海风藤对阿尔茨海默病的治疗作用及其作用机理的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景阿尔茨海默病(Alzheimer disease,AD)亦称老年性痴呆,是1907年由德国精神病学家Alois Alzheimer描述并命名的,它是以进行性认知和记忆功能下降为特征的大脑退行性变性疾病。随着社会的老龄化,其发病率呈逐年上升趋势,已成为一种严重危害人类健康的疾病。尽管在过去的二十年里,对AD致病基因的研究取得了明显的进展,但目前,AD的病因仍不十分清楚。AD的治疗也只停留在对症治疗的阶段。因此,加强对AD发病机制的研究,寻找积极有效的治疗方法,具有重要的经济和社会意义。
     AD的病理变化为广泛的大脑萎缩。在受累脑区,有两个明显的病理学特征:老年斑(SP)和神经原纤维缠结(NFT)。老年斑由神经细胞外的β淀粉样蛋白(Aβ)聚集而成,而β淀粉样蛋白则是由β淀粉样前体蛋白(APP)异常剪切所产生。淀粉样蛋白级联假说认为,神经细胞外聚集的Aβ激活了炎症和氧化损伤。病理学也证实,老年斑周围常围绕着激活的小胶质细胞和星形胶质细胞。Aβ还使细胞骨架蛋白Tau蛋白磷酸化,进而缠绕形成了神经原纤维缠结。老年斑和神经原纤维缠结共同作用,促进了神经退行性变的发生。
     中药海风藤是胡椒科植物风藤(Piper kadsura(Choisy)Ohwi)的干燥藤茎。具祛风湿、通经络、理气之功效,主治风寒湿痹,关节疼痛,筋脉拘挛,跌打损伤,哮喘,久咳等症。韩恩吉教授等应用水母发光蛋白的方法,发现海风藤水提物能抑制Aβ25-35诱导的神经细胞胞浆钙离子升高并随海风藤浓度增加而增强,提示海风藤对神经细胞有保护作用。韩恩吉教授等还应用细胞培养、Northernblot和逆转录-聚合酶链反应(RT-PCR)的方法观察了海风藤水提物对SK-N-SH细胞中APP mRNA的影响,证明海风藤可选择性抑制APP mRNA表达,并且随浓度的增加而增强,随时间的延长而增强。根据淀粉样蛋白级联假说,细胞外聚集的Aβ激活了炎症和氧化损伤,从而促成了神经退行性变的发生。所以我们认为,海风藤对神经细胞是有保护作用的。那么,本研究所关心的问题是,这种保护和治疗作用是否会在痴呆模型动物体内发生,海风藤抑制APP基因表达的有效活性成分是什么。
     研究目的为了观察海风藤是否对痴呆模型大鼠有神经保护作用,我们首先建立了侧脑室注射Aβ大鼠痴呆模型,在海风藤水提物灌胃后,观察痴呆模型大鼠行为学和组织学的改变,大鼠脑神经元内Aβ、炎症因子TNF-α和IL-6以及突触素的表达,脑内NO、NOS的含量。然后,我们用生药学的方法,将海风藤进行分离,再将各分离组分作用于SK-N-SH细胞。通过观察各分离组分作用后,SK-N-SH细胞中APP和Aβ的表达,来确定海风藤中抑制APP和Aβ表达的有效活性成分。
     方法与结果
     1.痴呆大鼠模型的建立及海风藤水提物对痴呆模型大鼠行为学和组织学的影响
     1.1侧脑室注射Aβ建立大鼠痴呆模型
     选择通过筛选训练的大鼠60只,分为正常对照组、模型组、假手术组、阳性对照组(布洛芬)、海风藤高剂量、低剂量组,每组各10只大鼠。
     正常对照组不给予处置;其余五组大鼠用水合氯醛350mg/kg bw腹腔注射麻醉,头部固定于立体定位仪。模型组、阳性对照组、海风藤高剂量、低剂量组均在定位仪定位下向侧脑室内注入10μg Aβ(25-35);假手术组钻开颅骨后,侧脑室内注入等量生理盐水。各组大鼠手术后7天开始灌胃给药,阳性对照组给予布洛芬20mg/kg bw,海风藤高剂量组给予140mg/100g bw,低剂量组给予46.1mg/100g bw。正常对照组、模型组及假手术组则给予等量蒸馏水灌胃。
     1.2学习、记忆能力的测定
     各组大鼠采用Morris水迷宫进行学习、记忆功能的测定,记录逃避潜伏期,逃避潜伏期越短,大鼠的学习、记忆能力越强。同时,测定大鼠跨越平台次数,跨越平台次数越多说明大鼠的学习、记忆能力越强。
     Morris水迷宫检测结果:1)正常对照组、假手术组与模型组相比,逃避潜伏期明显减少,跨越平台次数明显增多,差异有统计学意义(P<0.05),而正常对照组与假手术组相比,逃避潜伏期和跨越平台次数无明显差异,说明侧脑室注射Aβ,引起大鼠学习记忆能力下降;2)在水迷宫测试的第4、第5天,阳性对照组与模型组相比,逃避潜伏期减少,跨越平台次数增多,差异有统计学意义(P<0.05),说明痴呆模型大鼠经抗炎药物布洛芬治疗后,其学习记忆能力明显提高;3)在水迷宫测试的第4、第5天,海风藤高、低剂量组与模型组相比,逃避潜伏期减少,跨越平台次数增多,差异有统计学意义(P<0.05),说明痴呆模型大鼠经海风藤水提物治疗后,其学习记忆能力明显提高;4)海风藤高、低剂量组与正常对照组相比,逃避潜伏期增加,跨越平台次数减少,差异具有统计学意义(P<0.05),说明经海风藤治疗的痴呆模型大鼠学习记忆能力尚未恢复到正常水平;5)海风藤高剂量组和低剂量组相比,逃避潜伏期减少,跨越平台次数增多,但差异无统计学意义(P>0.05)。
     1.3大鼠海马的组织学观察
     大鼠海马HE染色结果:正常对照组大鼠海马CA1区细胞排列整齐、均匀,细胞结构完整;模型组大鼠海马CA1区细胞排列不整齐、细胞结构不完整、边界不清、细胞间距加大;阳性对照组、海风藤高、低剂量组大鼠CA1区细胞较模型组排列整齐、均匀,结构也较完整。
     2.海风藤水提物对痴呆模型大鼠额叶、海马神经元淀粉样蛋白(Aβ)、突触素和胶质细胞中炎症因子表达的影响
     本实验采用免疫荧光染色结合图像分析方法观察侧脑室注射痴呆模型大鼠额叶、海马神经元淀粉样蛋白(Aβ)、TNF-α、IL-6的表达,NOS、NO的含量和突触素的表达。
     海马神经元Aβ表达结果如下:1)模型组大鼠海马神经元Aβ荧光强度明显增强,其平均阳性率高于正常对照组和假手术组,差异具有统计学意义(P<0.05),说明脑室内注射Aβ可以造成痴呆模型大鼠海马神经元Aβ的表达升高;2)阳性对照组与模型组相比,其海马神经元Aβ荧光强度明显减弱,平均阳性率明显降低,差异有统计学意义(P<0.05),说明抗炎药物布洛芬能够降低痴呆模型大鼠海马神经元Aβ的表达;3)海风藤水提物高、低剂量组与模型组相比,其海马神经元Aβ的荧光强度明显减弱,平均阳性率明显降低,差异具有统计学意义(P<0.05),说明海风藤水提物能够降低痴呆模型大鼠海马神经元Aβ的表达;4)海风藤高、低剂量组之间相比,海风藤高剂量组海马神经元Aβ的荧光强度略低于低剂量组,平均阳性率也有一定程度降低,但差异无统计学意义(P>0.05)。说明海风藤高、低剂量组之间,在降低Aβ的表达上,无明显差别。
     额叶胶质细胞TNF-α、IL-6表达结果如下:1)模型组大鼠的额叶胶质细胞TNF-α、IL-6荧光强度增强,其平均阳性率高于正常对照组和假手术组,差异具有统计学意义(P<0.05),说明脑室内注射Aβ可以造成痴呆模型大鼠额叶胶质细胞TNF-α和IL-6的表达升高;2)阳性对照组与模型组相比,其额叶胶质细胞TNF-α和IL-6荧光强度明显减弱,平均阳性率明显降低,差异有统计学意义(P<0.05),说明抗炎药物布洛芬能够降低痴呆模型大鼠额叶胶质细胞TNF-α和IL-6的表达;3)海风藤水提物高剂量组与模型组相比,其额叶胶质细胞TNF-α和IL-6荧光强度明显减弱,平均阳性率明显降低,差异有统计学意义(P<0.05);4)而海风藤水提物低剂量组虽然降低了痴呆模型大鼠额叶胶质细胞TNF-α和IL-6的表达,但差异并无统计学意义(P>0.05),说明海风藤水提物能够降低痴呆模型大鼠额叶胶质细胞TNF-α和IL-6的表达,海风藤高剂量组的疗效优于低剂量组。
     大鼠脑组织NO、NOS含量检测结果如下:1)模型组大鼠脑组织中NO和NOS的含量增高,其含量高于正常对照组和假手术组,差异具有统计学意义(P<0.05),说明脑室内注射Aβ可以造成痴呆模型大鼠脑组织中NO和NOS的表达升高;2)阳性对照组与模型组相比,其脑组织中NO和NOS含量明显降低,差异具有统计学意义(P<0.05),说明抗炎药物布洛芬能够降低痴呆模型大鼠脑组织中NO和NOS的表达;3)海风藤水提物高剂量组与模型组相比,脑组织中NO和NOS含量明显降低,差异具有统计学意义(P<0.05);4)海风藤水提物低剂量组与模型组相比,其脑组织NO和NOS的含量降低,但差异不具有统计学意义(P>0.05),说明海风藤水提物能够降低痴呆模型大鼠脑组织中NO和NOS的表达,海风藤高剂量组的疗效优于低剂量组。
     额叶、海马突触素表达结果如下:1)模型组大鼠额叶、海马神经元突触素荧光强度明显减弱,其平均阳性率低于正常对照组和假手术组,差异具有统计学意义(P<0.05),说明脑室内注射Aβ可以造成痴呆模型大鼠额叶、海马神经元突触素的表达降低;2)阳性对照组与模型组相比,其额叶、海马神经元突触素荧光强度明显增强,平均阳性率明显升高,差异具有统计学意义(P<0.05),说明抗炎药物布洛芬能够增加痴呆模型大鼠额叶、海马神经元突触素的含量;3)海风藤水提物高剂量组与模型组相比,其额叶、海马神经元突触素荧光强度明显增强,平均阳性率明显升高,差异具有统计学意义(P<0.05),说明海风藤水提物能够增加痴呆模型大鼠额叶、海马突触素的表达;4)海风藤水提物低剂量组与模型组相比,其海马神经元突触素荧光强度明显增强,平均阳性率明显升高,差异具有统计学意义(P<0.05),5)海风藤低剂量组与模型组相比,其额叶神经元突触素荧光强度未见增强,平均阳性率差异无统计学意义(P>0.05),说明低剂量海风藤水提物仅有增高痴呆模型大鼠海马,没有增高其额叶神经元突触素表达的作用。
     3.海风藤单体复合物毕拨明宁碱/二氢毕拨明宁碱对SK-N-SH细胞内APP基因转录和蛋白表达的抑制作用
     3.1海风藤单体的制备
     福建产海风藤药材用水提取后,提取液浓缩得到浸膏。浸膏加水溶解后,依次用石油醚,乙酸乙酯,正丁醇萃取,分别得到石油醚萃取相,乙酸乙酯萃取相和正丁醇萃取相。乙酸乙酯萃取相用95%乙醇溶解后,加硅胶拌样,经硅胶柱色谱,氯仿-丙酮梯度洗脱,收集洗脱流份。其中氯仿-丙酮(9:1)洗脱流份Fr.31用石油醚-丙酮反复结晶后,得到化合物1(HFT-1)。
     HFT-1根据氢谱、碳谱的数据,并与文献对照,确定该结晶由化合物毕拨明宁碱(piperlonguminine,A)和二氢毕拨明宁碱(dihydropiperlonguminine,B)组成,由其氢谱积分确定在此结晶中A与B的比例为1:0.8。化合物A、B分子式如下:A:piperlonguminine B:dihydropiperlonguminine
     3.2海风藤单体复合物毕拨明宁碱二氢毕拨明宁碱的药理作用
     将SK-N-SH细胞分为正常对照组、DMSO组(1‰DMSO)、海风藤水提物组(15g/l)、海风藤单体高剂量组(13.13μg/ml)、中剂量组(6.56μg/ml)、低剂量组(3.28μg/ml)。在细胞被药物处理22小时后,进行各项检测。共进行六次独立的重复性实验。
     使用MTT的技术,检测SK-N-SH细胞在各种药物处理后的细胞增殖活性。结果显示,SK-N-SH细胞在各种药物处理24小时后,细胞活性未发生明显变化。
     使用逆转录聚合酶链式反应(RT-PCR)的方法,检测SK-N-SH细胞中APP mRNA的表达。电泳结束后,用APP与β-Actin荧光强度的比率代表APP mRNA的表达量。结果发现,海风藤水提物组及海风藤单体高剂量组的荧光强度比率比正常对照组均明显降低,差异有统计学意义(P<0.05)。而DMSO组、海风藤单体低、中剂量组的荧光强度比率与正常对照组相比,无明显差异(P>0.05)。表明海风藤水提物(15g/l)与海风藤的毕拨明宁碱二氢毕拨明宁碱单体复合物(13.13μg/ml)可以降低APP mRNA的表达。
     使用蛋白免疫印迹(Western blot)的方法,检测SK-N-SH细胞中APP的表达。使用APP与β-Actin荧光强度的比率代表APP的表达量。结果发现,海风藤水提物组(5g/l、15g/l)与海风藤单体中、高剂量组(6.56μg/ml、13.13μg/ml)的荧光强度比率比正常对照组均明显降低,差异有统计学意义(P<0.05)。而DMSO组、海风藤单体低剂量组(3.28μg/ml)的荧光强度比率与正常对照组相比,无明显差异(P>0.05)。表明海风藤水提物(5g/l、15g/l)与海风藤的单体复合物毕拨明宁碱二氢毕拨明宁碱(6.56μg/ml、13.13μg/ml)可以降低APP蛋白的表达。
     采用免疫荧光染色结合图像分析的方法,检测SK-N-SH细胞中Aβ的表达。结果发现,海风藤水提物组(15g/l)与海风藤单体中、高剂量组(6.56μg/ml、13.13μg/ml)Aβ的荧光强度比对照组均明显降低,平均阳性率均明显下降,差异有统计学意义(P<0.05)。而DMSO组、海风藤单体低剂量组(3.28μg/ml)的平均阳性率与正常对照组相比,无明显差异(P>0.05)。表明海风藤水提物(15g/l)与海风藤的单体复合物毕拨明宁碱二氢毕拨明宁碱(6.56μg/ml、13.13μg/ml)可以降低细胞内Aβ的表达。
     结论
     一向大鼠侧脑室内注射Aβ可明显降低大鼠的学习记忆能力,损害海马神经元,表明Aβ侧脑室注射模型是AD较理想的动物模型。海风藤水提物能够改善Aβ侧脑室注射AD模型大鼠的学习记忆能力,对受损的海马神经元有保护作用。
     二海风藤水提物能够降低Aβ侧脑室注射AD模型大鼠神经元内Aβ的表达,减少胶质细胞内TNF-α、IL-6的表达及脑组织内NO、NOS的含量,改善脑内的慢性炎症反应。海风藤水提物能够增加Aβ侧脑室注射AD模型大鼠神经元内突触素的表达,改善因脑内的慢性炎症反应引起的突触损伤。
     三海风藤单体复合物毕拨明宁碱/二氢毕拨明宁碱能够抑制SK-N-SH细胞中APP基因的转录和蛋白的表达。
Background Alzheimer disease(AD)is named after German psychiatrist and neural anatomist Alois Alzheimer,who described it in 1907.AD is a neurodegenerative disease characterized by progressive cognitive and memory decline.With the aging of the society,its incidence is increasing year by year.Alzheimer disease has already become a disease which seriously damages people's health.Although apparent improvements for the virulence genes of AD have been achieved in the past 20 years,so far,the reason of AD is still not clear.And the treatment of AD still stays in the period of symptomatic treatment.Therefore,enhancing the research for AD pathogenesis,looking for positive and effective method of AD treatment is of vital economic and social significance.
     The pathological change of AD is comprehensive atrophy of brain.At the afflicted brain area,there are two apparent pahthological hallmarks:senile plaques(SP)and neurofibrillary tangles(NFT).SP is extracellular accumulations ofβ-Amyloid(Aβ)peptides that are derived from the abnormal proteolytic processing of the amyloid precursor protein(APP).According to amyloid protein hypothesis,extracellular accumulated Aβactivated inflammation and oxidative damage.It is also demenstrated by pathology that senile plaques are often surrounded by activated microglia and astrocytes. NFT is intraneural accumulation of hyperphosphorlated tau,a cellular skeletin protein.SP and NFT together promote the neural degeneration.
     Futokadsura stem is the petiol of piper plant Kadsura.It is used to treat inflammatory diseases.The traditional function of the plant is to dispel wind-damp obstruction symdrome manifested as painful and stiff joints,tendon and muscle spasms,lower back pain,painful knees and pain from external injury.Using the method of aequorin,Enji Han found aqueous extract of futokadsura stem can inhibit the increase of intracellular Ca2+ induced by Aβ25-35.The inhibition effect increases with futokadsura stem concentration. Using the method of cell culture and RT-PCR,Enji Han also demonstrated that aqueous extract of futokadsura stem could selectively inhibit the APP gene expression in SK-N-SH cells.The inhibition effect increases with futokadsura stem concentration and the time of incubation.According to the hypothesis of amyloid protein,extracellular accumulated Aβactivates inflammation and oxidative damage,and these can cause neural degeneration.Based on these findings,we firstly want to observe if futokadsura stem has neural protective effect on dementia model rats.Then,we separated futokadsura stem,and tried to find the effective components which inhibit the expression of APP. Therefore,we assume that futokadsura stem has neural protective effect on SK-N-SH cells.What we are concerning about in this research is,whether this protective effect could happen in dementia models,and what the effective components in futokadsura stem which can inhibit APP expression are?
     Objective To observe whether futokadsura stem has neural protective effect on dementia model rats,firstly,Aβwas injected to lateral ventricle of rats to establish dementia rats model.After intragastric administration with aqueous extract of futokadsura stem,the expression of Aβ,inflammatory factors TNF-αand IL-6,synaptophysin and the content of NO,NOS were detected.Secondly, using chemical method,futokadsura stem was separated and the separated components were added to SK-N-SH cells.After the action of these components,the expression of APP and Aβin SK-N-SH cells,and the content of Aβin culture medium were detected.Then we tried to determine the effective components in futokadsura stem which could inhibit the expression of APP and Aβ.
     Methods and Results
     1.Establishment of dementia model rats and the effect of aqueous extract of futokadsura stem for ethology and histology of dementia model rats
     1.1 Aβwas injected to lateral ventricle of rats to establish dementia model rats
     60 trained rats were selected,and were divided into 6 groups:normal control group,model group,sham group,positive control group(ibuprofen), high dose futokadsura stem group and low dose futokadsura stem group.Each group has 10 rats.
     Normal control group received no treatment;other 5 groups were anesthetized with chloral hydrate(350mg/kg bw)by intraperitoneal injection. The heads of rats were set on the stereotaxis instrument.For the model group, positive control group,high and low dose futokadsura stern group,10μg Aβ(25-35)was injected to the lateral ventricle;for sham group,the same dose of sodium chloride were injected when the skull was opened.Each group began intragastric administration after 7 days,positive group was administered ibuprofen by 20mg/kg bw,high dose futokadsura stem group was administered aqueous extract of futokadsura stem by 140mg/100g bw,low dose group was administered aqueous extract of futokadsura stem by 46.1mg/100g bw. Normal control group,model group and sham group were administered the same dose of distilled water.
     1.2 Determination of learning and memory ability of rats
     Learning and memory ability of rats from each group were determined by Morris water maze experiment.The escape latencies were recorded.The shorter the escape latencies are,the better their learning and memory ability is. At the same time,we detected the spanning platform times of rats.The more times rats spanned the platform,the better their learning and memory ability is.
     Morris water maze experiment results showed that,1)Compared with escape latencies of rats in model group,those in normal control group and sham group decreased obviously,but the spanning platform times increased apparently,the difference is significant(P<0.05).There were no diffence between escape latencies of rats in normal control group and sham group.It meant that learning ability of rats decreased when Aβwas injected to their lateral ventricles.2)In the 4~(th)and 5~(th)day of Morris water maze experiment, rats in positive control group have lower escape latencies and higher spanning platform times compared with rats in model group.The difference is also significant(P<0.05).This demonstrated that when treated with anti-inflammatory medicine ibuprofen,dementia model rats could have improved learning and memory ability.3)In the 4~(th)and 5~(th)day of Morris water maze experiment,rats in high or low dose futokadsura stem group have lower escape latencies and higher spanning platform times compared with rats in model group.The difference is significant(P<0.05).This demonstrated that when treated with aqueous extract of futokadsura stem,dementia model rats could have improved learning and memory ability.4)However,rats in high or low dose futokadsura stem had higher escape latency and lower spanning platform times,compared with rats in normal control group.The diffence is significant(P<0.05).This meant that even if treated with futokadsura stem, the learning and memory ability of dementia model rats could not restore to normal state.5)When rats in high and low dose futokadsura stem groups were compared,rats in high dose group had lower escape latencies and higher spanning platform times.However,the difference is not significant(P>0.05).
     1.3 Histology of rats hippocampus
     HE staining of rats hippocampus showed that,in normal control group, cells in CA1 region of rats hippocampus were arranged in order,the structure of cells was integrated;in model group,cells in CA1 region of rats hippocampus were not arranged in order,the structure of cells was not integrated,the boundary of cells was not clear,the gap between cells was enlarged;in positive control group,high and low dose of futokadsura stem group,cells in CA1 region of rats hippocampus were arranged in order,the structure of cells was fairly integrated.
     2.The effect of aqueous extract of futokadsura stem on the expression of Aβ,synaptophysin in frontal lobe and hippocampus neurons and on the expression of inflammatory factors in frontal lobe gliocytes of dementia model rats.
     Using immuno-fluorescence staining combined with image analysis,we observed the expression of Aβ,TNF-α,IL-6 and synaptophysin in frontal lobe and hippocampus of dementia model rats which was established by lateral ventricle Aβinjection.
     The results of Aβexpression in hippocampus:1)Rats in model group had higher fluorescence intensity of Aβin the hippocampus than rats in normal control group and sham group had.The mean positive ratios were of significant difference(P<0.05).This demonstrated that dementia model rats established by lateral ventricle Aβinjection could increase the expression of Aβin the hippocampus;2)Rats in positive control group had lower fluorescence intensity of Aβin the hippocampus compared with rats in model group.The mean positive ratios were of significant difference(P<0.05).This meant that anti-inflammatory medicine ibuprofen could decrease the expresson of Aβin the hippocampus of dementia model rats;3)Compared with rats in model group,rats in high or low dose futokadsura stem group had lower fluorescence intensity of Aβin hippocampus,The mean positive ratios were of significant difference(P<0.05),This meant that aqueous extract of futokadsura stern could decrease the expression of Aβin the hippocampus of dementia model rats;4)When rats in high and low dose futokadsura stem groups were compared,rats in high dose group had lower fluorescence intensity of Aβin hippocampus,but the mean positive ratios were of no significant difference.It showed that high dose futokadsura stern had similar treatment effect than low dose in decreasing the expression of Aβ.
     The results of TNF-α、IL-6 expression in frontal lobe:1)Rats in model group had higher fluorescence intensity of TNF-α、IL-6 in the frontal lobe gliocytes than rats in normal control group and sham group had.The mean positive ratios were of significant difference(P<0.05).This demonstrated that dementia model rats established by lateral ventricle Aβinjection could increase the expression of TNF-α、IL-6 in the frontal lobe gliocytes;2)Rats in positive control group had lower fluorescence intensity of TNF-α、IL-6 in the frontal lobe gliocytes compared with rats in model group.The mean positive ratios were of significant difference(P<0.05).This meant that anti-inflammatory medicine ibuprofen could decrease the expresson of TNF-α、IL-6 in the frontal lobe gliocytes of dementia model rats;3)Compared with rats in model group,rats in high dose futokadsura stem group had lower fluorescence intensity of TNF-α、IL-6 in frontal lobe gliocytes,The mean positive ratios were of significant difference(P<0.05);4)Although rats in low dose futokadsura stem groups had lower fluorescence intensity of TNF-α、IL-6 in frontal lobe gliocytes,the mean positive ratios were of no significant difference(P>0.05).It showed that aqueous extract of futokadsura stem could decrease the expression of TNF-α、IL-6 in frontal lobe gliocytes,the high dose group had better treatment effect than low dose group in decreasing the expression of TNF-α、IL-6.
     The detection of NO,NOS content in rats brain:1)Rats in model group had higher content of NO,NOS in the brain than rats in normal control group and sham group had.It was of significant difference(P<0.05).This demonstrated that dementia model rats established by lateral ventricle Aβinjection could increase the expression of NO,NOS in the brain of dementia model rats;2) Rats in positive control group had lower content of NO,NOS in the brain compared with rats in model group.It was of significant difference(P<0.05). This meant that anti-inflammatory medicine ibuprofen could decrease the expresson of in the brain of dementia model rats;3)Compared with rats in model group,rats in high dose futokadsura stem group had lower content of NO,NOS in the brain,It was of significant difference(P<0.05);4)Although rats in low dose futokadsura stem groups had lower content of NO,NOS in the brain,It was of no significant difference(P>0.05).It showed that aqueous extract of futokadsura stem could decrease the expression of NO,NOS in the brain,the high dose group had better treatment effect than low dose group in decreasing the expression of NO,NOS.
     The results of synaptophysin(SYP)expression in rats frontal lobe and hippocampus:1)Rats in model group had lower fluorescence intensity of SYP in the frontal lobe and hippocampus than rats in normal control group and sham group had.The mean positive ratios were of significant difference(P<0.05).This demonstrated that dementia model rats established by lateral ventricle Aβinjection could decrease the expression of SYP in the frontal lobe and hippocampus;2)Rats in positive control group had higher fluorescence intensity of SYP in the frontal lobe and hippocampus compared with rats in model group.The mean positive ratios were of significant difference(P<0.05). This meant that anti-inflammatory medicine ibuprofen could increase the expresson of SYP in the frontal lobe of dementia model rats;3)Compared with rats in model group,rats in high dose futokadsura stem group had higher fluorescence intensity of SYP in frontal lobe and hippocampus,The mean positive ratios were of significant difference(P<0.05),It showed that aqueous extract of futokadsura stem could increase the expression of SYP in frontal lobe and hippocampus,4)Compared with rats in model group,rats in low dose futokadsura stem group had higher fluorescence intensity of SYP in hippocampus,The mean positive ratios were of significant difference(P<0.05),5)Rats in low dose futokadsura stem groups did not have higher fluorescence intensity of SYP in frontal lobe,the mean positive ratios were of no significant difference(P>0.05).It meant that low dose aqueous extract of futokadsura stem could only increase the expression of SYP in the hippocampus,not the frontal lobe of dementia model rats.
     3.Inhibition of APP gene transcription and protein expression in SK-N-SH cells by piperlonguminineldihydropiperlonguminine components separated from futokadsura stem
     3.1 Preparation of futokadsura stem monomers components
     Futokadsura stem from Fujian province was first extracted with water,after concentration,we got the extract.Then,it was extracted with petroleum ether, acetic ether and normal butyl alcohol in turn.The acetic ether extract phase was dissolved by 95%ethanol,then subject to silica gel column chromatography,chloroform-acetone gradient elution.Chloroform-acetone(9:1) elution phase Ft.1 was repeatedly crystallized by petroleum ether-acetone, and HFT-1 was obtained.
     According to the data of ~1HNMR and ~(13)CNMR spectra,referring to related literature,we determined the crystal was composed of piperlonguminine(A) and dihydropiperlonguminine(B),the ratio of A to B is 1:0.8.The structures of piperlonguminine and dihydropiperlonguminine are showed below:
     A:piperlonguminine
     B:dihydropiperlonguminine
     3.2 Pharmacological effect of piperlonguminine/ dihydropiperlonguminine components separated from futokadsura stem
     SK-N-SH cells were divided into normal control group,DMSO group(1‰DMSO),aqueous extract group(15g/I),high dose of monomers components group(13.13μg/ml),middle dose of monomers components group(6.56μg/ml), low dose of monomers components group(3.28μg/ml).After 22 hours of treatment,different indexes were detected.6 reproducible experiments were performed.
     Using the method of MTT,SK-N-SH cells proliferation assay was performed.The results showed that,after 22 hours different treatments,no significant difference was found for SK-N-SH cells proliferation among different groups.
     Using the method of RT-PCR,APP gene expression was detected in SK-N-SH cells.After electrophoresis,the fluorescence intensity ratio between APP andβ-Actin was used to represent the expression of APP mRNA.The results showed that the fluorescence intensity ratios in aqueous extract group and high dose of monomers components group were apparently lower than the ratios in normal control group.The difference was significant.However,the ratios of DMSO group,middle dose and low dose of monomers components group had no significant difference compared to the ratios of normal control group.This demonstrated that aqueous extract of futokadsura stem(15g/I)and piperlonguminine/dihydropiperlonguminine components separated from futokadsura stem(13.13μg/ml)could reduce the expression of APP mRNA.
     Using the method of Western blot,amyloid precursor protein(APP) expression was detected in SK-N-SH cells.The fluorescence intensity ratio between APP andβ-Actin was used to represent the expression of amyloid precursor protein.The results showed that the fluorescence intensity ratios in aqueous extract group and high dose of monomers components group were apparently lower than the ratios in normal control group.The difference was significant.However,the ratios of DMSO group,middle dose and low dose of monomers components group had no significant difference compared to the ratios of normal control group.This demonstrated that aqueous extract of futokadsura stem(15g/I)and piperlonguminine/dihydropiperlonguminine components separated from futokadsura stem(13.13μg/ml)could reduce the expression of amyloid precursor protein.
     Using the method of immuno-fluorescence staining combined with image analysis,Aβexpression was detected in SK-N-SH cells.The results showed that the fluorescence intensity of Aβin aqueous extract group and high dose of monomers components group was apparently lower than that in normal control group.The mean positive ratios were of significant difference.However,the mean positive ratios in DMSO group,middle dose and low dose of monomers components group had no significant difference compared to the ratios of normal control group.This demonstrated that aqueous extract of futokadsura stem(15g/I)and piperlonguminine/dihydropiperlonguminine components separated from futokadsura stem(13.13μg/ml)could reduce the expression of Aβ.
     Conclusion
     1.Aβlateral ventricle injection to rats could decrease the their learning and memory ability,damage the neurons in hippocampus.It is a fairly ideal AD animal model.Aqueous extract of futokadsura stem could ameliorate the learning and memory ability of dementia model rats,protect the damaged neurons in hippocampus.
     2.Aqueous extract of futokadsura stem could decrease the expression of Aβin neurons,reduce the expression of inflammatory factors TNF-α,IL-6 and NO, NOS in gliocytes,ameliorate the chronic inflammatory response in the brain of Aβlateral ventricle injection AD model rats.Aqueous extract of futokadsura stem could also increase the expression of synaptophysin in the neurons of AD model rats,improve the synapse damage caused by chronic inflammatory response.
     3.Piperlonguminine/dihydropiperlonguminine components separated from Futokadsura stem could inhibit the expression of APP mRNA and APP in SK-N-SH.
引文
1.Glenner GG,Wong CW.Alzheimer's disease:initial report of the purification and characterization of a novel cerebrovascular amyloid protein.Biochem Biophys Res Commun.1984,120(3):885-90.
    2.Iqbal,Khalid,Sisodia,et al.Alzheimer's Disease:Advances in Etiology,Pathogenesis and Therapeutics.Published By;John Wiley & Sons,Inc.2001.
    3.Turner PR.Roles of amyloid precursor protein and its fragments in regulating neural activity,plasticity and memory[J].Prog Neurobiol.2003,70:1.
    4.Nitta A,Itch A,Hasegawa T,et al.β-amyloid protein-induced Alzheimer's desease animal model[J].Neurosci.Lett.1994,170(1):63-66.
    5.Nabeshima T,Nitta A.Memory impairment and neuronal dysfunction induced by beta-amyloid protein in rats[J].Tohoku J Exp.Med.1994,174(3):241-9.
    6.Hashimoto M,Hossain S,Agdul H,et al.Docosahexaenoic acid-induced amelioration on impairment of memory learning in amyloid beta-infused rats relates to the decreases of amyloid beta and cholesterol levels in detergent-insoluble membrane fractions.Biochim Biophys Acta.2005,1738(1-3):91-8.
    7.Stephan A,Phillips AG.A case for a non-transgenic animal model of Alzheimer's disease[J].Genes Brain Behav.2005,4(3):157-72.
    8.Tohda C,Tamura T,Komatsu K.Repair of amyloid beta(25-35)-induced memory impairment and synaptic loss by a Kampo formula,Zokumei-to[J].Brain Res.2003,990(1-2):141-7.
    9.韩恩吉,许军,Rajiv Joseph.海风藤抑制淀粉样蛋白诱导神经细胞胞浆钙离子升高的研究[J].山东医科大学学报,1998,36(3):239-241.
    10.韩恩吉,胡洪涛,何秀全,等.海风藤对β-APP基因表达的影响[J].山东医科大学学报,2003,41(1).87-89.
    11.Han EJ,Hu HT,He XQ,et al.Selective inhibition of haifengteng in gene expression of beta-amyloid precursor protein[J].Chinese Journal of Clinical Rehabilitation,2004,8(13):2592-2593.
    12.姚俊英,韩恩吉,崔行,等.海风藤抑制淀粉样前体蛋白表达的研究[J].北京中 医药大学学报,30(5):314-322.
    13.包新民,舒斯云.大鼠脑立体定位图谱[M].北京:人民卫生出版社.1991,40-45.
    14.魏伟,岳莉.治疗老年性痴呆药物的药效评价动物模型.见:盛树力主编.老年性痴呆:发病机理与药物研究.北京:科学技术文献出版社,2003,270-282.
    15.Engelborghs S,De Deyn PP.The neurochemistry of Alzheimer's disease[J].Acta Neurol.Belg.1997,97(2):67-84.
    16.Eichenbaum H.How does the hippocampus contribute to memory?[J]Trends Cogn Sci.2003,7(10):427-429.
    17.Eichenbaum H,Conscious awareness,memory and the hippocampus[J].Nat Neurosci.1999,2(9):775-776.
    18.Wu Yi,Ji Shang-rong,Jiang Wu-ling,et al.Comparison of aggregation of beta-amyloid peptide 1-42 and beta-amyloid peptide 1-40[J].Chin Electr Microsc Soc,2003,22;20.
    19.刘辉,陈俊抛,田时雨,等.Aβ1-40 海马注射对大鼠脑内一氧化氮合酶表达的影响[J].中华神经科杂志,2001
    20.Morris RG,Garrud P,Rawlins JN,et al.Place navigation impaired in rats with hippocampal lesions.Nature,1982,297(5868):681-183.
    21.Fisher W,Chen KS,Gage FH,et al.Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging.Neurobiol.Aging,1992,13:9.
    22.李晓光,罗焕敏.风藤与异型南五味的区别[J].陕西中医,2003,24(2):169-170.
    23.孙绍美,於兰,刘俭,等.海风藤及其代用品药理作用的比较研究[J].中草药,1998,29(10):677-679.
    24.李吉莹,刘艳菊,邴飞虹,等.海风藤抗炎作用的实验研究[J].湖北中医杂志,2006,28(12):17.
    25.史留斌,等.海风藤酮对大鼠肝脏缺血再灌注损伤保护作用的实验研究[J].中国普外基础与临床杂志,1998,5(4):195-198.
    26.郭瑞友,于义英,方思羽,等.海风藤对局灶性脑缺血治疗作用的实验研究[J].中国临床神经科学,2003,11(3):233-235.
    27.余书勤,钱之玉.血小板激活因子拮抗剂海风藤酮对人精子体外运动的影响[J].生殖与避孕,1995,15(1):57-59.
    28.Tsal JY,Chou C J,Chen CF,et al.Antioxidant activity of piperlactam S:prevention of copper-induced LDL peroxidation and amelioration of free radical-induced oxidative stress of endothelial cells[J].Planta Med,2003,69(1):3-8.
    29.罗焕敏,肖飞,李晓光.广东海风藤提取物对痴呆鼠脑内β淀粉样前体蛋白基因表达的影响[J].中国老年学杂志,2003,23:360-361.
    30.肖飞,罗焕敏,李晓光,等.广东海风藤提取物HS_2对老年痴呆小鼠的药效学研究[J].中国药理学通报,2004,20(9):1001-3.
    1.韩恩吉,胡洪涛,何秀全,等.海风藤对β-APP基因表达的影响[J].山东医科大学学报,2003,41(1):87-89.
    2.Han EJ,Hu HT,He XQ,et al.Selective inhibition of haifehgtehg in gene expression of beta-amyloid precursor protein[J].Chinese Journal of Clinical Rehibilitation,2004,8(13):2592-2593.
    3.Rachel WL,David GL,Stephen PM,et al.Anti-inflammatory activity of Chinese medicinal vine plants[J].Journal of Ethnopharmacology,2003,85(1):61-67.
    4.Lin LC,Shen CC,Shen YC,et al.Anti-inflammatory neolignans from Piper kadsura[J].Journal of Natural Products,2006,69(5):842-844.
    5.Chiou WF,Peng CH,Chen CF,et al.Anti-inflammatory properties of piperlactam S:modulation of complement 5a-induced chemotaxis and inflammatory cytokines production in macrophages[J].Planta Medica,2003,69(1):9-14.
    6.McGeer PL,Rogers J,McGeer EG.Neuroimmune mechanisms in Alzheimer disease pathogenesis.Alzheimer Dis Assoc Disord.1994,8(3):149-58.
    7.Akiyama H,Barger S,Barnum S,et al.Inflammation and Alzheimer's disease.Neurobiol.Aging,2000,21(3):383-421.
    8.Sastre M,Klockgether T and Heneka MT.Contribution of inflammatory processes to Alzheimer's disease:molecular mechanisms.Int.J.Dev.Neurosc.2006,24(2-3):167-176.
    9.Akiyama H,Barger S,Barnum S,et al.Inflammation and Alzheimer's disease.Neurobiol Aging.2000,21(3):383-421.
    10.Tuppo EE,Arias HR.The role of inflammation in Alzheimer's disease.Int J Biochem Cell Biol.2005,37(2):289-305.
    11.Combs CK,Karlo JC,Kao SC,et al.beta-Amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis.J Neurosci.2001,21(4):1179-88.
    12.雷德亮.App/ps1双转基因AD模型小鼠脑内胶质细胞的激活及iNOS的表达.解剖学报,2004,35(5):507-511.
    13.Matsuoka Y,Picciano M,Malester B,et al.Inflammatory response to amyloidosis in a transgenic mouse model of Alzheimer's disease.Am.J.Pathol.2001,158(4):1345-1354.
    14. Lue LF, Shen Y, Yang LB, Rydel RE, Hampel H, Rogers J. Constitutive and amyloid β peptide-stimulated secretion of inflammatory mediators by Alzheimer's disease and control microglia. Neuroinflammation and Alzheimer's disease. 2001,3-52.
    
    15. Selmaj KW, Farooq M, Norton WT, et al.Proliferation of astrocytes in vitro in response to cytokines. A primary role for tumor necrosis factor.J Immunol. 1990,144(1):129-35.
    
    16. Heyser CJ, Masliah E, Samimi A, et al.Progressive decline in avoidance learning paralleled by inflammatory neurodegeneration in transgenic mice expressing interleukin 6 in the brain.Proc Natl Acad Sci U S A. 1997,94(4): 1500-5.
    
    17. Castell JV, Andus T, Kunz D, et al.Interleukin-6. The major regulator of acute-phase protein synthesis in man and rat.Ann N Y Acad Sci. 1989, 557:87-99.
    
    18. Chong Y.Effect of a carboxy-terminal fragment of the Alzheimer's amyloid precursor protein on expression of proinflammatory cytokines in rat glial cells.Life Sci. 1997,61(23):2323-33.
    
    19. Vandenabeele P, Fiers W. Is amyloidogenesis during Alzheimer's disease due to an IL-1/IL-6 mediated acute phase response in the brain[J]. Immunol. Today, 1991,12(7):217-219.
    
    20. Czlonkowska A.Kurkowska-Jastrzebska I. The role of inflammatory reaction in Alzheimer's disease and neurodegenerative processes[J]. Neurol. Neurochir. Pol. 2002,36(1): 15-23.
    
    21. Wallach D. Suecide by order: some open questions about the cess-killing activities of the TNF ligand and receptor families. Cytokine Growth Factor Rev. 1996,7:211-221.
    
    22. Wallach D, Boldin M, Goncharov T,et al. Exploring cell death mechanisms by analyzing signaling cascades of the TNF/NGF receptor family.Behring Inst Mitt. 1996, (97):144-55.
    
    23. Tarkowski E, Blennow K, Wallin A, et al.Intracerebral production of tumor necrosis factor-alpha, a local neuroprotective agent, in Alzheimer disease and vascular dementia.J Clin Immunol. 1999, 19(4):223-30.
    
    24. Vallieres L, Rivest S.Regulation of the genes encoding interleukin-6, its receptor, and gp130 in the rat brain in response to the immune activator lipopolysacchande and the proinflammatory cytokine interleukin-1beta.J Neurochem. 1997,69(4): 1668-83.
    
    25. Stalder AK, Carson MJ, Pagenstecher A, et al.Late-onset chronic inflammatory encephalopathy in immune-competent and severe combined immune-deficient (SCID) mice with astrocyte-targeted expression of tumor necrosis factor.Am J Pathol. 1998, 153(3):767-83.
    
    26. Frei K, Piani D, Malipiero UV, et al. Granulocyte-macrophage colony-stimulating factor astrocytic NO as a possible mediator of neural damage in acquired immunodeficiency syndrome.Blood.1999,93(6):1843-50.
    39.Heneka MT,Wiesinger H,Dumitrescu-Ozimek L,et al.Neuronal and glial coexpression of argininosuccinate synthetase and inducible nitric oxide synthase in Alzheimer disease.J Neuropathol Exp Neurol.2001,60(9):906-16.
    40.Lee SC,Zhao ML,Hirano A,et al.Inducible nitric oxide synthase immunoreactivity in the Alzheimer disease hippocampus:association with Hirano bodies,neurofibrillary tangles,and senile plaques.J Neuropathol Exp Neurol.1999,58(11):1163-9.
    41.Wallace MN,Geddes JG,Farquhar DA,et al.Nitric oxide synthase in reactive astrocytes adjacent to beta-amyloid plaques.Exp Neurol.1997,144(2):266-72.
    42.Weldon DT,Rogers SD,Ghilardi JR,et al.Fibrillar beta-amyloid induces microglial phagocytosis,expression of inducible nitric oxide synthase,and loss of a select population of neurons in the rat CNS in vivo.J Neurosci.1998 Mar 15;18(6):2161-73.
    43.Dawson VL,Dawson TM.Nitric oxide neurotoxicity.J Chem Neuroanat.1996,10(3-4):179-90.
    44.Song GP,Miao DM,Huang FE,et al.Effects of sleep deprivation on rat's behavior and learning.Di-si junyi Daxue Xuebao(J Forth Mil Med Univ),2000,21:669-670.
    45.Li J,Wu YZ,Guo Y.Effects of ion irradiation on rat's memory and learning.Di-si junyi Daxue Xuebao(J Forth Mil Med Univ),1999,20:74-79.
    46.Barger SW,Harmon AD.Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E.Nature,1997,388(6645):878-81.
    47.杨怡,章恩明,郑筱祥.β淀粉样蛋白诱导神经元坏死和凋亡中的诱导型一氧化氮合酶和NFκB信号通路[J].中华神经医学杂志,2005,4(3):295-302.
    48.Dawson VL,Dawson TM,Bartley DA,et al.Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures.J Neurosci.1993,13(6):2651-61.
    49.Boje KM,Arora PK.Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death.Brain Res.1992,587(2):250-6.
    50.Heneka MT,Loschmann PA,Gleichmann M,et al.Induction of nitric oxide synthase and nitric oxide-mediated apoptosis in neuronal PC12 cells after stimulation with tumor necrosis factor-alpha/lipopolysaccharide.J Neurochem.1998,71(1):88-94.
    51.de la Torre JC,Pappas BA,Prevot V,et al.Hippocampal nitric oxide upregulation precedes memory loss and A beta 1-40 accumulation after chronic brain hypoperfusion in rats. Neurol Res. 2003 ,25(6):635-41.
    
    52. Jahn R, Schiebler W, Ouimet C, et al. A 38,000-dalton membrane protein (p38) present in synaptic vesicles. Proc Natl Acad Sci U S A. 1985 ,82(12):4137-41.
    
    53. Sudhof TC, Lottspeich F, Greengard P, et al.The cDNA and derived amino acid sequences for rat and human synaptophysin.Nucleic Acids Res. 1987 ,15(22):9607.
    
    54. Sudhof TC, Lottspeich F, Greengard P, et al. A synaptic vesicle protein with a novel cytoplasmic domain and four transmembrane regions.Science. 1987 ,238(4830): 1142-4.
    
    55. Wiedenmann B, Franke WW. Identification and localization of synaptophysin, an integral membrane glycoprotein of Mr 38,000 characteristic of presynaptic vesicles. Cell, 1985 ,41(3): 1017-28.
    
    56. Davies CA, Mann DM, Sumpter PQ, et al.A quantitative morphometric analysis of the neuronal and synaptic content of the frontal and temporal cortex in patients with Alzheimer's diseaseJ Neurol Sci. 1987 ,78(2): 151-64.
    
    57. Lippa CF.Synaptophysin immunoreactivity in Pick's disease: comparison with Alzheimer's disease and dementia with Lewy bodies.Am J Alzheimers Dis Other Demen. 2004,19(6):341-4.
    
    58. Smith MZ, Nagy Z, Barnetson L, et al. Coexisting pathologies in the brain: influence of vascular disease and Parkinson's disease on Alzheimer's pathology in the hippocampus.Acta Neuropathol. 2000 ,100(1):87-94.
    
    59. Guevara J, Dilhuydy H, Espinosa B, et al.Coexistence of reactive plasticity and neurodegeneration in Alzheimer diseased brains.Histol Histopathol. 2004 ,19(4): 1075-84.
    
    60. Walsh DM, Selkoe DJ.Deciphering the molecular basis of memory failure in Alzheimer's disease/Neuron. 2004 ,44(1):181-93.
    
    61. Gasparini L, Ongini E, Wenk GNon-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease: old and new mechanisms of action.J Neurochem. 2004 ,91(3):521-36.
    
    62. Lim GP, Yang F, Chu T, et al.Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease.J Neurosci. 2000,20(15):5709-14.
    
    63. Yan Q, Zhang J, Liu H, et al.Anti-inflammatory drug therapy alters beta-amyloid processing and deposition in an animal model of Alzheimer's diseaseJ Neurosci. 2003 ,23(20):7504-9.
    64. Heneka MT, Sastre M, Dumitrescu-Ozimek L, et al.Acute treatment with the PPARgamma agonist pioglitazone and ibuprofen reduces glial inflammation and Abeta1-42 levels in APPV717I transgenic mice.Brain. 2005 ,128(Pt 6):1442-53.
    
    65. Jantzen PT, Connor KE, DiCarlo G, et al.Microglial activation and beta -amyloid deposit reduction caused by a nitric oxide-releasing nonsteroidal anti-inflammatory drug in amyloid precursor protein plus presenilin-1 transgenic mice.J Neurosci. 2002,22(6):2246-54.
    
    66. McGeer PL, McGeer EGNSAIDs and Alzheimer disease: epidemiological, animal model and clinical studies.Neurobiol Aging. 2007,28(5):639-47.
    
    67. McGeer PL, Rogers J, McGeer EG.Inflammation, anti-inflammatory agents and Alzheimer disease: the last 12 years.J Alzheimers Dis. 2006,9(3 Suppl):271-6.
    
    68. in t' Veld BA, Ruitenberg A, Hofinan A, et al.Nonsteroidal antiinflammatory drugs and the risk of Alzheimer's disease.N Engl J Med. 2001,345(21): 1515-21.
    1.Haass C,Schlossmacher MG,Hung AY,et al.Amyloid beta-peptide is produced by cultured cells during normal metabolism.Nature,1992,359(6393):322-5.
    2.Jarrett JT,Berger EP,Lansbury PT Jr.The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation:implications for the pathogenesis of Alzheimer's disease.Biochemistry,1993,32(18):4693-7.
    3.Johnson SA,McNeill T,Cordell B,et al.Relation of neuronal APP-751/APP-695 mRNA ratio and neuritic plaque density in Alzheimer's disease.Science,1990,248(4957):854-7.
    4.Podlisny MB,Lee G,Selkoe DJ.Gene dosage of the amyloid beta precursor protein in Alzheimer's disease.Science,1987,238(4827):669-71.
    5.St George-Hyslop PH,Tanzi RE,Polinsky RJ,et al.Absence of duplication of chromosome 21genes in familial and sporadic Alzheimer's disease.Science,1987,238(4827):664-6.
    6.Tanzi RE,Bird ED,Latt SA,et al.The amyloid beta protein gene is not duplicated in brains from patients with Alzheimer's disease.Science,1987,238(4827):666-9.
    7.Games D,Adams D,Alessandrini R,et al.Alzheimer-type neuropathology in transgenic mice overexpressing V717F beta-amyloid precursor protein.Nature,1995,373(6514):523-7.
    8.Sturchler-Pierrat C,Abramowski D,Duke M,et al.Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology.Proc Natl Acad Sci U S A,1997,94(24):13287-92.
    9.Hsiao K.Transgenic mice expressing Alzheimer amyloid precursor proteins.Exp Gerontol.1998,33(7-8):883-9.
    10.韩恩吉,许军,Rajiv Joseph.海风藤抑制淀粉样蛋白诱导神经细胞胞浆钙离子升高的研究[J].山东医科大学学报,1998,36(3):239-241.
    11.Han EJ,Hu HT,He XQ,et al.Selective inhibition of haifengteng in gene expression of beta-amyloid precursor protein[J].Chinese Journal of Clinical Rehabilitation,2004,8(13):2592-2593.
    12.姚俊英,韩恩吉,崔行,等.海风藤抑制淀粉样前体蛋白表达的研究[J].北京中医药大学学报,2007,30(5):314-322.
    13. Kang J., Lenaire H.G, Unterbeck A., et al. The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor. Nature, 1987,325: 733-736.
    
    14. Blanquet V., Goldgaber D., Turleau C, et al. In situ hybridization of the beta amyloid protein (APP) cDNA to the vicinity of the interface of 21q21 and q22 in normal and Alzheimer's disease individuals. Cytogenet Cell Genet, 1987,46: 582.
    
    15. Goldgaber D., Lerman M. I., McBride O. W., et al. Characterization and chromosomal location of a cDNA encoding brain amyloid of Alzheimer's disease. Science, 1987,235: 877-880.
    
    16. Jenkins E. C, Devine-Gage E. A., Robakis N. K., et al. Fine mapping of an Alzheimer disease-associated gene encoding beta-amyloid protein. Biochem. Biophys. Res. Commun., 1988,151: 1-8.
    
    17. Korenberg J.R., Pulst S.M., Neve R.L., et al. The Alzheimer amyloid precursor protein maps to humanchromosome 21 bands q21.105-q21.05. Genomics, 1989, 5: 124-127.
    
    18. Patterson D., Gardiner K., Kao F.T., et al. Mapping of the gene encoding the beta-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc. Natl. Acad. Sci. USA, 1988, 85: 8266-8270.
    
    19. Robakis N.K., Ramakrishna N., Wolfe G, et al. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc. Natl. Acad. Sci. USA, 1987, 84: 4190-4194.
    
    20. Yoshikai S, Sasaki H, Doh-ura K, Furuya H, Sakaki Y.Genomic organization of the human amyloid beta-protein precursor gene.Gene. 1990, 87(2):257-63.
    
    21. Van Nostrand WE., Wagner S.L., Suzuki M., et al. Protease Nexin II, a potent anti-chymotripsin, shows identity to amyloid b-protien precursor. Nature, 1989, 341: 546-549.
    
    22. Mattson M.P. Secreted forms of P-amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons. J. Neurobiol. 1994,25:439-450.
    
    23. Mattson M.P. Pathways towards and away from Alzheimer's disease. Nature, 2004, 430: 631-639.
    
    24. Mattson M.P., Cheng B., Davis D., et al. p-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 1992, 12: 376-389.
    25. Koo E.H., Sisodia S.S., Archer D.R., et al. Precursor of amyloid protein in Alzheimer's disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. U. S. A. 1990, 87: 1561-1565.
    
    26. Haass C, Schlossmacher M., Hung A.Y., et al. Amyloid-P peptide isproduced by cultured cells during normal metabolism. Nature, 1992, 359:322-325.
    
    27. Seubert P., Oltersdorf T., Lee,M.G., et al. Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 1993, 361: 260-263.
    
    28. Shoji M, Golde T.E., Ghiso J., et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science, 1992, 258: 126-129.
    
    29. Bitan G., Kirkitadze M.D., Lomakin A., et al. Amyloid P-protein (AP) assembly: Aβ40 and Aβ42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA, 2003, 100: 330-335.
    
    30. Burdick D., Soreghan B., Kwon M, et al. Assembly and aggregation proper ties of synthetic Alzheimer's A4/p amyloid peptide analogs. J. Biol. Chem. 1992, 267: 546-554.
    
    31. Jarrett, J.T., Berger, E.P. and Lansbury, P.T. The carboxy terminus of the beta amyloid protein is critical for the seeding of amyloid formation: Implications for the pathogenesis of Alzheimer's disease. Biochemistry, 1993, 32: 4693-4697.
    
    32. Seubert P., Vigo-Pelfrey C, Esch F., et al. Isolation and quantitation of soluble Alzheimer's-peptide from biological fluids. Nature, 1992, 359: 325-327.
    
    33. Shoji M., Golde T.E., Ghiso J., et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science, 1992, 258: 126-129.
    
    34. Selkoe D.J. Normal and abnormal biology of the beta-amyloid precursor protein. Annu.. Rev. Neurosci. 1994, 17:489-517.
    
    35. Geula C, Wu C.K., Saroff D., et al. Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity. Nat. Med. 1998, 4:827-831.
    
    36. Lorenzo A. and Yankner B. β-amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA, 1994,91: 12243-12247.
    
    37. Pike C.J., Walencewicz A.J., Glabe C.G. et al. In vitro aging of P-amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 1991, 563: 311-314.
    
    38. Tan J., Town T., Paris D. Microglial activation resulting from CD40-CD40L interaction after b-amyloid. Science, 1999, 286: 2352-2355.
    39.Mattson M.P.Pathways towards and away from Alzheimer's disease.Nature,2004,430:631-639.
    40.Reddy P.H.and Beal M.F.Are mitochondria critical in the pathogenesis of Alzheimer's disease?Brain Res.Rev.2005,49:618-632.
    41.Selkoe D.J.Alzheimer's disease:genes,proteins,and therapy.Physiol.Rev.2001,81:741-766.
    42.Tanzi R.E.and Bertram L.Twenty years of the Alzheimer's disease amyloid hypothesis:a genetic perspective.Cell,2005,120:545-555.
    43.Moran PM,Higgins LS,Cordell B,et al.Age-related learning deficits in transgenic mice expressing the 751-amino acid isoform of human beta-amyloid precursor protein.Proc Natl Acad Sci U S A.1995,92(12):5341-5.
    44.Mann D.M.A.The pathological associations between Down syndrome and Alzheimer's disease.Mech.Age Dev.1988,43:99-136.
    45.Wisniewski K.E.,Wisniewski H.M.and Wen G.Y.Occurrence of neuropathologieal changes and dementia of Alzheimer's disease in Down's syndrome.Ann.Neurol.1985,17:359-365.
    46.罗焕敏,肖飞,李晓光.广东海风藤提取物对痴呆鼠脑内β淀粉样前体蛋白基因表达的影响[J].中国老年学杂志,2003,23:360-361.
    47.肖飞,罗焕敏,李晓光,等.广东海风藤提取物HS2对老年痴呆小鼠的药效学研究[J].中国药理学通报,2004,20(9):1001-3.
    1. Bitan, G., Kirkitadze, M.D., Lomakin, A., Vollers, S.S., Benedek, G.B. and Teplow, D.B. Amyloid β -protein (Aβ) assembly: A β 40 and A β 42 oligomerize through distinct pathways. Proc. Natl. Acad. Sci. USA 100: 330-335, 2003.
    
    2. Blanquet, V., Goldgaber, D., Turleau, C, Creau-Goldberg, N.,Delabar, J., Sinet, P.M., Roudier, M. and de Grouchy, J. In situ hybridization of the beta amyloid protein (APP) cDNA to the vicinity of the interface of 21q21 and q22 in normal and Alzheimer's disease individuals. Cytogenet Cell Genet 46: 582, 1987.
    
    3. Burdick, D., Soreghan, B., Kwon, M., Kosmoski, J., Knauer, M, Henschen, A., Yates, J., Cotman, C. and Glabe, C. Assembly and aggregation properties of synthetic Alzheimer's A4/β amyloid peptide analogs. J. Biol. Chem. 267: 546-554, 1992.
    4.Cattabeni,F.,Colciaghi,F.and Luca,M.D.Platelets provide human tissue to unravel pathogenic mechanisms of Alzheimer disease.Prog.Neuropsychopharmacol.Biol.Psychiatry 28:763-770,2004.
    5.Geula,C.,Wu,C.K.,Saroff,D.,Lorenzo,A.,Yuan,M.and Yankner,B.A.Aging renders the brain vulnerable to amyloid beta-protein neurotoxicity.Nat.Med.4:827-831,1998.
    6.Goldgaber,D.,Lerman,M.I.,McBride,O.W.,Saffiotti,U.and Gajdusek,D.C.Characterization and chromosomal location of a eDNA encoding brain amyloid of Alzheimer's disease.Science 235:877-880,1987.
    7.Cruz,J.C.and Tsai,L.H.Cdk5 deregugulation in the pathogenesis of Alzheimer's disease.Trends Mol.Med.10(9):452-458,2004.
    8.Haass,C.,Schlossmacher,M.,Hung,A.Y.,Vigo-Pelfrey,C.,Mellon,A.,Ostaszewski,B.,Lieberburg,I.,Koo,E.H.,Schenk,D.,Teplow,D.and Selkoe,D.J.Amyloid-β peptide isproduced by cultured cells during normal metabolism.Nature 359:322-325,1992.
    9.Hart,E.-J.,Hu,H.-T.,He,X.-Q.,Deng,X.-M.,Lu,Y.and Zhou,H.-T.Selective inhibition of haifengteng in gene expression of beta-amyloid precursor protein.Chinese J.Clin.Rehabil.8(13):2592-2593,2004.
    10.Han,E.-J.and Joseph,R.Inhibition of β-amyloid precursor protein gene expression by haifengteng.J.Chinese Med.23(11):691-693,1998.
    11.Hardy,J.The relationship between amyloid and tau.Mol.Neurosci.20:203-206,2003.
    12.Jarrett,J.T.,Berger,E.P.and Lansbury,P.T.The carboxy terminus of the beta amyloid protein is critical for the seeding ofamyloid formation:Implications for the pathogenesis of Alzheimer's disease.Biochemistry 32:4693-4697,1993.
    13.Jenkins,E.C.,Devine-Gage,E.A.,Robakis,N.K.,Yao,X.-L.,Brown,W.T.,Houck Jr.,G.E.,Wolfe,G.,Ramakrishna,N.,Silverman,W.P.and Wisniewski,H.M.Fine mapping of an Alzheimer disease-associated gene encoding beta-amyloid protein.Biochern.Biophys.Res.Cornmun.,151:1-8,1988.
    14.Kang,J.,Lenaire,H.G.,Unterbeck,A.,Salbaum,J.M.,Masters,C.L.,Grzeschik,K.H.,Multhaup,G.,Beyreuther,K.and Muller-Hill,B.The precursor of Alzheimer's disease amyloid A4 protein resembles a cell-surface receptor.Nature 325:733-736,1987.
    15.Koo,E.H.,Sisodia,S.S.,Archer,D.R.,Maartin,L.J.,Weidemann,A.Precursor of amyloid protein in Alzheimer's disease undergoes fast anterograde axonal transport. Proc. Natl. Acad. Sci. USA 87: 1561-1565, 1990.
    
    16. Korenberg, J.R., Pulst, S.M., Neve, R.L. and West, R. The Alzheimer amyloid precursor protein maps to human chromosome 21 bands q21.105-q21.05. Genomics 5: 124-127, 1989.
    
    17. Lorenzo, A. and Yankner, B. β -amyloid neurotoxicity requires fibril formation and is inhibited by Congo red. Proc. Natl. Acad. Sci. USA 91: 12243-12247, 1994.
    
    18. Luca, M.D., Colciaghi, E, Pastorino, L., Borroni, B., Padovani, A. and Cattabeni, F. Platelets as a peripheral district where to study pathogenetic mechanisms of Alzheimer desease: the case of amyloid precursor protein. Eur. J. Phamacol. 405: 277-283, 2000.
    
    19. Mattson, M.P. Secreted forms of β -amyloid precursor protein modulate dendrite outgrowth and calcium responses to glutamate in cultured embryonic hippocampal neurons. J. Neurobiol. 25:439-450, 1994.
    
    20. Mattson, M.P. Pathways towards and away from Alzheimer's disease. Nature 430: 631-639, 2004.
    
    21. Mattson, M.P., Cheng, B., Davis, D., Bryant, K., Lieberburg, I., Rydel, R.E. β-amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J. Neurosci. 12: 376-389, 1992.
    
    22. Mattson M.P., Cheng, B., Culwell, A.R., Esch, F.S., Lieberburg, I., Ryedel, R.E. Evidence for ibntraneuroanl calcium-regulating roles for secreted forms of β -amyloid precursor protein. Neuron 47: 425-432, 1993.
    
    23. Mann, D.M.A. The pathological associations between Down syndrome and Alzheimer's disease. Mech. Age Dev. 43: 99-136, 1988.
    
    24. Patterson, D., Gardiner, K., Kao, F.T., Tanzi, R., Watkins, P. and Gusella, J.F. Mapping of the gene encoding the beta-amyloid precursor protein and its relationship to the Down syndrome region of chromosome 21. Proc. Natl. Acad. Sci. USA 85: 8266-8270, 1988.
    
    25. Pike, C.J., Walencewicz, A.J., Glabe, C.G. and Cotman, C.W. In vitro aging of P -amyloid protein causes peptide aggregation and neurotoxicity. Brain Res. 563: 311-314, 1991
    
    26. Reddy, PH. and Beal, M.F. Are mitochondria critical in the pathogenesis of Alzheimer's disease? Brain Res. Rev. 49: 618-632,2005.
    
    27. Robakis, N.K., Ramakrishna, N., Wolfe, G. and Wisniewski, H.M. Molecular cloning and characterization of a cDNA encoding the cerebrovascular and the neuritic plaque amyloid peptides. Proc. Natl. Acad. Sci. USA 84: 4190-4194,1987.
    
    28. Selkoe, D.J. Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev. 81: 741-766, 2001.
    
    29. Selkoe, D.J. Normal and abnormal biology of the beta-amyloid precursor protein. Annu.. Rev. Neurosci. 17:489-517,1994.
    
    30. Seubert, P., Oltersdorf, T., Lee, M.G., Barbour, R., Blomquist, C, Davis, D.L., Bryant, K., Fritz, L.C., Galasko, D., Thal, L.J., Lieberburg, I. and Schenk, D.B. Secretion of beta-amyloid precursor protein cleaved at the amino terminus of the beta-amyloid peptide. Nature, 361: 260-263, 1993.
    
    31. Seubert, P., Vigo-Pelfrey, C, Esch, F., Lee, M, Dovey, H., Davis, D., Sinha, S., Schlossmacher, M.G., Whaley, J., Swindlehurst, C, McCormack, R., Wolfert, R., Selkoe, D.J., Lieberburg, I. and Schenk, D. Isolation and quantitation of soluble Alzheimer's-peptide from biological fluids. Nature, 359: 325-327,1992.
    
    32. Shen, T.-Y., Hwang, S.-B., Chang, M.-N., Doebber T.W., Lam M.T., Wu M.-S., Wang X., Han G-Q., Li R.-Z. Characterization of a platelet-activating factor receptor antagonist isolated from haifengteng (Piper futokadsura): Specific inhibition of in vitro and in vivo platelet-activating factor-induced effects. Biochemistry 82: 672-676, 1985.
    
    33. Shoji, M, Golde, T.E., Ghiso, J., Cheung, T.T., Estus, S., Shaffer, L.M., Cai, X.D., McKay, D.M., Tintner, R., Frangione, B. and Younkin, S.G. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258: 126-129, 1992.
    
    34. Tan, J., Town, T., Paris, D. Microglial activation resulting from CD40-CD40L interaction after b-amyloid. Science 286: 2352-2355, 1999.
    
    35. Tanzi, R.E. and Bertram, L. Twenty years of the Alzheimer's disease amyloid hypothesis: a genetic perspective. Cell 120: 545-555,2005.
    
    36. Van Nostrand, W.E., Wagner, S.L., Suzuki, M., Choi, B.H., Farrow, J.S., Geddes, J.W., Cotman, C.W., Cunningham, D.D. Protease Nexin II, a potent anti-chymotripsin, shows identity to amyloid b-protien precursor. Nature 341: 546-549,1989.
    
    37. Wisniewski, K.E., Wisniewski, H.M. and Wen, GY. Occurrence of neuropathological changes and dementia of Alzheimer's disease in Down's syndrome. Ann. Neurol. 17:359-365, 1985.
    38. Yoshikai, S., Sasaki, H., Doh-ura, K., Furuya, H. and Sakaki, Y. Genomic organization of the human amyloid beta-protein precursor gene. Gene 87: 257-263, 1990.
    1. DeLaGarza VW. Pharmacologic treatment of Alzheimer's disease: an update. Am Fam Physician 2003;68(7):1365-72
    
    2. El Mouedden M, Vandermeeren M, Meert T, et al. Reduction of Abeta levels in the Sprague Dawley rat after oral administration of the functional gamma-secretase inhibitor, DAPT: a novel non-transgenic model for Abeta production inhibitors. Curr Pharm Des 2006; 12(6):671-6
    
    3. Siemers ER, Quinn JF, Kaye J, et al. Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease. Neurology 2006;66(4):602-4
    
    4. Maier M, Seabrook TJ, Lazo ND, et al. Short amyloid-beta (Abeta) immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer's disease mouse model in the absence of an Abeta-specific cellular immune response. J Neurosci 2006;26(18):4717-28
    
    5. Petanceska SS, DeRosa S, Olm V, et al. Statin therapy for Alzheimer's disease: will it work? J Mol Neurosci 2002;19(1-2):155-61
    
    6. Ritchie CW, Bush Al, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003 ;60(12): 1685-91
    
    7. Perry TA, Greig NH. A new Alzheimer's disease interventive strategy: GLP-1. Curr Drug Targets 2004;5(6):565-71
    
    8. D'Andrea MR, Nagele RG. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer's disease pyramidal neurons. Curr Pharm Des 2006;12(6):677-84
    
    9. Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antio(?)idants and risk of Alzheimer disease. JAMA 2002;287(24):3223-9
    
    10. Esposito E, Rotilio D, Di Matteo V, et al. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002;23(5):719-35
    
    11. Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 2004;61(1):82-8
    
    12. Feng Z, Chang Y, Cheng Y, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer's disease. J Pineal Res 2004;37(2):129-36
    
    13. Rodriguez-Franco MI, Fernandez-Bachiller MI, Perez C, et al. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 2006;49(2):459-62
    
    14. Perluigi M, Joshi G, Sultana R, et al. In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid beta-peptide (1-42)-induced oxidative stress. Neuroscience 2006;138(4):1161-70
    
    15. Doody RS, Stevens JC, Beck C, et al. Practice parameter: management of dementia (an evidence-based review). Report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2001;56(9):1154-66
    
    16. Prasher VP. Review of donepezil, rivastigmine, galantamine and memantine for the treatment of dementia in Alzheimer's disease in adults with Down syndrome: implications for the intellectual disability population. Int J Geriatr Psychiatry 2004;19(6):509-15
    
    17. Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev 2006;(1):CD001190
    
    18. Loy C, Schneider L. Galantamine for Alzheimer's disease and mild cognitive impairment. Cochrane Database Syst Rev 2006;(1):CD001747
    
    19. Arai H. Current therapies in dementia. Nippon Ronen Igakkai Zasshi 2004;41(3):310-3
    
    20. Winblad B, Jelic V. Long-term treatment of Alzheimer disease: efficacy and safety of acetylcholinesterase inhibitors. Alzheimer Dis Assoc Disord 2004; 18 Suppl 1:S2-8
    
    21. Zuchner T, Perez-Polo JR, Schliebs R. Beta-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling. J Neurosci Res 2004;77(2):250-7
    
    22. Mulnard RA, Cotman CW, Kawas C, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer's Disease Cooperative Study. JAMA 2000;283(8):1007-15
    
    23. Wang JM, Johnston PB, Ball BG, et al. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci 2005;25(19):4706-18
    
    24. Cherrier MM, Matsumoto AM, Amory JK, et al. Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology 2005;64(12):2063-8
    
    25. Zhou SL, Chen JP, Cao DL, et al. Effect of basic fibroblast growth factor on hippocampus neurons in rat model with unilateral fimbria-fornix transaction. Zhongguo Linchuang Kangfu 2003;7(19):2666-7
    
    26. Reisberg B, Doody R, Stoffler A, et al. Memantine in moderate-to-severe Alzheimer's disease. N Engl J Med 2003;348(14):1333-41
    
    27. Evans JG, Wilcock G, Birks J. Evidence-based pharmacotherapy of Alzheimer's disease. Int J Neuropsychopharmacol 2004;7(3):351 -69
    
    28. Araujo DM, Lapchak PA, Hefti F. Effects of chronic basic fibroblast growth factor administration to rats with partial fimbrial transections on presynaptic cholinergic parameters and muscarinic receptors in the hippocampus: comparison with nerve growth factor. J Neurochem 1993;61(3):899-910
    
    29. Cheng Y, Feng Z, Zhang QZ, et al. Beneficial effects of melatonin in experimental models of Alzheimer disease. Acta Pharmacol Sin 2006;27(2):129-39
    
    30. Feng Z, Zhang JT. Melatonin reduces amyloid beta-induced apoptosis in pheochromocytoma (PC12) cells. J Pineal Res 2004;37(4):257-66
    
    31. Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurol 2002;1(1):51-7 32. Blesch A, Grill RJ, Tuszynski MH. Neurotrophin gene therapy in CNS models of trauma and degeneration. Prog Brain Res 1998; 117:473-84
    1.国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:206.
    2.李晓光,罗焕敏.风藤与异型南五味的区别[J].陕西中医,2003,24(2):169-170.
    3.周丽娜,陈少锋.海风藤及其易混品断肠草的鉴别[J].江西中医学院学报,2004,16(3):57.
    4.Ma Y,Hart GQ.Benzofuranoid Neoligans from Piper Kadsura[J].Acta Botanica Sinica,1993,35(9):687-692.
    5.马迎,韩桂秋,刘志坚.海风藤中新木脂素类PAF拮抗活性成分的研究[J].药学学报,1993,28(3):207-211.
    6.马迎,韩桂秋,王银叶.海风藤中有PAF拮抗活性的苯骈呋喃类新木脂素[J].药学学报,1993,28(5):370-373.
    7.范尚坦,翟振兴,李玲,等.风藤挥发油的成分研究[J].中药材,1987,4:40-41.
    8.任风芝,张丽,牛桂云,等.海风藤的化学成分研究(Ⅰ)[J].中草药,2005,36(2):184-185.
    9.胡静,孙艳,单文治.海风藤的活性成分研究[J].中国药学杂志,2006,41(9):658-659.
    10.韩桂秋,马迎,李长龄.胡椒属植物中木脂素类血小板活化因子拮抗活性成分及构效关系的研究[J].北京大学学报(医学版),1992,24(4):347-350.
    11 Shen YZ,Li CL,Wang YY,et al.Characterization of a Platelet-Activating Factor Receptor Antagonist,Kadsurenone:Specific Inhibition of Platelet- Activating Factor in vitro and in vivo[J].Journal of Chinese Pharmaceutical Sciences,1994,3(1):59-65.
    12.王伟,刘洋,周清明,等.海风藤醇提取物对血小板活化因子诱导血小板聚集作用的初步研究[J].卒中与神经疾病,2000,7(4):193-195.
    13.曾华武,姜远英,龙焜,等.海风藤酚、甲基海风藤酚、海风藤醇A和海风藤醇B对兔血小板聚集的影响[J].第二军医大学学报,1995,16(4):329-331.
    14.曾华武,姜远英,龙煜.海风藤醇B对PAF诱导的兔血小板钙内流和胞内游离钙浓度升高的抑制作用[J].第二军医大学学报,1995,16(5):
    15.曾华武,姜远英,龙煜,等.海风藤醇B对PAF越膜代谢和生物合成的影响[J].第二军医大学学报,1996,17(3):
    16.孙绍美,於兰,刘俭,等.海风藤及其代用品药理作用的比较研究[J].中草药,1998,29(10):677-679.
    17.李吉莹,刘艳菊,邴飞虹,等.海风藤抗炎作用的实验研究[J].湖北中医杂志,2006,28(12):17.
    18.Rachel WL,David GL,Stephen PM,et al.Anti-inflammatorv activity of Chinese medicinal vine plants[J3.Journal of Ethnopharmacology,2003,85(1):61-67.
    19.Kuo YC,Yang NS,Chou CJ,et al.Regulation of cell proliferation,gene expression,production of cytokines,and cell cycle progression in primary human T lymphocytes by piperlactam S isolaoed from Piper kadsura[J].Mol Pharmacol,2000,58(5):1057-1063.
    20.Lin LC,Shen CC,Shen YC,et al.Anti-inflammatory neolignans from Piper kadsura[J].Journal of Natural Products,2006,159(5):842-844.
    21.Chiou WF,Peng CH,Chen CF,et al.Anti-inflammatory properties of piperlactam S:modulation of complement 5a-induced chemotaxis and inflammatory cytokines production in macrophages[J].Planta Medica,2003,69(1):9-14.
    22.王林,姚俊,耿智敏.海风藤酮治疗大鼠实验性急性胰腺炎[J].第四军医大学学报,2006,27(13):1166-1168.
    23.王成果,马庆久,鲁建国,等.海风藤酮对急性胰腺炎大鼠的治疗作用[J].世界华人消化杂志,2007,15(4).
    24.Stohr JR,Xiao PG,Bauer R.Constituents of Chinese Piper species and their inhibitory activity on prostaglandin and leukotriene biosynthesis in vitro[J].Journal of Ethnopharmacology,2001,75(2-3):133-9.
    25 史留斌,等.海风藤酮对大鼠肝脏缺血再灌注损伤保护作用的实验研究[J].中国普外基础与临床杂志,1998,5(4):195-198.
    26.郭瑞友,于义英,方思羽,等.海风藤对局灶性脑缺血治疗作用的实验研究[J].中国临床神经科学,2003,11(3):233-235.
    27.王雪松,王伟,阮旭中.海风藤提取物对脑缺血保护作用的实验研究[J].中国临床神经科学,2003,11(1):1-3.
    28.王雪松,薛峥,刘买利,等.对海风藤酮治疗实验性缺血再灌注脑损伤的磁共振波谱分析[J].中华物理医学与康复杂志,2004,26(6):333-336.
    29.王雪松,王伟,阮旭中.海风藤新木脂素类成分对缺血再灌注鼠脑损伤的保护作用[J].中国药理学通报,2002,18(6):622-625.
    30.何英,王东武,邓志宽,等.海风藤对犬脑干缺血后细胞内钙含量和超微病理改变影响的研究[J].中风与神经疾病杂志,1996,13(4):199.
    31.何英,王东武,邓志宽,等.海风藤对犬脑干缺血后BAEP的影响[J].临床电脑学杂志,1997,6(3):165.
    32.邓志宽,王东武,何英,等.海风藤对犬脑干缺血兴奋性氨基酸含量的影响及对其缺血损伤的保护作用[J].中国药学杂志,1997,32(5):276.
    33.王伟,董为伟.海风藤酮对缺血鼠脑磷脂酶A2、三磷酸肌醇及自由基形成的影响[J].中华神经科杂志,1996,29(6):325-328.
    34.王伟,董为伟.PAF受体拮抗剂海风藤酮保护作用的实验研究[J].卒中与神经疾病,1996,3(1):8-11.
    35.王伟,王雪松,阮旭中.海风藤新木脂素成分对缺血鼠脑细胞间粘附分子-1及其mRNA表达的影响[J].中华物理医学与康复杂志,2002,24(3):133-136.
    36.徐广润,张东君,杨渊,等.海风藤酮对老龄大鼠局灶性脑缺血DNA损伤修复相关基因GADD45表达的影响[J].山东大学学报(医学版),2006,44(2):145-149
    37.韩恩吉,许军,Rajiv Joseph.海风藤抑制淀粉样蛋白诱导神经细胞胞浆钙离子升高的研究[J].山东医科大学学报,1998,36(3):239-241.
    38.韩恩吉,胡洪涛,何秀全,等.海风藤对β-APP基因表达的影响[J].山东医科大学学报,2003,41(1):87-89.
    39.Han EJ,Hu HT,He XQ,et al.Selective inhibition of haifehgtehg in gene expression of beta-amyloid precursor protein[J].Chinese Journal of Clinical Rehibilitation,2004,8(13):2592-2593.
    40.余书勤,钱之玉.血小板激活因子拮抗剂海风藤酮对人精子体外运动的影响[J].生殖与避孕,1995,15(1):57-59.
    41.秦爱萍,牛晓晔,郑行.海风藤酮对PAF影响长白猪精子活率及运动能力的拮抗作用[J].畜牧兽医学报,2000,31(4):301-305.
    42.秦爱萍,牛晓晔,郑行.血小板活化因子对长白猪精子顶体反应率的影响及海风藤酮对其的拮抗作用[J].中国兽医学报,1999,19(4):382-384.
    43.吴梅,王文青,吴翠娇,等.海风藤酮对小鼠抗着床作用的免疫组织化学观察[J].青岛大学医学院学报,1999,35(1):4-6.
    44.于向民,王文青,吴翠娇,等.海风藤酮对小鼠抗着床作用的细胞化学和电镜观察[J].青岛大学医学院学报,1999,35(1):1-3.
    45.沈传勇,鲁纯素,卢景芬,等.海风藤酮及其类似物抗氧化活性研究[J].北京医科大学学报,1995,27(1):62-64.
    46.Tsai JY,Chou CJ,Chen CF,Chiou WF.Antioxidant activity of piperlactam S:prevention of copper-induced LDL peroxidation and amelioration of free radical-induced oxidative stressof endothelial cells[J].Planta Med,2003,69(1):3-8.
    47.都晓春,刘漫虹,倪国成.痹痛清胶囊的药效学研究[J].长春中医学院学报,2002,18(4):38.
    48.于芳,韩梅,韩学忠.五藤祛风酒对类风湿性关节炎治疗的临床观察[J].潍坊医学院学报,2005,27(5):399.
    49.李克煦.红楠络海汤治疗坐骨神经痛[J].四川中医,2005,23(2):54-55.
    50.高洁,梁晓雅.血塞通配合四藤汤外洗治疗糖尿病周围神经病变45例[J].陕西中医,2005,26(6):483.
    51.果永宽.“七味散”治疗痛风之研究[J].卫生职业教育,2003,21(2):134-135.
    52.张雷迎,高建.自拟灵风散治疗桡骨茎突狭窄性腱鞘炎.中医外治杂志,2004,13(4):55.
    53.傅晓骏.丹参四藤饮治疗过敏性紫癜肾炎31例[J].陕西中医,1998,19(10):438.
    54.杨元智.祛风通络法治疗寻常型银屑病86例疗效观察[J].北京中医,1997,16(3):25.
    1.Goate A,Chartier-Harlin MC,Mullan M,et al.Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease.Nature.1991,349(6311):704-6.
    2.Masters CL,Simms G,Weinman NA,et al.Amyloid plaque core protein in Alzheimer disease and Down syndrome.Proc Natl Acad Sci U S A.1985,82(12):4245-9.
    3.Levy E,Carman MD,Fernandez-Madrid IJ,et al.Mutation of the Alzheimer's disease amyloid gene in hereditary cerebral hemorrhage,Dutch type.Science.1990,248(4959):1124-6.
    4.Van Broeckhoven C,Haan J,Bakker E,et al.Amyloid beta protein precursor gene and hereditary cerebral hemorrhage with amyloidosis(Dutch).Science.1990,248(4959):1120-2.
    5.Finckh U,Muller-Thomsen T,Mann U,et al.High prevalence of pathogenic mutations in patients with early-onset dementia detected by sequence analyses of four different genes.Am J Hum Genet.2000,66(1):110-7.
    6.Scheuner D,Eckman C,Jensen M,et al.Secreted amyloid beta-protein similar to that in the senile plaques of Alzheimer's disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer's disease.Nat Med.1996,2(8):864-70.
    7.Rosenberg RN.The molecular and genetic basis of AD:the end of the beginning:the 2000Wartenberg lecture.Neurology.2000,54(11):2045-54.
    8.Wragg M,Hutton M,Talbot C.Genetie association between intronic polymorphism in presenilin-1 gene and late-onset Alzheimer's disease.Alzheimer's Disease Collaborative Group.Lancet.1996,347(9000):509-12.
    9.Lambert JC,Mann DM,Harris JM,et al.The -48 C/T polymorphism in the presenilin 1promoter is associated with an increased risk of developing Alzheimer's disease and an increased Abeta load in brain.J Med Genet.2001,38(6):353-5.
    10.Theuns J,Remacle J,Killick R,et al.Alzheimer-associated C allele of the promoter polymorphism -22C>T causes a critical neuron-specific decrease of presenilin 1expression.Hum Mol Genet.2003,12(8):869-77.
    11.崔天盆,周新.载脂蛋白E基因多态性与老年性痴呆的相关性.中国病理生理杂志,2000,168:741-742.
    12.顾智磊,吴政红.A p o E基因多态性与老年性痴呆的相关性.上海第二医科大学学报,2001,21:325-327.
    13.Schmechel DE,Saunders AM,Strittmatter W J,et al.Inereased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease.Proc Nati Acad Sci U S A.1993,90(20):9649-53.
    14.Strittmatter WJ,Saunders AM,Schmechel D,et al.Apolipoprotein E:high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease.Proc Natl Acad Sci U S A. 1993, 90(5): 1977-81.
    
    15. Blacker D, Haines JL, Rodes L, et al.ApoE-4 and age at onset of Alzheimer's disease: the NIMH genetics initiative.Neurology. 1997, 48(1):139-47.
    
    16. Meyer MR, Tschanz JT, Norton MC, et al.APOE genotype predicts when--not whether--one is predisposed to develop Alzheimer disease.Nat Genet. 1998,19(4):321-2.
    
    17. Gandy S.The role of cerebral amyloid beta accumulation in common forms of Alzheimer disease.J Clin Invest. 2005 ,115(5):1121-9.
    
    18. Herz J.LRP: a bright beacon at the blood-brain barrier.J Clin Invest. 2003,112(10):1483-5.
    
    19. Shibata M, Yamada S, Kumar SR, et al.Clearance of Alzheimer's amyloid-ss(1-40) peptide from brain by LDL receptor-related protein-1 at the blood-brain barrier.J Clin Invest. 2000, 106(12): 1489-99.
    
    20. Van Uden E, Mallory M, Veinbergs I, et al.Increased extracellular amyloid deposition and neurodegeneration in human amyloid precursor protein transgenic mice deficient in receptor-associated protein.J Neurosci. 2002, 22(21):9298-304.
    
    21. Deane R, Wu Z, Sagare A, et al.LRP/amyloid beta-peptide interaction mediates differential brain efflux of Abeta isoforms.Neuron. 2004, 43(3):333-44.
    
    22. de la Monte SM, Luong T, Neely TR, et al.Mitochondrial DNA damage as a mechanism of cell loss in Alzheimer's disease.Lab Invest. 2000, 80(8): 1323-35.
    
    23. Bertram L, Tanzi RE.Alzheimer's disease: one disorder, too many genes?Hum Mol Genet. 2004, 13 Spec No 1:R135-41.
    
    24. Alvarez V, Alvarez R, Lahoz CH, et al.Association between an alpha(2) macroglobulin DNA polymorphism and late-onset Alzheimer's disease.Biochem Biophys Res Commun. 1999, 264(1):48-50.
    
    25. Farris W, Mansourian S, Chang Y, et al.Insulin-degrading enzyme regulates the levels of insulin, amyloid beta-protein, and the beta-amyloid precursor protein intracellular domain in vivo.Proc Natl Acad Sci U S A. 2003, 100(7):4162-7.
    
    26. Leissring MA, Farris W, Chang AY, et al.Enhanced proteolysis of beta-amyloid in APP transgenic mice prevents plaque formation, secondary pathology, and premature death.Neuron. 2003,40(6): 1087-93.
    27. Edbauer D, Willem M, Lammich S, et al.Insulin-degrading enzyme rapidly removes the beta-amyloid precursor protein intracellular domain (AICD).J Biol Chem. 2002, 277(16): 13389-93.
    
    28. Turner AJ, Isaac RE, Coates D.The neprilysin (NEP) family of zinc metalloendopeptidases: genomics and function.Bioessays. 2001,23(3):261-9.
    
    29. Hama E, Shirotani K, Masumoto H, et al.Clearance of extracellular and cell-associated amyloid beta peptide through viral expression of neprilysin in primary neurons.J Biochem. 2001,130(6):721-6.
    
    30. Iwata N, Tsubuki S, Takaki Y, et al.Metabolic regulation of brain Abeta by neprilysin.Science. 2001,292(5521):1550-2.
    
    31. Yasojima K, Akiyama H, McGeer EG, et al.Reduced neprilysin in high plaque areas of Alzheimer brain: a possible relationship to deficient degradation of beta-amyloid peptide.Neurosci Lett. 2001, 297(2):97-100.
    
    32. Fukami S, Watanabe K, Iwata N, et al.Abeta-degrading endopeptidase, neprilysin, in mouse brain: synaptic and axonal localization inversely correlating with Abeta pathology.Neurosci Res. 2002,43(1):39-56.
    
    33. Sakai A, Ujike H, Nakata K, et al.Association of the Neprilysin gene with susceptibility to late-onset Alzheimer's disease.Dement Geriatr Cogn Disord. 2004, 17(3): 164-9.
    
    34. Clarim6n J, Munoz FJ, Boada M, et al.Possible increased risk for Alzheimer's disease associated with neprilysin gene.J Neural Transm. 2003,110(6):651-7.
    
    35. Tucker HM, Kihiko M, Caldwell JN, et al.The plasmin system is induced by and degrades amyloid-beta aggregates.J Neurosci. 2000, 20(11):3937-46.
    
    36. Sutton R, Keohane ME, VanderBerg SR, et al.Plasminogen activator inhibitor-1 in the cerebrospinal fluid as an index of neurological disease.Blood Coagul Fibrinolysis. 1994, 5(2): 167-71.
    
    37. Li X, Bokman AM, Llinas M, et al.Solution structure of the kringle domain from urokinase-type plasminogen activator.J Mol Biol. 1994,235(5):1548-59.
    
    38. Yoshimoto M, Ushiyama Y, Sakai M, et al.Characterization of single chain urokinase-type plasminogen activator with a novel amino-acid substitution in the kringle structure.Biochim BiophysActa. 1996,1293(1):83-9.
    39.Finckh U,van Hadeln K,Muller-Thomsen T,et al.Association of late-onset Alzheimer disease with a genotype of PLAU,the gene encoding urokinase-type plasminogen activator on chromosome 10q22.2.Neurogenetics.2003,4(4):213-7.
    40.Ertekin-Taner N,Ronald J,Feuk L,et al.Elevated amyloid beta protein(Abeta42)and late onset Alzheimer's disease are associated with single nucleotide polymorphisms in the urokinase-type plasminogen activator gene.Hum Mol Genet.2005,14(3):447-60.
    41.St George-Hyslop PH.Piecing together Alzheimer's.Sci Am.2000,283(6):76-83.
    42.Schellenberg GD.Genetic dissection of Alzheimer disease,a heterogeneous disorder.Proc Natl Acad Sci USA.1995,92(19):8552-9.
    43.Buee L,Bussiere T,Buee-Scherrer V,et al.Tau protein isoforms,phosphorylation and role in neurodegenerative disorders.Brain Res Brain Res Rev.2000,33(1):95-130.
    44.Hutton M,Lendon CL,Rizzu P,et al.Association of missense and 5'-splice-site mutations in tau with the inherited dementia FTDP-17.Nature.1998,393(6686):702-5.
    45.Tanahashi H,Asada T,Tabira T.Association between tau polymorphism and male early-onset Alzheimer's disease.Neuroreport.2004,15(1):175-9.
    46.Bullido M J,Aldudo J,Frank A,et al.A polymorphism in the tau gene associated with risk for Alzheimer's disease.Neurosci Lett.2000,278(1-2):49-52.
    1.DeLaGarza VW.Pharmacologic Treatment of Alzheimer's Disease:An Update.Am Fam Physician 2003:68:1365-72
    2.EI Mouedden M,Vandermeeren M,Meert T,Mercden M.Reduction of Abeta levels in the Sprague Dawley rat after oral administration of the functional gamma-secretase inhibitor,DAPT:a novel non-transgenic model for Abeta production inhibitors.Curr Pharm Des 2006:12(6):671-6
    3.Siemers ER,Quinn JF,Kaye J,Farlow MR,Porsteinsson A,Tariot P,Zoulnouni P,Galvin JE,Holtzman DM,Knopman DS,Satterwhite J,Gonzales C,Dean RA,May PC.Effects of a gamma-secretase inhibitor in a randomized study of patients with Alzheimer disease.Neurology 2006;66(4):602-4
    4.Maier M,Seabrook TJ,Lazo ND,Jiang L,Das P,Janus C,Lemere CA.Short amyloid-beta(Abeta)immunogens reduce cerebral Abeta load and learning deficits in an Alzheimer's disease mouse model in the absence of an Abeta-specific cellular immune response.J Neurosci 2006;26(18):4717-28
    5.Petanceska SS,DeRosa S,Olm V,et al.Statin therapy for Alzheimer's disease: will it work? J Mol Neurosci 2002;19:155-61
    
    6. Ritchie CW, Bush AI, Mackinnon A, et al. Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 2003:60:1685-91
    
    7. Perry TA, Greig NH. A new Alzheimer' s disease interventive strategy:GLP-1. Curr Drug Targets 2004;5(6):565-71
    
    8. D' Andrea MR, Nagele RG. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulation in Alzheimer' s disease pyramidal neurons. Curr Pharm Des 2006:12(6):677-84
    
    9. Engelhart MJ, Geerlings MI, Ruitenberg A, et al. Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 2002:287:3223-9
    
    10. Esposito E, Rotilio D, Di Matteo V, Di Giulio C, Cacchio M, Algeri S. A review of specific dietary antioxidants and the effects on biochemical mechanisms related to neurodegenerative processes. Neurobiol Aging 2002:23:719-35
    
    11. Zandi PP, Anthony JC, Khachaturian AS, et al. Reduced risk of Alzheimer disease in users of antioxidant vitamin supplements: the Cache County Study. Arch Neurol 2004:61:82-8
    
    12. Feng Z, Chang Y, Cheng Y, Zhang BL, Qu ZW, Qin C, Zhang JT. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer' s desease. J Pineal Res 2004;37(2):129-36
    
    13. Rodriguez-Franco MI, Fernandez-Bachiller MI, Perez C, Hernandez-Ledesma B, Bartolome B. Novel tacrine-melatonin hybrids as dual-acting drugs for Alzheimer disease, with improved acetylcholinesterase inhibitory and antioxidant properties. J Med Chem 2006;49(2) :459-62
    
    14. Perluigi M, Joshi G, Sultana R, Calabrese V, De Marco C, Coccia R, Butterfield DA. In vivo protection by the xanthate tricyclodecan-9-yl-xanthogenate against amyloid beta-peptide (1-42)-induced oxidative stress. Neuroscience 2006; 138 (4):1161-70
    
    15. Doody RS, Stevens JC, Beck C, et al. Practice parameter: management of dementia (an evidence-based review): report of the Quality Standards Suocommittee of the American Academy of Neurology. Neurology 2001;56:1154-66
    
    16. Prasher VP. Review of donepezil, revastigmine, galantamine and memantine for the treatment of dementia in Alzheimer' s desease in adults with Down syndrome: implications for the intellectual disability population. Int J Geriatr Psychiatry 2004;19:509-15
    
    17. Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev 2006;(1):CD001190
    
    18. Loy C, Schneider L Galantamine for Alzheimer's disease and mild cognitive impairment. Cochrane Database Syst Rev 2006;(1):CD001747
    
    19. Arai H. Current therapies in dementia. Nippon Ronen Igakkai Zasshi 2004;41(3):310-3
    
    20. Winblad B, JelicV. Long-term treatment of Alzheimer disease:efficacy and safety of acetylcholinesterase inhibitor. Alzheimer Dis Assoc Disorder 2004; 18 Suppl 1:S2-8
    
    21. Zuchner T, Perez-Polo JR, Schliebs R. Beta-secretase BACE1 is differentially controlled through muscarinic acetylcholine receptor signaling. J Neurosci Res 2004;77(2):250-7
    
    22. Mulnard RA, Cotman CW, Kawas C, van Dyck CH, Sano M, Doody R, et al. Estrogen replacement therapy for treatment of mild to moderate Alzheimer disease: a randomized controlled trial. Alzheimer's Disease Cooperative Study. JAMA 2000:283:1007-15
    
    23. Wang JM, Johnston PB, Ball BG, Brinton RD. The neurosteroid allopregnanolone promotes proliferation of rodent and human neural progenitor cells and regulates cell-cycle gene and protein expression. J Neurosci 2005;25(19):4706-18
    
    24. Cherrier MM, Matsumoto AM, Amory JK, Asthana S, Bremner W, F'eskind ER, Raskind MA, Craft. S Testosterone improves spatial memory in men with Alzheimer disease and mild cognitive impairment. Neurology 2005;64(12):2063-8
    25. Zhou SL, Chen JP, Cao DL, Tu XW, Yuan DJ. Effect of basic f ibroblast growth factor on hippocampus neurons in rat model with unilateral fimbria-fornix transaction. Chinese Journal of Clinical Rehabilitation 2003;7(19):2666-7
    
    26. Reisberg B, Doody R, Stoffler A, Schmitt F, Ferris S, Mobius HJ. Memantine in moderate-to-severe Alzheimer' s disease. N Engl J Med 2003:348:1333-1341
    
    27. Evans JG, Wilcock G, Birks J. Evidence-based pharmacotherapy of Alzheimer' s disease. Int J Neuropsychopharmacol 2004;7(3):351-69
    
    28. Araujo DM, Lapchak PA, Hefti F. Effects of chronic baxic f ibroblast growth factor administration to rats with partial fimbrial transactions on presynaptic cholinergic parameters and muscarinic receptors in the hippocampus:comparison with nerve growth factor. J Neurochem 1993:61(3):899-910
    
    29. Tuszynski MH. Growth-factor gene therapy for neurodegenerative disorders. Lancet Neurology 2002:1:51-7
    
    30. Blesch A, Grill RJ, Tuszynski MH. Neurotrophin gene therapy in models of CNS trauma and meurodegeneration. Prog Brain Res 1998:117:473-84

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700