金生产工艺条件探讨.江西冶金.1990,10(6):9-11
    [115]王社权.影响硬质合金性能的几个因素.硬质合金.2000,1:9-12
    [116]Rodiger K, Dreyer K, Gerdes T. Microwave sintering of hardmetals. International Journal of Refractory Metal and Hard Materials.1998,16:409-16
    [117]毕泗庆.用于钢材切削加工的Fe、Ni代Co硬质合金刀具材料研究.成都:四川大学硕士学位论文.2007
    [118]铃木寿.硬质合金与烧结硬质材料-基础与应用.东京丸善株式会社,1986
    [119]Almond E A, Roebuck B. Identification of optimum binder phase compositions for improved WC hard metals. Materials Science and Engineering.1988,105-106A:237-48
    [120]Li T, Li Q F, Fuh J Y H, Yu P C, Wu C C. Effects of lower cobalt binder concentrations in sintering of tungsten carbide. Materials Science and Engineering.2006,430A:113-9
    [121]Sugiyama S, Taimatsu H. Preparation of WC-WB-W2B composites from B4C-W-WC powders and their mechanical properties. Materials Transactions.2002,43:1197-201
    [122]Cha S I, Hong S H. Microstructures of binderless tungsten carbides sintered by spark plasma sintering process. Materials Science and Engineering.2003,356A:381-9
    [123]Sugiyama S, Taimatsu H. Mechanical properties of WC-WB-W2B composites prepared by reaction sintering of B4C-W-WC powders. Journal of the European Ceramics Society. 2004,24:871-6
    [124]张梅琳.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士学位论文.2008
    [1]Riberio F H, Dalla Betta R A, Guskey G Y, Boudart M. Preparation and surface composition of tungsten carbide powders with high specific surface area. Chemistry of Materials.1991,3: 805-12
    [2]Koc R, Kodambaka K S. Tungsten carbide (WC) synthesis from novel precursors. Journal of European Ceramics Society.2000,20:1859-69
    [3]Koc R, Kodambaka K S. New process for producing submicron tungsten monocarbide powders. Journal of Materials Science Letters.1999,18:1469-71
    [4]Wang S J, Chen C H, Chang S C, Uang K M, Juan C P, Cheng H C. Growth and characterization of tungsten carbide nanowires by thermal annealing of sputter-deposited WCx films. Applied Physics Letters.2004,85:2358-60
    [5]Mederios F F P, De Oliveria S A, Desouza C P, Da sliva A G P, Gomes U U, Desouza J F. Synthesis of tungsten carbide through gas-solid reaction at low temperatures. Materials Science and Engineering.2001,315A:58-62
    [6]Rieck G D. Tungsten and its compounds. Oxford:Pergamon; 1967
    [7]Schwartzkopf P, Kieffer R. Refractory hard metals-Borides, Carbides, Nitrides, and Silicides. New York:MacMillan; 1953
    [8]Warren A, Bylund A, Ulefjord I. Oxidation of tungsten and tungsten carbide in dry and humid atmospheres. International Journal of Refractory Metals & Hard Matererials.1996,14: 345-53
    [9]Girandon J M, Devassine P, Lamonier J F, Delannoy L, Lecleveq L, Lecleveq G. Synthesis of tungsten carbides by temperature-programmed reaction with CH4-H2 mixtures, influence of the CH4 and hydrogen content in the carburizing mixture. Solid State Chemistry.2000,154: 412-26
    [10]Ross P N, Stonehart Jr P. Surface characterization of catalytically active tungsten carbide. Journal of Catalysis.1975,39:789
    [11]Xiao T C, Wang H T, York A P E, Williams C V, Green M L H. Preparation of nickel-tungsten bimetallic carbide catalysts. Journal of Catalysis.2002,209:318-30
    [12]McIntyre D R, Burstein G T, Vossen A. Effect of carbon monoxide on the electrooxidation of hydrogen by tungsten carbide. Journal of Power Sources.2002,107:67-73
    [13]Tan G L, Wu X J. Mechanochemical synthesis of nanocrystalline tungsten carbide powders. Powder Metallurgy.1998,41:300-2
    [14]Sherif El-Eskandarany M. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature. Journal of Alloys and Compounds.2000, 296:175-82
    [15]Won H I, Nersisyan H H, Won C W. Combustion synthesis of ultrafine tungsten carbide powder. Journal of Materials Research.2008,23:2393-7
    [16]左演声,陈文哲,梁伟.材料现代分析方法.北京工业大学出版社,2000:290-7
    [17]李宇春,周涛,朱志平.热分析方法在金属陶瓷材料研究中的应用.长沙电力学院学报(自然科学版).2002,17(3):78-9
    [18]杨道媛,马成良,孙宏魏.马尔文激光粒度分析仪粒度检测方法及其优化研究.中国粉体技术.2002,8(5):27-30
    [19]Suryananrayana C. Mechanical alloying and milling. Progress in Materials Science.2001, 46:1-184
    [20]Ban Z G, Shaw L L. On the reaction sequence of WC-Co formation using an integrated mechanical and thermal activation process. Acta Materialia.2001,49:2933-9
    [21]Ye D L, Hu J H. Practical handbook of inorganic thermodynamic data. Beijing:Metallurgy Industry Press; 2002,10
    [22]Kubashewski O, Alcock C B. Metallurgical thermochemistry.5th ed. Oxford:Pergamon; 1979
    [23]Welham N J. Novel route to submicrometer tungsten carbide. Journal of American Institute of Chemical Engineering.2000,46:68-71
    [1]Abdellaoui M, Gaffet E. The physics of mechanical alloying in a planetary ball mill: Mathematical treatment. Acta Metallurgica et Materialia.1995,43(3):1087-98
    [2]D'Incau M, Leoni M, Scardi P. High-energy grinding of FeMo powders. Journal of materials research.2007,22(6):1744-53
    [3]Chattopadhyay P P, Manna I, Talapatra S. A mathematical analysis of milling mechanics in a planetary ball mill. Materials Chemistry and Physics.2001,68(1-3):85-94
    [4]Das D, Chatterjee P P, Manna I. A measure of enhanced diffusion kinetics in mechanical alloying of Cu-18 at.% Al by planetary ball milling. Scripta Materialia.1999,41(8):861-6
    [5]Abdellaoui M, Gaffet E. Mechanical alloying in a planetary ball mill-kinematic description. Journal de Physique Ⅳ.1994,4(C3):291-6
    [6]Badmos A Y, Bhadeshia H K D H. The evolution of solutions:A thermodynamic analysis of mechanical alloying. Metallurgical and Materials Transactions A.28(11):2189-94
    [7]Lu L, Lai M O, Zhang S. Diffusion in mechanical alloying. Journal of Materials Processing Technology.1997,67(1-3):100-4
    [8]Suryanarayana C. Mechanical alloying and milling. Progress in Materials Science.2001, 46(1-2):1-184
    [9]Feng Y T, Han K, Owen D R J. Discrete element simulation of the dynamics of high energy planetary ball milling processes. Materials Science and Engineering A.2004,375-377:815-9.
    [10]Sha W, Edwards K L. The use of artificial neural networks in materials science based research. Materials & Design.2007,28:1747-52
    [11]方善锋,汪明朴,王正安,齐卫宏,李周.PLS-BPN法用于7005铝合金力学性能与工艺参数的定量研究.中国有色金属学报.2007,17(12):1948-54
    [12]李劫,刘代飞,秦庆伟.基于GA-BP的NiFe2O4基金属陶瓷阳极优化设计.中国有色金属学报.2006,16(2):351-6
    [13]苏娟华,董企铭,刘平,李贺军,康布熙.基于人工神经网络的铜合金形变热处理工艺和性能.中国有色金属学报,2003,13(5):1077-82
    [14]Wu C X, Zhu S G, Ma J, Zhang M L. Synthesis and formation mechanisms of nanocomposite WC-MgO powders by high-energy reactive milling. Journal of Alloys and Compounds.2009,478:615-9
    [15]Wu C X, Zhu S G, Luo Y L. Effects of stearic acid on synthesis of nanocomposite WC-MgO powders by mechanical alloying. Journal of Materials Science.2010,45,1817-22
    [16]张梅琳.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士学位论文.2008
    [17]Guo Z, Keong K G, Sha W. Crystallisation and phase transfromation behaviour of electroless nickel phosphorous platings during continuous heating. Journal of Alloys and Compounds.2003,358:112-9
    [18]Ma J, Zhu S G. Wu C X. Zhang M L. Application of back-propagation neural network technique to high energy planetary ball milling process for synthesizing nanocomposite WC-MgO powders. Materials & Design.2009,30:2867-74
    [19]Hagan M T, Demuth H B, Beale M. Neural Network Design. PWS Publishing Company, Boston,1996
    [20]The Math Works Inc., Product, Neural Network Toolbox Version 4.0.1 MATLAB 7.0.1 Release 14 Service Pack 3. The Math Works Inc.,2005
    [21]Calka A, Radlinski A P. Universal high performance ball-milling device and its application for mechanical alloying. Materials Science and Engineering A.1991,134:1350-3
    [22]Lai M O, Lu L. Mechanical alloying. Kluwer Academic Publishers, MA,1998
    [23]Watanabe R, Hashimoto H, Park Y H. Advances in powder metallurgy. In:Pease Ⅲ LF, Sansoucy R J eds. Metal Powder Industries Federation, Princeton,1991:119-30
    [1]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士学位论文.2008
    [2]全峰.微波烧结WC-10Co硬质合金的结构与性能研究.武汉:武汉理工大学博士学位论文.2007
    [3]Shetty D K, Wright I G, Mincer P N, Clauer A H. Indentation fracture of WC-Co cermets. Journal of Materials Science.1985,20:1873-82
    [4]卡恩RW,哈森P,克雷默E J,利弗森E.材料科学与技术.北京:冶金工业出版社,1998
    [5]施剑林.固相烧结-Ⅲ实验—超细氧化锆素坯烧结过程中的晶粒与气孔生长及致密化行为.硅酸盐学报.1998,26(1):12-3
    [6]Alexander K B, Becher P F, Shirl E B. Grain growth kinetics in alumina-zirconia (Ce ZTA) composites. Journal of American Ceramics Society.1994,77(4):939-46
    [7]陆佩文.无机材料科学基础.武汉:武汉大学出版社.2005
    [8]黄培云.粉末冶金.北京:冶金工业出版社.1983
    [9]German R M. Supersolidus liquid phase sintering part Ⅱ:densification theory. International Journal of Powder Metallurgy.1990,26(1):35-43
    [10]Morks M F, Gao Y, Fahim N F, Yingqing F U, Shoeib M A. Influence of binder materials on the properties of low power plasma sprayed cermet coatings. Surface Coating Technology. 2005,199:66-71
    [11]Ishijima Y, Kurishita H, Yubuta K, Arakawa H, Hasegawa M, Hiraoka Y, Takida T, Takebe K. Current status of ductile tungsten alloy development by mechanical alloying. Journal of Nuclear Materials.2004,329-333:775-9
    [12]Sherif El-Eskandarany M. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature, Journal of Alloys and Compounds.2000,296: 175-82
    [13]张国军,岳雪梅,金宗哲.颗粒增韧陶瓷的增韧机理.硅酸盐学报.1995,23(4):365-70
    [14]黄勇,汪长安.高性能多相复合陶瓷.北京:清华大学出版社.2008
    [1]Zhang Z Y, Lu X C, Han B L, Luo J B. Rare earth effect on the microstructure and wear resistance of Ni-based coatings. Materials Science and Engineering A.2007,454-455: 194-202
    [2]Qiao Z H, Ma X F, Zhao W, Tang H G, Zhao B. Nanostructured novel cemented hard alloy obtained by mechanical alloying and hot-pressing sintering and its applications. Journal of Alloys and Compounds.2008,462:416-20
    [3]Wu C M L, Yu D Q, Law C M T, Wang L. Properties of lead-free solder alloys with rare earth element additions. Materials Science and Engineering R.2004,44:1-44
    [4]Tian Y S, Chen C Z, Chen L X, Huo Q H. Effect of RE oxides on the microstructure of the coatings fabricated on titanium alloys by laser alloying technique. Scripta Materilla.2006,54: 847-52
    [5]Wang K L, Zhang Q B, Sun M L, Wei X G. Microstructural characteristics of laser clad coatings with rare earth metal elements. Journal of Materials Processing Technology.2003, 139:448-52
    [6]Wang K L, Zhang Q B, Sun M L, Wei X G, Zhu Y M. Rare earth elements modification of laser-clad nickel-based alloy coatings. Applied Surface Science.2001,174:191-200
    [7]Cui W F, Liu C M, Zhou L, Luo GZ. Characteristics of microstructures and second-phase particles in Y-bearing Ti-1100 alloy. Materials Science and Engineering A.2002,323:192-7
    [8]Gu D D, Shen Y F, Zhao L, Xiao J, Wu P, Zhu Y B. Effect of rare earth oxide addition on microstructures of ultra-fine WC-Co particulate reinforced Cu matrix composites prepared by direct laser sintering. Materials Science and Engineering A.2007,445-446:316-22
    [9]Ishijima Y, Kurishita H, Yubuta K. Arakawa H, Hasegawa M, Hiraoka Y, Takida T, Takebe K. Current status of ductile tungsten alloy development by mechanical alloying. Journal of Nuclear Materials.2004,329-333:775-9
    [10]Taimatsu H. Sugiyama S, Kodaira Y. Synthesis of W2C by reactive hot pressing and its mechanical properties. Materials Transactions.2008,49:1256-61
    [11]Morks M F, Gao Y, Fahim N F, Yingqing F U, Shoeib M A. Influence of binder materials on the properties of low power plasma sprayed cermet coatings. Surface Coating Technology. 2005,199:66-71
    [12]Ma J, Zhu S G, Di P, Zhang Y. Influence of La2O3 addition on hardness, flexural strength and microstructure of hot-pressing sintered WC-MgO bulk composites. Materials & Design. 2011,32:2125-9
    [13]Qiao Z H, Ma X F. Zhao W, Tang H G, Zhao B. Nanostructured novel cemented hard alloy obtained by mechanical alloying and hot-pressing sintering and its applications. Journal of Alloys and Compounds.2008,462:416-20
    [14]Suryananrayana C. Mechanical alloying and milling. Progress in Materials Science.2001, 46:1-184
    [15]顾冬冬,沈以赴.添加La2O3对激光烧结(WC-Co)p/Cu金属基复合材料组织和成形性能的影响.金属学报.2007,43(9):968-76
    [1]Sherif El-Eskandarany M. Fabrication of nanocrystalline WC and nanocomposite WC-MgO refractory materials at room temperature. Journal of Alloys and Compounds.2000,296: 175-82
    [2]张梅林.纳米复合粉体材料WC/MgO的合成工艺及烧结技术研究.上海:东华大学博士学位论文.2008
    [3]Zhu S G, Ma J, Zhang M L, Wu C X. Mechanical Alloying:For formation of nanocomposite materials. In Advances in Nanocomposites-Synthesis, Characterization and Industrial Applications, Reddy B. ed. Intech, Viena,2011, pp.883-908
    [4]Chen I W, Wang X H. Sintering dense nanocrystalline oxide without final stage grain growth. Nature.2000,404:168-71
    [5]Maca K, Pouchly V, Zalud P. Two-step sintering of oxide ceramics with various crystal structures. Journal of the European Ceramics Society.2010,30:583-9
    [6]Wang X H, Chen P L, Chen I W. Two-step sintering of ceramics with constant grain size, I. Y2O3. Journal of American Ceramics Society.2006,89:431-7
    [7]Wang X H, Deng X Y, Bai H L, Zhou H, Qu W G, Li L T, Chen I W. Two-step sintering of ceramics with constant grain-size, II:BaTiO3 and Ni-Cu-Zn ferrite. Journal of American Ceramics Society.2006,89,438-43
    [8]Polotai A, Breece K, Dickey E, Randall C. A novel approach to sintering nanocrystalline barium titanate ceramics. Journal of American Ceramics Society.2005,88:3008-12
    [9]Karaki T, Yan K, Adachi M. Barium titanate piezoelectric ceramics manufactured by two-step sintering. Japanese Journal of Applied Physics.2007,46:7035-38
    [10]Li J, Ye Y. Densification and grain growth of Al2O3 nanoceramics during pressureless sintering. Journal of American Ceramics Society.2006,89:139-43
    [11]Bodisova K, Sagalik P, Galusek D, Svancarek P. Two-stage sintering of alumina with submicrometer grain size. Journal of American Ceramics Society.2007,90:330-2
    [12]Lee Y I, Kim Y W, Mitomo M, Kim D Y. Fabrication of dense nanostructured silicon carbide ceramics through two-step sintering. Journal of American Ceramics Society.2003, 86:1803-5
    [13]Duran P, Tartaj J, Moure C. Fully dense, fine-grained, doped zinc oxide varistors with improved nonlinear properties by thermal processing optimization. Journal of American Ceramics Society.2003,86:1326-9
    [14]Shetty D K, Wright I G, Mincer P N, Clauer A H. Indentation fracture of WC-Co cermets. Journal of Materials Science.1985,20:1873-82
    [15]Duran P, Capel F, Tartaj J, Moure C. Sintering behavior and electrical properties of nanosized doped-ZnO powders produced by metallorganic polymeric processing. Journal of American Ceramics Society.2001,84:1661-8
    [16]Kang S J L. Sintering Densification, Grain Growth and Microstructure, Elsevier, Oxford, 2005
    [17]Rahaman M N, Ceramic Processing and Sintering,2nd edition, Marcel Dekker Inc., New York,2003
    [18]黄培云.粉末冶金原理.北京:冶金工业出版社,1997
    [19]Mazaheri M, Valefei M, Razavi Hesabi Z, Sadrnezhaad S K. Two-step sintering of nanocrystalline 8Y2O3 stabilized ZrO2 synthesized by glycine nitrate process. Ceramics International.2009,35:13-20
    [20]Mazaheri M, Zahedi A M, Sadrnezhaad S K. Two-step sintering of nanocrystalline ZnO compacts:effect of temperature on densification and grain growth. Journal of American Ceramics Society.2008,91:56-63
    [21]Wang X H, Chen I W. Sintering of Nanoceramics. In Nanomaterials Handbook, Gogotsi Y. ed. CRC Press, New York,2006, pp.361-83
    [22]Ma J, Zhu S G, Ouyang C X. Two-step hot-pressing sintering of nanocomposite WC-MgO compacts. Journal of the European Ceramics Society.2011,31:1927-35
    [23]Li J, Gong H Y, Shi R X, Yin Y S. Rising crack-growth-resistance behavior of Al2O3 based composites toughened with Fe3Al intermetallic, Ceramics International.2007,33:811-4
    [24]Qiao Z H, Ma X F, Zhao W, Tang H G, Zhao B. Nanostructured novel cemented hard alloy obtained by mechanical alloying and hot-pressing sintering and its applications. Journal of Alloys and Compounds.2008,462:416-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700