两类FXR拮抗剂的设计、合成与构效关系研究及芳炔参与的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文包括两部分,第一部分为药物化学部分,研究两类FXR拮抗剂的设计、合成及其在治疗代谢类疾病中的潜在应用。第二部分为方法学部分,研究了芳炔作为分子切块与含氮亲核试剂发生串联、多组分反应,及其在合成多种杂环衍生物中的应用。
     FXR(法尼酯衍生物X受体)是一种重要的配体激活转录因子,是核受体超家族的成员。FXR参与了体内胆固醇代谢、脂代谢和糖代谢等多种生理过程,与糖尿病、肥胖和血脂紊乱等代谢类疾病有密切的联系。现有研究表明FXR拮抗剂在治疗代谢类疾病方面可能具有潜在的应用。目前文献报道的FXR拮抗剂普遍存在活性较低、获取困难等缺点。为了得到高活性的FXR拮抗剂,我们利用高通量筛选得到的两个FXR拮抗剂AA7和DCW229作为先导化合物,对其开展结构优化并取得一些成果。
     AA7的构效关系研究:设计、合成了33个AA7类似物,系统研究了AA7结构中各部分对其拮抗FXR活性的影响;获得了比AA7活性提高近30倍、比阳性对照化合物GS提高80倍的新衍生物AA7-2。遗憾的是AA7-2只能在分子水平上拮抗FXR,在细胞水平上对CDCA激活的FXR无显著影响。
     DCW229的构效关系研究:经过多轮的结构优化,设计、合成了100多个衍生物;衍生物FXR-21在分子水平具有中等FXR抑制活性,在细胞水平上对FXR及其下游基因具有一定的抑制活性,对FXR有较高的选择性,动物药效学实验揭示其可以有效的降低总胆固醇的水平;在此基础上又进行了深入的结构优化进而发现了衍生物FXR-99,其分子水平拮抗FXR的IC5o为0.3μM,超过了目前文献报道的所有FXR拮抗剂,FXR-99在细胞水平对FXR及其下游基因也具有很强的拮抗活性,对FXR具有较高的选择性,但动物水平的实验却显示对高脂喂养小鼠的胆固醇水平影响不大,分析可能是水溶性太低所致。
     随后药理研究小组成功培育出FXR-99与FXR的共晶复合物,并解析了其结构,该晶体复合物是首个拮抗剂与FXR的晶体复合物。通过分析该晶体结构中FXR-99与结合口袋中氨基酸残基的相互作用,设计并合成了一批提高化合物水溶性的衍生物,遗憾的是这些化合物与FXR-99相比FXR抑制活性有较大幅度的下降。进一步的研究还有待开展。
     在DCW229衍生物合成过程中,我们发现芳香醛在氮杂卡宾的催化下与苄烯丙二腈或苄烯腈乙酸乙酯发生Stetter反应时可以发生环合得到2-氨基呋喃类衍生物。底物适应性研究发现,芳香醛取代基对该反应影响较大,吸电子的取代基通常具有较高的收率而给电子取代基只能得到中等收率。
     芳炔是一类极活泼的化合物,早在1953年就有文献报道。随后也有一些利用芳炔构建复杂分子片段、合成天然产物的研究报道,但由于其制备条件苛刻、反应活性过高,芳炔在有机合成中的应用一直不广。直到上世纪末,众多温和条件制备芳炔的方法被报道和应用,其中Kobayashi报道的邻三甲基硅基三氟甲磺酸酚酯类芳炔前体,因其制备容易、性质稳定且转化成芳炔条件温和而应用最广。
     本论文第二部分第二章研究Kobayashi芳炔前体与含氮杂环及醛或酮在氟化铯存在下直接制备苯并噁嗪类化合物,该反应收率较高、底物适用较广。特别值得注意的是,在我们的反应条件下,含α氢的酮也可以得到苯并噁嗪类化合物,而并非郑建鸿所报道的1,2-二取代吡啶或喹啉衍生物。在条件优化过程中,我们意外发现二氯甲烷可以替代醛或酮有效的参与该反应。二氯甲烷中极弱的酸性氢可以被苯基负离子捕获,失去氢的二氯甲烷负离子进而进攻含氮杂环中的亚胺结构,得到1,2-二取代的吡啶、喹啉及异喹啉衍生物。
     第二部分第三章研究氮杂Morita-Baylis-Hillman产物与芳炔发生串联反应得到3-亚甲基-2,3-二氢喹啉酮类衍生物。由于羟基对苯炔亲核性较低,初始利用MBH产物与苯炔反应并没有得到目标化合物。将其替换为含氨基的衍生物178a,可以得到目标化合物,但收率较低。分析原因可能是反应中间体优势构型中苯基负离子与羰基相距较远,苯基负离子更倾向于捕获质子得到N-苯基副产物。通过增加氨基邻位取代基的大小,在邻位引入苯基的衍生物180a可以得到收率中等的目标产物。
This dissertation mainly focuses on two parts. The first is the medicinal chemistry research, two HTS (high-throughput screening) hits of FXR antagonists were selected for SAR studies and nearly150derivatives were designed, synthesized and evaluated with biological activity. The second part is the methodological research, several heterocyclic backbones were constructed via multicomponent reaction or cascade reaction involving arynes and nitrogen containing nucleophilic compounds.
     FXR (Farnesoid X receptor) is a ligand-acitivated transcriptional factor which is a number of the nuclear receptor superfamilay. FXR is involved in the regulation of bile acid and cholesterol homeostasis, lipoprotein and glucose metabolism as a bile acid sensor. FXR has been thought to be involved in the formation of metabolic syndrome which including obesity, dyslipidemia, diabetes and so on. FXR antagonists lower the contents of triglyceride and cholesterol and increase the high-density lipoprotein (HDL) in HepG2cells and in high-fat diet C57BL/6mice. Despite the promising perspective of FXR antagonists in the regulation of numerous biological processes and related diseases development, the FXR antagonists reported in the literature are limited in low potency and difficulty in obtaining. Two moderate FXR antagonists AA7and DCW229obtained via HTS were selected for further modification and the results are shown as follows.
     To exploring the structure-activity relationship of AA7,33analogs were designed, synthesized and evaluated with FXR antagonist activities. The most potent derivative AA7-2was almost30-fold more potent than the hit AA7and more than80-fold stronger than the positive control FXR antagonist GS. To our great disappointment, further evaluation of AA7-2in hepatic cell shown no positive effect on inhibition of FXR.
     As for another FXR antagonist DCW229, more than100analogs were designed, synthesized and test with its FXR antagonist activities. The analog FXR-21was found to inhibit the CDCA induced coactivator recruitment of FXR and its downstream target genes in hepatic cells with moderate potency. Besides that, FXR-21also exhibited a high selectivity over other nuclear receptors. Further evaluation in high-fat diet mice found it could efficiently reduced the total level of cholesterol, which implied its promising prospective in the treatment of metabolism disorders. To further improve its potency, several rounds of design, synthesis and evaluation were carried out and more potent FXR antagonist FXR-99was discovered with IC_(50)=0.3μM. FXR-99also showed potent inhibition of FXR and its downstream target genes and high selectivity over other nuclear receptors in hepatic cells. However, FXR-99showed no positive effect on the regulation of total cholesterol in high-fat diet mice. Considering the high Log P value and low water solubility of FXR-99, we supposed the failure in the high-fat diet mice might be attributed to its low solubility and poor physicochemical property.
     After the discovery of the potent FXR antagonist FXR-99, our cooperators successfully cultivated the cocrystal complex of FXR-99with FXR and elucidated its structure, which is the first cocrystal complex of FXR with FXR antagonist. Based on the binding pocket of the complex crystal, several new FXR-99analogs with improved physicochemical property were designed, synthesized and evaluated with its FXR antagonist activity. However, these analogs turned out to show reduced antagonist activity.
     During the SAR studies of DCW229, we serepiditiouly found that aromatic aldehydes could react with acylidenemalononitriles via Stetter-cyclization process to form2-amino furan derivatives. The reaction conditions and substrates scope were investigated and found that aromatic aldehydes with electron-deficient substitution afford the desired product in good yields while electron-donating substituted aromatic aldehydes give moderate yields.
     The second part of this dissertation explored the reactivity of aryne in the multicomponent and cascade reaction with nitrogen containing nucleophilic compounds. Arynes are very reactive intermediates, which had been studied more than60years. However, aryne had not been widely used in constructing biological moleculars or natural products which mainly due to harsh conditions required to generate arynes. Most recently, the using of o-silyl aryl triflates as aryne precursors reported by Kobayashi has attracted great attention for the stability of these compounds and mild condition required to generate arynes.
     In segement2chapter2, we described the multicomponent reaction involving arynes, N-heteroaromatic compounds and aldehydes or ketones to give benzo-annulated1,3-oxazine derivatives in moderate to high yields. The reaction conditions and substrates scope were investigated thoroughly and a possible mechanism was also proposed to illustrate the regioselectivity and distereoselectivity when3-OMe benzyne was used in this reaction. It worth to be mentioned that aldehydes or ketones with a hydrogen reacted smoothly in our conditions to generate the desired products while Cheng et. al. had reported in their conditions to give1,2-disubstituted N-aromatic compounds.
     During the optimization of the multicomponent reaction, we found dichloromethane could efficiently react with arynes and N-hetaroaromatic compounds to form the 1,2-disubstituted pyridine, quinoline or isoquinoline derivatives. Trichloromethane and dibromomethane could also participate in this reaction to afford the corresponding products.
     Segement2chapter3investigated the cascade reaction of aza-Morita-Baylis-Hillman adducts with arynes to generate the3-methylene-2,3-dihydroquinolin-4(1H)-one derivatives with TMAF as the fluride sources. Initial efforts were focused on the direct reaction of Morita-Baylis-Hillman adducts with aryne. However, no desried product was obtained which probably due to the low nucleophilic of hydroxyl group with aryne. n-Butylamine derivate178a reacted with benzyne smoothly to afford the desired product in low yield, with the N-Ph derivative as main byproduct. The low yield of desried product might be attributed to the stable configuration of the intermediate in which Phenyl anion is prone to attack proton rather than carbonyl group. To overcome this problem, a-Phenyl derivative180a was used in this reaction and the yield of the desried product was improved to moderate.
引文
[I]N. Y. Kalaany, D. J. Mangelsdorf, LXRS AND FXR:The Yin and Yang of Cholesterol and Fat Metabolism [J]. Annu. Rev. Physiol.2006,68,159-191.
    [2]P. Lefebvre, B. Cariou, F. Lien, F. Kuipers, B. Staels, Role of Bile Acids and Bile Acid Receptors in Metabolic Regulation [J]. Physiol. Rev 2009,89,147-191.
    [3]S. Fiorucci, S. Cipriani, F. Baldelli, A. Mencarelli, Bile acid-activated receptors in the treatment of dyslipidemia and related disorders [J]. Prog. Lipid Res.2010,49,171-185.
    [4]R. M. Gadaleta, S. W. C. van Mil, B. Oldenburg, P. D. Siersema, L. W. J. Klomp, K. J. van Erpecum, Bile acids and their nuclear receptor FXR:Relevance for hepatobiliary and gastrointestinal disease [J]. Biochim. Biophys. Ada Mol. Cell Biol. Lipids 2010,1801, 683-692.
    [5]J. Hageman, H. Herrema, A. K. Groen, F. Kuipers, A Role of the Bile Salt Receptor FXR in Atherosclerosis [J]. Arterioscler. Thromb. Vasc. Biol.2010,50,1519-1528.
    [6]A. Mencarelli, S. Fiorucci, FXR an emerging therapeutic target for the treatment of atherosclerosis [J]. J. Cell. Mol. Med.2010,14,79-92.
    [7]Y. Wang, W. Chen, X. Chen, W. Huang, in Nuclear Receptors, Vol.8 (Eds.:C. M. Bunce, M. J. Campbell), Springer Netherlands,2010, pp.307-326.
    [8]J. K. Kemper, Regulation of FXR transcriptional activity in health and disease:Emerging roles of FXR cofactors and post-translational modifications [J]. Biochim. Biophys. Ada Mol. Basis Dis.2011,1812,842-850.
    [9]J. S. Teodoro, A. P. Rolo, C. M. Palmeira, Hepatic FXR:key regulator of whole-body energy metabolism [J]. Trends Endocrinol. Metab.2011,22,458-466.
    [10]L. Adorini, M. Pruzanski, D. Shapiro, Farnesoid X receptor targeting to treat nonalcoholic steatohepatitis [J]. Drug Discov. Today 2012,17,988-997.
    [II]S. Fiorucci, A. Mencarelli, E. Distrutti, A. Zampella, Farnesoid X receptor:from medicinal chemistry to clinical applications [J]. Future Med. Chem.2012.4,877-891.
    [12]D. Merk, D. Steinhilber, M. Schubert-Zsilavecz, Medicinal chemistry of farnesoid X receptor ligands:from agonists and antagonists to modulators [J]. Future Med. Chem.2012,4, 1015-1036.
    [13]M. Baptissart, A. Vega, S. Maqdasy, F. Caira, S. Baron, J.-M. A. Lobaccaro, D. H. Voile. Bile acids:From digestion to cancers [J]. Biochimie 2013,95,504-517.
    [14]M. Baptissart, A. Vega, E. Martinot, S. Baron, J.-M. Lobaccaro, D. Volle, Farnesoid X receptor alpha:a molecular link between bile acids and steroid signaling? [J]. Cell. Mol. Life Sci.2013,1-16.
    [15]A. Macchiarulo, A. Carotti, M. Cellanetti, R. Sardella, A. Gioiello, Navigations of chemical space to further the understanding of polypharmacology in human nuclear receptors [J]. MedChemComm 2013,4,216-227.
    [16]T. Matsubara, F. Li, F. J. Gonzalez, FXR signaling in the enterohepatic system [J]. Mol. Cell. Endocrinol.2013,368,17-29.
    [17]B. M. Forman, E. Goode, J. Chen, A. E. Oro, D. J. Bradley, T. Perlmann, D. J. Noonan, L. T. Burka, T. McMorris, W. W. Lamph, R. M. Evans, C. Weinberger, Identification of a nuclear receptor that is activated by farnesol metabolites [J]. Cell 1995,81,687-693.
    [18]D. J. Parks, S. G. Blanchard, R. K. Bledsoe, G. Chandra, T. G. Consler, S. A. Kliewer, J. B. Stimmel, T. M. Willson, A. M. Zavacki, D. D. Moore, J. M. Lehmann, Bile acids:natural ligands for an orphan nuclear receptor [J]. Science 1999,284,1365-1368.
    [19]M. Makishima, A. Y. Okamoto, J. J. Repa, H. Tu, R. M. Learned, A. Luk, M. V. Hull, K. D. Lustig, D. J. Mangelsdorf, B. Shan, Identification of a Nuclear Receptor for Bile Acids [J]. Science 1999,284,1362-1365.
    [20]H. Wang, J. Chen, K. Hollister, L. C. Sowers, B. M. Forman, Endogenous Bile Acids Are Ligands for the Nuclear Receptor FXR/BAR [J]. Mol. Cell 1999,3,543-553.
    [21]R. Pellicciari, G. Costantino, S. Fiorucci, Farnesoid X Receptor: From Structure to Potential Clinical Applications [J]. J. Med. Chem.2005,48,5383-5403.
    [22]B. Cariou, B. Staels, FXR: a promising target for the metabolic syndrome? [J]. Trends Pharmacol. Sci.2007,28,236-243.
    [23]A. Nguyen, B. Bouscarel, Bile acids and signal transduction:Role in glucose homeostasis [J]. Cell. Signal.2008,20,2180-2197.
    [24]S. Fiorucci, S. Cipriani, A. Mencarelli, F. Baldelli, G. Bifulco, A. Zampella, Farnesoid X receptor agonist for the treatment of liver and metabolic disorders:focus on 6-ethyl-CDCA [J]. Mini-Rev. Med. Chem.2011,11,753-762.
    [25]L. Vincent, A. Johan, G. Jan-Ake, W. Walter, A Unified Nomenclature System for the Nuclear Receptor Superfamily [J]. Cell 1999,97,161-163.
    [26]B. A. Laffitte, H. R. Kast, C. M. Nguyen, A. M. Zavacki, D. D. Moore, P. A. Edwards, Identification of the DNA Binding Specificity and Potential Target Genes for the Farnesoid X-activated Receptor [J]. J. Biol. Chem.2000,275,10638-10647.
    [27]F. Y. Lee, H. Lee, M. L. Hubbert, P. A. Edwards, Y. Zhang, FXR, a multipurpose nuclear receptor [J]. Trends Biochem. Sci.2006,31,572-580.
    [28]Y. Zhang, H. R. Kast-Woelbern, P. A. Edwards, Natural Structural Variants of the Nuclear Receptor Farnesoid X Receptor Affect Transcriptional Activation [J]. J. Biol. Chem.2003, 275,104-110.
    [29]R. M. Huber, K. Murphy, B. Miao, J. R. Link, M. R. Cunningham, M. J. Rupar, P. L. Gunyuzlu, T. F. Haws Jr, A. Kassam, F. Powell, G. F. Hollis, P. R. Young, R. Mukherjee, T. C, Burn, Generation of multiple farnesoid-X-receptor isoforms through the use of alternative promoters [J]. Gene 2002,290,35-43.
    [30]J. Y. L. Chiang, R. Kimmel, C. Weinberger, D. Stroup, Farnesoid X Receptor Responds to Bile Acids and Represses Cholesterol 7a-Hydroxylase Gene (CYP7A1) Transcription [J]. J. Biol. Chem.2000,275,10918-10924.
    [31]B. Goodwin, S. A. Jones, R. R. Price, M. A. Watson, D. D. McKee, L. B. Moore, C. Galardi, J. G. Wilson, M. C. Lewis, M. E. Roth, P. R. Maloney, T. M. Willson, S. A. Kliewer, A Regulatory Cascade of the Nuclear Receptors FXR, SHP-1, and LRH-1 Represses Bile Acid Biosynthesis [J]. Mol. Cell 2000,6,517-526.
    [32]T. T. Lu, M. Makishima, J. J. Repa, K. Schoonjans, T. A. Kerr, J. Auwerx, D. J. Mangelsdorf, Molecular Basis for Feedback Regulation of Bile Acid Synthesis by Nuclear Receptors [J]. Mol. Cell 2000,6,507-515.
    [33]Y.-K. Lee, D. R. Schmidt, C. L. Cummins, M. Choi, L. Peng, Y. Zhang, B. Goodwin, R. E. Hammer, D. J. Mangelsdorf, S. A. Kliewer, Liver Receptor Homolog-1 Regulates Bile Acid Homeostasis but Is Not Essential for Feedback Regulation of Bile Acid Synthesis [J]. Mol. Endocrinol.2008,22,1345-1356.
    [34]T. Inagaki, M. Choi, A. Moschetta, L. Peng, C. L. Cummins, J. G. McDonald, G. Luo, S. A. Jones, B. Goodwin, J. A. Richardson, R. D. Gerard, J. J. Repa, D. J. Mangelsdorf, S. A. Kliewer, Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis [J]. Cell Metab.2005,2,217-225.
    [35]K.-H. Song, T. Li, E. Owsley, S. Strom, J. Y. L. Chiang, Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7a-hydroxylase gene expression [J]. Hepaiology 2009,49,297-305.
    [36]M. Ananthanarayanan, N. Balasubramanian, M. Makishima, D. J. Mangelsdorf, F. J. Suchy, Human Bile Salt Export Pump Promoter Is Transactivated by the Farnesoid X Receptor/Bile Acid Receptor [J]. J. Biol. Chem.2001.276,28857-28865.
    [37]P. A. Dawson, J. Haywood, A. L. Craddock, M. Wilson, M. Tietjen, K. Kluckman, N. Maeda, J. S. Parks, Targeted Deletion of the Ileal Bile Acid Transporter Eliminates Enterohepatic Cycling of Bile Acids in Mice [J]. J. Biol. Chem.2003,278,33920-33927.
    [38]J.-F. Landrier, J. J. Eloranta, S. R. Vavricka, G. A. Kullak-Ublick, The nuclear receptor for bile acids, FXR, transactivates human organic solute transporter-a and-β genes [J].Am. J. Physiol. Gastrointest. Liver Physiol.2006,290, G476-G485.
    [39]H. Lee, Y. Zhang, F. Y. Lee, S. F. Nelson, F. J. Gonzalez, P. A. Edwards, FXR regulates organic solute transporters α and β in the adrenal gland, kidney, and intestine [J]. J. Lipid Res. 2006,47,201-214.
    [40]P. A. Dawson, M. Hubbert, J. Haywood, A. L. Craddock, N. Zerangue, W. V. Christian, N. Ballatori, The Heteromeric Organic Solute Transporter a-[3, Osta-Ostβ, Is an Ileal Basolateral Bile Acid Transporter [J]. J. Biol. Chem.2005,280,6960-6968.
    [41]L. A. Denson, E. Sturm, W. Echevarria, T. L. Zimmerman, M. Makishima, D. J. Mangelsdorf, S. J. Karpen, The Orphan Nuclear Receptor, shp, Mediates Bile Acid-Induced Inhibition of the Rat Bile Acid Transporter, ntcp [J]. Gastroenterology 2001,121,140-147.
    [42]H. E. Meyer zu Schwabedissen, K. Bottcher, A. Chaudhry, H. K. Kroemer, E. G. Schuetz, R. B. Kim, Liver X receptor a and farnesoid X receptor are major transcriptional regulators of OATP1B1 [J]. Hepatology 2010,52,1797-1807.
    [43]张久聪,聂青和,胆汁酸代谢及相关进展[J].胃肠病学和肝病学杂志2008,953-956.
    [44]J. R. M. Plass, O. Mol, J. Heegsma, M. Geuken, K. N. Faber, P. L. M. Jansen, M. Miiller, Farnesoid X receptor and bile salts are involved in transcriptional regulation of the gene encoding the human bile salt export pump [J]. Hepatology 2002,35,589-596.
    [45]H. R. Kast, B. Goodwin, P. T. Tarr, S. A. Jones, A. M. Anisfeld, C. M. Stoltz, P. Tontonoz, S. Kliewer, T. M. Willson, P. A. Edwards, Regulation of Multidrug Resistance-associated Protein 2 (ABCC2) by the Nuclear Receptors Pregnane X Receptor, Farnesoid X-activated Receptor, and Constitutive Androstane Receptor [J]. J. Biol Chem.2002,277,2908-2915.
    [46]L. Huang, A. Zhao, J.-L. Lew, T. Zhang, Y. Hrywna, J. R. Thompson, N. de Pedro, I. Royo, R. A. Blevins, F. Pelaez, S. D. Wright, J. Cui, Farnesoid X Receptor Activates Transcription of the Phospholipid Pump MDR3 [J]. J. Biol. Chem.2003,278,51085-51090.
    [47]D. Jung, M. Podvinec, U. A. Meyer, D. J. Mangelsdorf, M. Fried, P. J. Meier, G. A. Kullak-Ublick, Human organic anion transporting polypeptide 8 promoter is transactivated by the farnesoid X receptor/bile acid receptor [J]. Gastroenterology 2002,122,1954-1966.
    [48]H.-U. Marschall, M. Wagner, K. Bodin, G. Zollner, P. Fickert, J. Gumhold, D. Silbert, A. Fuchsbichler, J. Sjovall, M. Trauner, Fxr-/-mice adapt to biliary obstruction by enhanced phase I detoxification and renal elimination of bile acids [J]. J. Lipid Res.2006,47,582-592.
    [49]G. Zollner, M. Wagner. P. Fickert, D. Silbert, J. Gumhold, K. Zatloukal, H. Denk, M. Trauner, Expression of bile acid synthesis and detoxification enzymes and the alternative bile acid efflux pump MRP4 in patients with primary biliary cirrhosis [J]. Liver Int.2007,27, 920-929.
    [50]O. Barbier, I. P. Torra, A. Sirvent, T. Claudel, C. Blanquart, D. Duran-Sandoval, F. Kuipers, V. Kosykh, J.-C. Fruchart, B. Staels, FXR induces the UGT2B4 enzyme in hepatocytes:a potential mechanism of negative feedback control of FXR activity [J]. Gastroenterology 2003,124,1926-1940.
    [51]H. Lee, M. L. Hubbert, T. F. Osborne, K. Woodford, N. Zerangue, P. A. Edwards, Regulation of the Sodium/Sulfate Co-transporter by Farnesoid X Receptor a [J]. J. Biol. Chem.2007,282,21653-21661.
    [52]G. Lambert, M. J. A. Amar, G. Guo, H. B. Brewer, F. J. Gonzalez, C. J. Sinal, The Farnesoid X-receptor Is an Essential Regulator of Cholesterol Homeostasis [J]. J. Biol. Chem. 2003,278,2563-2570.
    [53]W. J. Insull, Clinical Utility of Bile Acid Sequestrants in the Treatment of Dyslipidemia: A Scientific Review [J]. South. Med. J.2006,99,257-273.
    [54]C. R. Pullinger, C. Eng, G. Salen, S. Shefer, A. K. Batta, S. K. Erickson, A. Verhagen, C. R. Rivera, S. J. Mulvihill, M. J. Malloy, J. P. Kane, Human cholesterol 7a-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype [J]. J. Clin. Invest.2002,110, 109-117.
    [55]T. L. Carlson, B. A. Kottke, Effect of 25-hydroxycholesterol and bile acids on the regulation of cholesterol metabolism in Hep G2 cells [J]. Biochem. J.1989,264,241-247.
    [56]L. J. Schoenfield, J. M. Lachin, R. A. Baum, R. L. Habig, R. F. Hanson, T. Hersh, J. N. C. Hightower, A. F. Hofmann, E. C. Lasser, J. W. Marks, H. Mekhjian, R. Okun, R. A. Schaefer, L. Shaw, R. D. Soloway, J. L. Thistle, F. B. Thomas, M. P. Tyor, Chenodiol (Chenodeoxycholic Acid) for Dissolution of Gallstones:The National Cooperative Gallstone StudyA Controlled Trial of Efficacy and Safety [J]. Ann. Intern. Med.1981,95,257-282.
    [57]T. Kok, C. V. Hulzebos, H. Wolters, R. Havinga, L. B. Agellon, F. Stellaard, B. Shan, M. Schwarz, F. Kuipers, Enterohepatic Circulation of Bile Salts in Farnesoid X Receptor-deficient Mice:EFFICIENT INTESTINAL BILE SALT ABSORPTION IN THE ABSENCE OF ILEAL BILE ACID-BINDING PROTEIN [J]. J. Biol. Chem.2003,278, 41930-41937.
    [58]P. Delerive, C. M. Galardi, J. E. Bisi, E. Nicodeme, B. Goodwin, Identification of Liver Receptor Homolog-1 as a Novel Regulator of Apolipoprotein AI Gene Transcription [J]. Mol. Endocrinol 2004,18,2378-2387.
    [59]L. Malerod, M. Sporstol, L. K. Juvet, S. A. Mousavi, T. Gjoen, T. Berg, N. Roos, W. Eskild, Bile acids reduce SR-BI expression in hepatocytes by a pathway involving FXR/RXR, SHP, and LRH-1 [J]. Biochem. Biophys. Res. Commun.2005,336,1096-1105.
    [60]B. Angelin, K. S. Hershon, J. D. Brunzell, Bile acid metabolism in hereditary forms of hypertriglyceridemia:evidence for an increased synthesis rate in monogenic familial hypertriglyceridemia [J]. Proc. Nail. Acad. Sci. U. S. A.1987,84,5434-5438.
    [61]P. R. Maloney, D. J. Parks, C. D. Haffner, A. M. Fivush, G. Chandra, K. D. Plunket, K. L. Creech, L. B. Moore, J. G. Wilson, M. C. Lewis, S. A. Jones, T. M. Willson, Identification of a Chemical Tool for the Orphan Nuclear Receptor FXR [J]. J. Med. Chem.2000,43, 2971-2974.
    [62]Y. Lin, R. Havinga, I. J. Schippers, H. J. Verkade, R. J. Vonk, F. Kuipers, Characterization of the inhibitory effects of bile acids on very-low-density lipoprotein secretion by rat hepatocytes in primary culture [J]. Biochem. J.1996,316,531-538.
    [63]B. M. Elzinga, Effects of bile salts on hepatic lipoprotein production, Rijksuniversiteit Groningen (Nederland),2003.
    [64]H. Huang, Y. Yu, Z. Gao, Y. Zhang, C. Li, X. Xu, H. Jin, W. Yan, R. Ma, J. Zhu, X. Shen, H. Jiang, L. Chen, J. Li, Discovery and Optimization of 1,3,4-Trisubstituted-pyrazolone Derivatives as Novel, Potent, and Nonsteroidal Farnesoid X Receptor (FXR) Selective Antagonists [J]. J. Med. Chem.2012,55,7037-7053.
    [65]A. S. Hassan, M. T. R. Subbiah, P. Thiebert, Specific Changes of Bile Acid Metabolism in Spontaneously Diabetic Wistar Rats [J]. Proc. Soc. Exp. Biol. Med.1980,164,449-452.
    [66]D. Duran-Sandoval, G. Mautino, G. Martin, F. Percevault, O. Barbier, J.-C. Fruchart, F. Kuipers, B. Staels, Glucose Regulates the Expression of the Farnesoid X Receptor in Liver [J]. Diabetes 2004,53,890-898.
    [67]E. De Fabiani, N. Mitro, F. Gilardi, D. Caruso, G. Galli, M. Crestani, Coordinated Control of Cholesterol Catabolism to Bile Acids and of Gluconeogenesis via a Novel Mechanism of Transcription Regulation Linked to the Fasted-to-fed Cycle [J]. J. Biol. Chem. 2003,278,39124-39132.
    [68]K. R. Stayrook, K. S. Bramlett, R. S. Savkur, J. Ficorilli, T. Cook, M. E. Christe, L. F. Michael, T. P. Burris, Regulation of Carbohydrate Metabolism by the Farnesoid X Receptor [J]. Endocrinology 2005,146,984-991.
    [69]M. Watanabe, S. M. Houten, C. Mataki, M. A. Christoffolete, B. W. Kim, H. Sato, N. Messaddeq, J. W. Harney, O. Ezaki, T. Kodama, K. Schoonjans, A. C. Bianco, J. Auwerx, Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation [J]. Nature 2006,439,484-489.
    [70]M. Watanabe, Y. Horai, S. M. Houten, K. Morimoto, T. Sugizaki, E. Arita, C. Mataki, H. Sato, Y. Tanigawara, K. Schoonjans, H. Itoh, J. Auwerx, Lowering Bile Acid Pool Size with a Synthetic Farnesoid X Receptor (FXR) Agonist Induces Obesity and Diabetes through Reduced Energy Expenditure [J]. J. Biol. Chem.2011,286,26913-26920.
    [71]Y. Zhang, X. Ge, L. A. Heemstra, W.-D. Chen, J. Xu, J. L. Smith, H. Ma, N. Kasim, P. A. Edwards, C. M. Novak, Loss of FXR Protects against Diet-Induced Obesity and Accelerates Liver Carcinogenesis in ob/ob Mice [J]. Mol. Endocrinol.2012,26,272-280.
    [72]J. Prawitt, M. Abdelkarim, J. H. M. Stroeve, I. Popescu, H. Duez, V. R. Velagapudi, J. Dumont, E. Bouchaert, D. T. H. van, A. Lucas, E. Dorchies, M. Daoudi, S. Lestavel, F. J. Gonzalez, M. Oresic, B. Cariou, F. Kuipers, S. Caron, B. Staels, Farnesoid X receptor deficiency improves glucose homeostasis in mouse models of obesity [J]. Diabetes 2011,60, 1861-1871.
    [73]W. Huang, K. Ma, J. Zhang, M. Qatanani, J. Cuvillier, J. Liu, B. Dong, X. Huang, D. D. Moore, Nuclear Receptor-Dependent Bile Acid Signaling Is Required for Normal Liver Regeneration [J]. Science 2006,312,233-236.
    [74]Z. Meng, Y. Wang, L. Wang, W. Jin, N. Liu, H. Pan, L. Liu, L. Wagman, B. M. Forman, W. Huang, FXR Regulates Liver Repair after CC14-Induced Toxic Injury [J]. Mol. Endocrinol. 2010,24,886-897.
    [75]W.-D. Chen, Y.-D. Wang, L. Zhang, S. Shiah, M. Wang, F. Yang, D. Yu, B. M. Forman, W. Huang, Farnesoid X receptor alleviates age-related proliferation defects in regenerating mouse livers by activating forkhead box mlb transcription [J]. Hepatology 2010,57,953-962.
    [76]Y.-D. Wang, W.-D. Chen, D. D. Moore, W. Huang, FXR:a metabolic regulator and cell protector [J]. Cell Res.2008,18,1087-1095.
    [77]S. Fiorucci, E. Antonelli, G. Rizzo, B. Renga, A. Mencarelli, L. Riccardi, S. Orlandi, R. Pellicciari, A. Morelli, The nuclear receptor SHP mediates inhibition of hepatic stellate cells by FXR and protects against liver fibrosis [J]. Gastroenterology 2004,127,1497-1512.
    [78]J. Li, R. Kuruba, A. Wilson, X. Gao, Y. Zhang, S. Li, Inhibition of Endothelin-l-Mediated Contraction of Hepatic Stellate Cells by FXR Ligand [J]. PLoS ONE 2010,5, el3955.
    [79]C. G. Lee, Y W. Kim, E. H. Kim, Z. Meng, W. Huang, S. J. Hwang, S. G. Kim, Farnesoid X Receptor Protects Hepatocytes From Injury by Repressing miR-199a-3p, Which Increases Levels of LKB1 [J]. Gastroenterology 2012,142,1206-1217.
    [80]P. Fickert, A. Fuchsbichler, T. Moustafa, M. Wagner, G. Zollner, E. Halilbasic, U. Stoger, M. Arrese, M. Pizarro, N. Solis, G. Carrasco, A. Caligiuri, M. Sombetzki, E. Reisinger, O. Tsybrovskyy, K. Zatloukal, H. Denk, H. Jaeschke, M. Pinzani, M. Trauner, Farnesoid X Receptor Critically Determines the Fibrotic Response in Mice but Is Expressed to a Low Extent in Human Hepatic Stellate Cells and Periductal Myofibroblasts [J]. Am. J. Pathol. 2009,775,2392-2405.
    [81]M. Fausther, J. A. Dranoff, New insights on the pathogenesis of biliary cirrhosis provided by studies in FXR knockout mice [J].J. Hepatol.2011,55,939-940.
    [82]K.-O. Chang, D. W. George, Bile Acids Promote the Expression of Hepatitis C Virus in Replicon-Harboring Cells [J]. J. Virol. 2007,81,9633-9640.
    [83]C. Scholtes,0. Diaz, V. Icard, A. Kaul, R. Bartenschlager, V. Lotteau, P. Andre, Enhancement of genotype 1 hepatitis C virus replication by bile acids through FXR [J]. J. Hepatol.2008,48,192-199.
    [84]V. Reese, C. Ondracek, C. Rushing, L. Li, C. E. Oropeza, A. McLachlan, Multiple nuclear receptors may regulate hepatitis B virus biosynthesis during development [J]. Inter. J. Biochem. & Cell Bio.2011,43,230-237.
    [85]V. C. Reese, D. D. Moore, A. McLachlan, Limited Effects of Bile Acids and Small Heterodimer Partner on Hepatitis B Virus Biosynthesis In Vivo [J]. J. Virol.2012,86, 2760-2768.
    [86]H. Su, C. Ma, J. Liu, N. Li, M. Gao, A. Huang, X. Wang, W. Huang, X. Huang, Downregulation of nuclear receptor FXR is associated with multiple malignant clinicopathological characteristics in human hepatocellular carcinoma [J]. Am. J. Physiol. Gastrointest. Liver Physiol.2012,303, G1245-G1253.
    [87]Z. Wenyu, C. Ping, Z. Yuanyin, L. Guiyu, Farnesoid X receptor expression is reduced in human hepatocellular carcinoma [J]. Journal of Medical Colleges ofPLA 2012,27,1-9.
    [88]I. Kim, K. Morimura, Y. Shah, Q. Yang, J. M. Ward, F. J. Gonzalez, Spontaneous hepatocarcinogenesis in farnesoid X receptor-null mice [J]. Carcinogenesis 2007,28, 940-946.
    [89]F. Yang, X. Huang, T. Yi, Y. Yen, D. D. Moore, W. Huang, Spontaneous Development of Liver Tumors in the Absence of the Bile Acid Receptor Farnesoid X Receptor [J]. Cancer Res. 2007,67,863-867.
    [90]Y. Chen, X. Song, L. Valanejad, A. Vasilenko, V. More, X. Qiu, W. Chen, Y. Lai, A. Slitt, M. Stoner, B. Yan, R. Deng, Bile salt export pump is dysregulated with altered farnesoid X receptor isoform expression in patients with hepatocellular carcinoma [J]. Hepatology 2013, 57,1530-1541.
    [91]Y. Jiang, P. Iakova, J. Jin, E. Sullivan, V. Sharin, I.-H. Hong, S. Anakk, A. Mayor, G. Darlington, M. Finegold, D. Moore, N. A. Timchenko, Farnesoid X receptor inhibits gankyrin in mouse livers and prevents development of liver cancer [J]. Hepatology 2013,57, 1098-1106.
    [92]U. Deuschle, J. Schuler, A. Schulz, T. Schluter, O. Kinzel, U. Abel, C. Kremoser, FXR Controls the Tumor Suppressor NDRG2 and FXR Agonists Reduce Liver Tumor Growth and Metastasis in an Orthotopic Mouse Xenograft Model [J]. PLoS ONE 2012,7, e43044.
    [93]Z. Meng, X. Wang, Y. Gan, Y. Zhang, H. Zhou, C. V. Ness, J. Wu, G. Lou, H. Yu, C. He, R. Xu, W. Huang, Deletion of IFNγ enhances hepatocarcinogenesis in FXR knockout mice [J]. J. Hepatol.2012,57,1004-1012.
    [94]R. R. M. Maran, A. Thomas, M. Roth, Z. Sheng, N. Esterly, D. Pinson, X. Gao, Y. Zhang, V. Ganapathy, F. J. Gonzalez, G. L. Guo, Farnesoid X Receptor Deficiency in Mice Leads to Increased Intestinal Epithelial Cell Proliferation and Tumor Development [J]. J. Pharmacol. Exp. Ther.2009,328,469-477.
    [95]S. Lax, G. Schauer, K. Prein, M. Kapitan, D. Silbert, A. Berghold, A. Berger, M. Trauner, Expression of the nuclear bile acid receptor/farnesoid X receptor is reduced in human colon carcinoma compared to nonneoplastic mucosa independent from site and may be associated with adverse prognosis [J]. Int. J. Cancer 2012,130,2232-2239.
    [96]S. Catalano, R. Malivindi, C. Giordano, G. Gu, S. Panza, D. Bonofiglio, M. Lanzino, D. Sisci, M. L. Panno, S. Ando, Farnesoid X Receptor, through the Binding with Steroidogenic Factor 1-responsive Element, Inhibits Aromatase Expression in Tumor Leydig Cells [J]. J. Biol. Chem.2010,285,5581-5593.
    [97]K. E. Swales, M. Korbonits, R. Carpenter, D. T. Walsh, T. D. Warner, D. Bishop-Bailey, The Farnesoid X Receptor Is Expressed in Breast Cancer and Regulates Apoptosis and Aromatase Expression [J]. Cancer Res.2006,66,10120-10126.
    [98]S. Catalano, S. Panza, R. Malivindi, C. Giordano, I. Barone, G. Bossi, M. Lanzino, R. Sirianni, L. Mauro, D. Sisci, D. Bonofiglio, S. Ando, Inhibition of leydig tumor growth by farnesoid X receptor activation:The in vitro and in vivo basis for a novel therapeutic strategy [J]. Int. J. Cancer 2013,132,2237-2247.
    [99]T. Fujino, A. Takeuchi, A. Maruko-Ohtake, Y. Ohtake, J. Satoh, T. Kobayashi, T. Tanaka, H. Ito, R. Sakamaki, R. Kashimura, K. Ando, T. Nishimaki-Mogami, Y. Ohkubo, N. Kitamura, R. Sato, K. Kikugawa, M. Hayakawa, Critical role of farnesoid X receptor for hepatocellular carcinoma cell proliferation [J]. J. Biochem. (Tokyo) 2012,152,577-586.
    [100]A. Kumagai, J. Fukushima, H. Takikawa, T. Fukuda, T. Fukusato, Enhanced expression of farnesoid X receptor in human hepatocellular carcinoma [J]. Hepatology Research 2013, n/a-n/a.
    [101]J. Y. Lee, K. T. Lee, J. K. Lee, K. H. Lee, K. T. Jang, J. S. Heo, S. H. Choi, Y. Kim, J. C. Rhee, Farnesoid X receptor, overexpressed in pancreatic cancer with lymph node metastasis promotes cell migration and invasion [J]. Br. J. Cancer 2011,104,1027-1037.
    [102]B. Guan, H. Li, Z. Yang, A. Hoque, X. Xu, Inhibition of farnesoid X receptor controls esophageal cancer cell growth in vitro and in nude mouse xenografts [J]. Cancer 2013,779,1321-1329.
    [103]Y. T. Y. Li, K. E. Swales, G. J. Thomas, T. D. Warner, D. Bishop-Bailey, Farnesoid X Receptor Ligands Inhibit Vascular Smooth Muscle Cell Inflammation and Migration [J]. Arterioscler. Thromb. Vasc. Bio.2007,27,2606-2611.
    [104]J. Li, A. Wilson, R. Kuruba, Q. Zhang, X. Gao, F. He, L.-M. Zhang, B. R. Pitt, W. Xie, S. Li, FXR-mediated regulation of eNOS expression in vascular endothelial cells [J]. Cardiovasc. Res.2008,77,169-177.
    [105]Q. Zhang, F. He, R. Kuruba, X. Gao, A. Wilson, J. Li, T. R. Billiar, B. R. Pitt, W. Xie, S. Li, FXR-mediated regulation of angiotensin type 2 receptor expression in vascular smooth muscle cells [J]. Cardiovasc. Res.2008,77,560-569.
    [106]J. Pu, A. Yuan, P. Shan, E. Gao, X. Wang, Y. Wang, W. B. Lau, W. Koch, X.-L. Ma, B. He, Cardiomyocyte-expressed farnesoid-X-receptor is a novel apoptosis mediator and contributes to myocardial ischaemia/reperfusion injury [J]. Eur. Heart J.2013,34,1834-1845.
    [107]J.-L. Lew, A. Zhao, J. Yu, L. Huang, N. de Pedro, F. Pelaez, S. D. Wright, J. Cui, The Farnesoid X Receptor Controls Gene Expression in a Ligand-and Promoter-selective Fashion [J]. J. Biol. Chem.2004,279,8856-8861.
    [108]R. Pellicciari, S. Fiorucci, E. Camaioni, C. Clerici, G. Costantino, P. R. Maloney, A. Morelli, D. J. Parks, T. M. Willson, 6α-Ethyl-Chenodeoxycholic Acid (6-ECDCA), a Potent and Selective FXR Agonist Endowed with Anticholestatic Activity [J]. J. Med. Chem.2002, 45,3569-3572.
    [109]R. Pellicciari, G. Costantino, E. Camaioni, B. M. Sadeghpour, A. Entrena, T. M. Willson, S. Fiorucci, C. Clerici, A. Gioiello, Bile Acid Derivatives as Ligands of the Farnesoid X Receptor. Synthesis, Evaluation, and Structure-Activity Relationship of a Series of Body and Side Chain Modified Analogues of Chenodeoxycholic Acid [J]. J. Med. Chem. 2004,47,4559-4569.
    [110]R. Pellicciari, A. Gioiello, G. Costantino, B. M. Sadeghpour, G. Rizzo, U. Meyer, D. J. Parks, A. Entrena-Guadix, S. Fiorucci, Back Door Modulation of the Farnesoid X Receptor:Design, Synthesis, and Biological Evaluation of a Series of Side Chain Modified Chenodeoxycholic Acid Derivatives [J]. J. Med. Chem.2006,49,4208-4215.
    [Ill]D. Yu, D. L. Mattern, B. M. Forman, An improved synthesis of 6a-ethylchenodeoxycholic acid (6ECDCA), a potent and selective agonist for the Farnesoid X Receptor (FXR) [J]. Steroids 2012,77,1335-1338.
    [112]J. Y. Bass, R. D. Caldwell, J. A. Caravella, L. Chen, K. L. Creech, D. N. Deaton, K. P. Madauss, H. B. Marr, R. B. McFadyen, A. B. Miller, D. J. Parks, D. Todd, S. P. Williams, G. B. Wisely, Substituted isoxazole analogs of farnesoid X receptor (FXR) agonist GW4064 [J]. Bioorg. Med. Chem. Lett.2009,19,2969-2973.
    [113]A. Akwabi-Ameyaw, J. Y. Bass, R. D. Caldwell, J. A. Caravella, L. Chen, K. L. Creech, D. N. Deaton,. S. A. Jones, I. Kaldor, Y. Liu, K. P. Madauss, H. B. Marr, R. B. McFadyen, A. B. Miller, F. N. Iii, D. J. Parks, P. K. Spearing, D. Todd, S. P. Williams, G. B. Wisely, Conformationally constrained farnesoid X receptor (FXR) agonists:Naphthoic acid-based analogs of GW4064 [J]. Bioorg. Med. Chem. Lett.2008,18,4339-4343.
    [114]J. Y. Bass, J. A. Caravella, L. Chen, K. L. Creech, D. N. Deaton, K. P. Madauss, H. B. Marr, R. B. McFadyen, A. B. Miller, W. Y. Mills, F. Navas Iii, D. J. Parks, T. L. Smalley Jr, P. K. Spearing, D. Todd, S. P. Williams, G. B. Wisely, Conformationally constrained farnesoid X receptor (FXR) agonists:Heteroaryl replacements of the naphthalene [J]. Bioorg. Med. Chem. Lett.2011,21,1206-1213.
    [115]A. Akwabi-Ameyaw, J. Y. Bass, R. D. Caldwell, J. A. Caravella, L. Chen, K. L. Creech, D. N. Deaton, K. P. Madauss, H. B. Marr, R. B. McFadyen, A. B. Miller, F. Navas Iii, D. J. Parks, P. K. Spearing, D. Todd, S. P. Williams, G. Bruce Wisely, FXR agonist activity of conformationally constrained analogs of GW4064 [J]. Bioorg. Med. Chem. Lett.2009,19, 4733-4739.
    [116]S. Feng, M. Yang, Z. Zhang, Z. Wang, D. Hong, H. Richter, G. M. Benson, K. Bleicher, U. Grether, R. E. Martin, J.-M. Plancher, B. Kuhn, M. G. Rudolph, L. Chen, Identification of an N-oxide pyridine GW4064 analog as a potent FXR agonist [J]. Bioorg. Med. Chem. Lett. 2009,19,2595-2598.
    [117]U. Abel, T. Schluter, A. Schulz, E. Hambruch, C. Steeneck, M. Hornberger, T. Hoffmann, S. Perovic-Ottstadt, O. Kinzel, M. Burnet, U. Deuschle, C. Kremoser, Synthesis and pharmacological validation of a novel series of non-steroidal FXR agonists [J]. Bioorg. Med. Chem. Lett.2010,20,4911-4917.
    [118]K. C. Nicolaou, R. M. Evans, A. J. Roecker, R. Hughes, M. Downes, J. A. Pfefferkorn, Discovery and optimization of non-steroidal FXR agonists from natural product-like libraries [J]. Org. Biomol. Chem.2003,1,908-920.
    [119]B. Flatt, R. Martin, T.-L. Wang, P. Mahaney, B. Murphy, X.-H. Gu, P. Foster, J. Li, P. Pircher, M. Petrowski, I. Schulman, S. Westin, J. Wrobel, G. Yan, E. Bischoff, C. Daige, R. Mohan, Discovery of XL335 (WAY-362450), a Highly Potent, Selective, and Orally Active Agonist of the Farnesoid X Receptor (FXR) [J]. J. Med. Chem.2009,52,904-907.
    [120]J. F. Mehlmann, M. L. Crawley, J. T. Lundquist Iv, R. J. Unwalla, D. C. Harnish, M. J. Evans, C. Y. Kim, J. E. Wrobel, P. E. Mahaney, Pyrrole[2,3-d]azepino compounds as agonists of the farnesoid X receptor (FXR) [J]. Bioorg. Med. Chem. Lett. 2009,19,5289-5292.
    [121]J. T. Lundquist, D. C. Harnish, C. Y. Kim, J. F. Mehlmann, R. J. Unwalla, K. M. Phipps, M. L. Crawley, T. Commons, D. M. Green, W. Xu, W.-T. Hum, J. E. Eta, I. Feingold, V. Patel, M. J. Evans, K. Lai, L. Borges-Marcucci, P. E. Mahaney, J. E. Wrobel, Improvement of Physiochemical Properties of the Tetrahydroazepinoindole Series of Farnesoid X Receptor (FXR) Agonists:Beneficial Modulation of Lipids in Primates [J].J. Med. Chem. 2010, 53, 1774-1787.
    [122]H. G. F. Richter, G. M. Benson, D. Blum, E. Chaput, S. Feng, C. Gardes, U. Grether, P. Hartman, B. Kuhn, R. E. Martin, J.-M. Plancher, M. G. Rudolph, F. Schuler, S. Taylor, K. H. Bleicher, Discovery of novel and orally active FXR agonists for the potential treatment of dyslipidemia& diabetes [J]. Bioorg. Med. Chem. Lett.2011,21,191-194.
    [123]H. G. F. Richter, G. M. Benson, K. H. Bleicher, D. Blum, E. Chaput, N. Clemann. S. Feng, C. Gardes, U. Grether, P. Hartman, B. Kuhn, R. E. Martin, J. M. Plancher. M. G. Rudolph, F. Schuler. S. Taylor, Optimization of a novel class of benzimidazole-based farnesoid X receptor (FXR) agonists to improve physicochemical and ADME properties [J]. Bioorg. Med Chem. Lett. 2011,21,1134-1140.
    [124]I. Dussault, R. Beard, M. Lin, K. Hollister, J. Chen, J.-H. Xiao, R. Chandraratna, B. M. Forman, Identification of Gene-selective Modulators of the Bile Acid Receptor FXR [J]. J. Biol. Chem.2003,278,7027-7033.
    [125]K. M. Honorio, R. C. Garratt, A. D. Andricopulo, Hologram quantitative structure-activity relationships for a series of farnesoid X receptor activators [J]. Bioorg. Med. Chem. Lett.2005,15,3119-3125.
    [126]T. Zhang, J.-H. Zhou, L.-W. Shi, R.-X. Zhu, M.-B. Chen,3D-QSAR studies with the aid of molecular docking for a series of non-steroidal FXR agonists [J]. Bioorg. Med. Chem. Lett.2007,77,2156-2160.
    [127]D. Schuster, P. Markt, U. Grienke, J. Mihaly-Bison, M. Binder, S. M. Noha, J. M. Rollinger, H. Stuppner, V. N. Bochkov, G. Wolber, Pharmacophore-based discovery of FXR agonists. Part I:Model development and experimental validation [J]. Bioorg. Med. Chem. 2011,19,7168-7180.
    [128]F. Epifano, S. Genovese, E. James Squires, M. A. Gray, Nelumal A, the active principle from Ligularia nelumbifolia, is a novel farnesoid X receptor agonist [J]. Bioorg. Med. Chem. Lett.2012,22,3130-3135.
    [129]G. Li, W. Lin, J. J. Araya, T. Chen, B. N. Timmermann, G. L. Guo, A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor [J]. Toxicol. Appl. Pharmacol.2012,258,268-274.
    [130]H.-R. Lin, Triterpenes from Alisma orientalis act as farnesoid X receptor agonists [J]. Bioorg. Med. Chem. Lett.2012,22,4787-4792.
    [131]T. Misawa, H. Hayashi, M. Makishima, Y. Sugiyama, Y. Hashimoto, E297G mutated bile salt export pump (BSEP) function enhancers derived from GW4064:Structural development study and separation from farnesoid X receptor-agonistic activity [J]. Bioorg. Med. Chem. Lett.2012,22,3962-3966.
    [132]C.-J. Tsai, J.-W. Liang, H.-R. Lin, Sesquiterpenoids from Atractylodes macrocephala act as farnesoid X receptor and progesterone receptor modulators [J]. Bioorg. Med. Chem. Lett.2012,22,2326-2329.
    [133]L. Jin, X. Feng, H. Rong, Z. Pan, Y. Inaba, L. Qiu, W. Zheng, S. Lin, R. Wang, Z. Wang, S. Wang, H. Liu, S. Li, W. Xie, Y. Li, The antiparasitic drug ivermectin is a novel FXR ligand that regulates metabolism [J]. Nat. Commun.2013,4.
    [134]H.-R. Lin, Identification of liver X receptor and farnesoid X receptor dual agonists from Tithonia diversifolia [J]. Med. Chem. Res.2013,22,3270-3281.
    [135]M. Marinozzi, A. Carotti, R. Sardella, F. Buonerba, F. Ianni, B. Natalini, D. Passeri, G. Rizzo, R. Pellicciari, Asymmetric synthesis of the four diastereoisomers of a novel non-steroidal farnesoid X receptor (FXR) agonist: Role of the chirality on the biological activity [J]. Bioorg. Med. Chem. 2013,21,3780-3789.
    [136]R. Sardella, M. Marinozzi, F. Ianni, A. Lisanti, B. Natalini, Simultaneous diastereo-and enantioseparation of farnesoid X receptor (FXR) agonists with a quinine carbamate-based chiral stationary phase [J]. Anal. Bioanal. Chem. 2013,405,847-862.
    [137]N. L. Urizar, A. B. Liverman, D. N. T. Dodds, F. V. Silva, P. Ordentlich, Y. Yan, F. J. Gonzalez, R. A. Heyman, D. J. Mangelsdorf, D. D. Moore, A Natural Product That Lowers Cholesterol As an Antagonist Ligand for FXR [J]. Science 2002,296,1703-1706.
    [138]B. A. Carter, O. A. Taylor, D. R. Prendergast, T. L. Zimmerman, R. Von Furstenberg, D. D. Moore, S. J. Karpen, Stigmasterol, a Soy Lipid-Derived Phytosterol, Is an Antagonist of the Bile Acid Nuclear Receptor FXR [J]. Pediatr. Res. 2007,62,301-306.
    [139]H. Choi, H. Hwang, J. Chin, E. Kim, J. Lee, S.-J. Nam, B. C. Lee, B. J. Rho, H. Kang, Tuberatolides, Potent FXR Antagonists from the Korean Marine Tunicate Botryllus tuberatus [J]. J. Nat. Prod.2011,74,90-94.
    [140]M. Y. Putra, G. Bavestrello, C. Cerrano, B. Renga, C. D'Amore, S. Fiorucci, E. Fattorusso, O. Taglialatela-Scafati, Polyhydroxylated sterols from the Indonesian soft coral Sinularia sp. and their effect on farnesoid X-activated receptor [J]. Steroids 2012,77, 433-440.
    [141]V. Sepe, G. Bifulco, B. Renga, C. D'Amore, S. Fiorucci, A. Zampella, Discovery of Sulfated Sterols from Marine Invertebrates as a New Class of Marine Natural Antagonists of Farnesoid-X-Receptor [J]. J. Med. Chem. 2011,54,1314-1320.
    [142]S. De Marino, R. Ummarino, M. V. D'Auria, M. G. Chini, G. Bifulco, C. D'Amore, B. Renga, A. Mencarelli, S. Petek, S. Fiorucci, A. Zampella, 4-Methylenesterols from Theonella swinhoei sponge are natural pregnane-X-receptor agonists and farnesoid-X-receptor antagonists that modulate innate immunity [J]. Steroids 2012,77, 484-495.
    [143]J. Zou, J. Jiang, Y.-Y. Diao, L.-B. Yang, J. Huang, H.-L. Li, X. Du, W.-L. Xiao, J.-X. Pu, H.-D. Sun, Cycloartane triterpenoids from the stems of Schisandra glaucescens and their bioactivity [J]. Fitoterapia 2012,83,926-931.
    [144]S.-Z. Shang, L.-M. Kong, L.-P. Yang, J. Jiang, J. Huang, H.-B. Zhang, Y.-M. Shi. W. Zhao, H.-L. Li, H.-R. Luo, Y. Li, W.-L. Xiao, H.-D. Sun, Bioactive phenolics and terpenoids from Manglietia insignis [J]. Fitoterapia 2013,84,58-63.
    [145]X. Xu, Y. Lu, L. Chen, J. Chen, X. Luo, X. Shen, Identification of 15d-PGJ2 as an antagonist of farnesoid X receptor:Molecular modeling with biological evaluation [J]. Steroids 2013,75,813-822.
    [146]B. Renga, A. Mencarelli, C. D'Amore, S. Cipriani, M. V. D'Auria, V. Sepe, M. G. Chini, M. C. Monti, G. Bifulco, A. Zampella, S. Fiorucci, Discovery That Theonellasterol a Marine Sponge Sterol Is a Highly Selective FXR Antagonist That Protects against Liver Injury in Cholestasis [J]. PLoS ONE 2012,7, e30443.
    [147]M. Kainuma, M. Makishima, Y. Hashimoto, H. Miyachi, Design, synthesis, and evaluation of non-steroidal farnesoid X receptor (FXR) antagonist [J]. Bioorg. Med. Chem. 2007,75,2587-2600.
    [148]Y. Liu, J. Binz, M. J. Numerick, S. Dennis, G. Luo, B. Desai, K. I. MacKenzie, T. A. Mansfield, S. A. Kliewer, B. Goodwin, S. A. Jones, Hepatoprotection by the farnesoid X receptor agonist GW4064 in rat models of intra-and extrahepatic cholestasis [J]. J. Clin. Invest. 2003,112,1678-1687.
    [149]P.-C. Chiang, D. C. Thompson, S. Ghosh, M. R. Heitmeier, A formulation-enabled preclinical efficacy assessment of a farnesoid X receptor agonist, GW4064, in hamsters and cynomolgus monkeys [J]. J. Pharm. Sci. 2011,100,4722-4733.
    [150]M. J. Evans, P. E. Mahaney, L. Borges-Marcucci, K. Lai, S. Wang, J. A. Krueger, S. J. Gardell, C. Huard, R. Martinez, G. P. Vlasuk, D. C. Harnish, A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia [J]. Am. J. Physiol. Gastrointest. Liver Physiol. 2009,296, G543-G552.
    [151]Y. T. Ghebremariam, K. Yamada, J. C. Lee, C. L. C. Johnson, D. Atzler, M. Anderssohn, R. Agrawal, J. P. Higgins, A. J. Patterson, R. H. Boger, J. P. Cooke, FXR Agonist INT-747 Upregulates DDAH Expression and Enhances Insulin Sensitivity in High-Salt Fed Dahl Rats [J]. PLoS ONE 2013,8, e60653.
    [152]C. Stedman, C. Liddle, S. Coulter, J. Sonoda, J. G. Alvarez, R. M. Evans, M. Downes, Benefit of farnesoid X receptor inhibition in obstructive cholestasis [J]. Proc. Natl. Acad. Sci. U. S. A.2006,103,11323-11328.
    [153]C. J. Sinal, F. J. Gonzalez, Guggulsterone:an old approach to a new problem [J]. Trends Endocrinol. Metab.2002,13,275-276.
    [154]J. Cui, L. Huang, A. Zhao, J.-L. Lew, J. Yu, S. Sahoo, P. T. Meinke, I. Royo, F. Pelaez, S. D. Wright, Guggulsterone Is a Farnesoid X Receptor Antagonist in Coactivator Association Assays but Acts to Enhance Transcription of Bile Salt Export Pump [J]. J. Biol. Chem.2003, 278,10214-10220.
    [155]C. Ulbricht, E. Basch, P. Szapary, P. Hammerness, S. Axentsev, H. Boon, D. Kroll, L. Garraway, M. Vora, J. Woods, Guggul for hyperlipidemia: A review by the Natural Standard Research Collaboration [J]. Complement. Ther. Med.2005,13,279-290.
    [156]C. A. Lipinski, Lombardo, F., Dominy, B.W., and Feeney, P. J., Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. [J]. Adv. Drug Delivery Rev. 1997,23,3-25.
    [157]T. G. David K. Herron, Nancy G. Bollinger, Dorothy Swanson-Bean, Ian G. Wright,, A. R. T. Gilbert S. Staten, Larry L. Froelich, and William T. Jackson, Leukotriene B4 Receptor Antagonists:The LY255283 Series of Hydroxyacetophenones [J]. J. Med. Chem. 1992,35,1818-1828.
    [158]D. Amantini, R. Beleggia, F. Fringuelli, F. Pizzo, L. Vaccaro, TBAF-Catalyzed Synthesis of 5-Substituted 1H-Tetrazoles under Solventless Conditions [J]. J. Org. Chem. 2004,69,2896-2898.
    [159]C. D. W. Brooks, J. B. Summers, Modulators of Leukotriene Biosynthesis and Receptor Activation [J].J. Med. Chem.1996,39,2629-2654.
    [160]W. L. F. Armarego., C. L. L. Chai., Purification of laboratory chemicals, the fifth edition ed., Elsevier Science, Cornwall, Great Britain,2003.
    [161]汤璇,博士,靶向糖脂代谢通路活性分子发现及其作用机制探索,中国科学院(上海),2012.
    [162]J. D. Roberts, H. E. Simmons, L. A. Carlsmith, C. W. Vaughan, Rearrangement in the reaction of chlorobenzene-l-c14 with potassium amide [J]. J. Am. Chem. Soc. 1953,75, 3290-3291.
    [163]P. M. Tadross, B. M. Stoltz, A Comprehensive History of Arynes in Natural Product Total Synthesis [J]. Chem. Rev. 2012,112,3550-3577.
    [164]M. Stiles, R. G. Miller, U. Burckhardt, Reactions of Benzyne Intermediates in Non-basic Media [J]. J. Am. Chem. Soc. 1963,85,1792-1797.
    [165]C. D. Campbell, C. W. Rees, Reactive intermediates. Part I. Synthesis and oxidation of 1-and 2-aminobenzotriazole [J]. J. Chem. Soc. C: Organic 1969,742-141.
    [166]T. Matsumoto, T. Hosoya, M. Katsuki, K. Suzuki, New efficient protocol for aryne generation. Selective synthesis of differentially protected 1,4,5-naphthalenetriols [J]. Tetrahedron Lett. 1991,32,6735-6736.
    [167]T. Kitamura, M. Yamane, (Phenyl)[o-(trimethylsilyl)phenyl]iodonium triflate. A new and efficient precursor of benzyne [J]. J. Chem. Soc, Chem. Commun.1995,983-984.
    [168]Y. Himeshima, T. Sonoda, H. Kobayashi, Fluoride-induced 1,2-elimination of o-trimethylsilylphenyl triflate to benzyne under mild conditions [J]. Chem. Lett. 1983.12, 1211-1214.
    [169]A. V. Dubrovskiy, N. A. Markina, R. C. Larock, Use of benzynes for the synthesis of heterocycles [J]. Org. Biomol. Chem.2013,11,191-218.
    [170]D. Perez, D. Pena, E. Guitian, Aryne Cycloaddition Reactions in the Synthesis of Large Polycyclic Aromatic Compounds [J]. Eur. J. Org. Chem.2013,2013,5981-6013.
    [171]A. E. Goetz, N. K. Garg, Enabling the Use of Heterocyclic Arynes in Chemical Synthesis [J]. J. Org. Chem. 2014,79,846-851.
    [172]Z. Liu, R. C. Larock, Facile N-Arylation of Amines and Sulfonamides [J]. Org. Lett. 2003,5,4673-4675.
    [173]Z. Liu, R. C. Larock, Facile O-Arylation of Phenols and Carboxylic Acids [J]. Org. Lett.2003,6,99-102.
    [174]Z. Liu, R. C. Larock, Facile N-Arylation of Amines and Sulfonamides and O-Arylation of Phenols and Arenecarboxylic Acids [J]. J. Org. Chem.2006,71,3198-3209.
    [175]A. V. Dubrovskiy, R. C. Larock, Intermolecular C-O Addition of Carboxylic Acids to Arynes [J]. Org. Lett.2010,12,3117-3119.
    [176]J. Zhao, R. C. Larock, Synthesis of Xanthones, Thioxanthones, and Acridones by the Coupling of Arynes and Substituted Benzoates [J]. J. Org. Chem.2007,72,583-588.
    [177]D. C. Rogness, R. C. Larock, Synthesis of Acridines by the [4+2] Annulation of Arynes and 2-Aminoaryl Ketones [J]. J. Org. Chem.2010,75,2289-2295.
    [178]S.-S. Lu, C.-D. Lu, Efficient synthesis of N-(9-xanthyl)-4-toluenesulfonamides enabled by an addition-cyclization cascade of arynes [J]. Synlett 2013,24,640-644.
    [179]C. D. Gilmore, K. M. Allan, B. M. Stoltz, Orthogonal Synthesis of Indolines and Isoquinolines via Aryne Annulation [J]. J. Am. Chem. Soc.2008,130,1558-1559.
    [180]R. D. Giacometti, Y. K. Ramtohul, Synthesis of polycyclic indolone and pyrroloindolone heterocycles via the annulation of indole-and pyrrole-2-carboxylate esters with arynes [J]. Synlett 2009,2010-2016.
    [181]D. C. Rogness, R. C. Larock, Rapid synthesis of the indole-indolone scaffold via [3+2] annulation of arynes by methyl indole-2-carboxylates [J]. Tetrahedron Lett.2009,50, 4003-4008.
    [182]D. Hong, Z. Chen, X. Lin, Y. Wang, Synthesis of Substituted Indoles from 2-Azidoacrylates and ortho-Silyl Aryltriflates [J]. Org. Lett.2010,12,4608-4611.
    [183]X. Huang, T. Zhang, Cascade Nucleophilic Addition-Cyclic Michael Addition of Arynes and Phenols/Anilines Bearing Ortho a,p-Unsaturated Groups:Facile Synthesis of 9-Functionalized Xanthenes/Acridines [J]. J. Org. Chem.2010,75,506-509.
    [184]K. Okuma, N. Matsunaga, N. Nagahora, K. Shioji, Y. Yokomori, Reaction of arynes with amino acid esters [J]. Chem. Commun.2011,47,5822-5824.
    [185]X. Huang, J. Xue, A Novel Multicomponent Reaction of Arynes,β-Keto Sulfones, and Michael-Type Acceptors:A Direct Synthesis of Poly substituted Naphthols and Naphthalenes [J]. J. Org. Chem.2007,72,3965-3968.
    [186]H. Yoshida, H. Fukushima, T. Morishita, J. Ohshita, A. Kunai, Three-component coupling using arynes and isocyanides:straightforward access to benzo-annulated nitrogen or oxygen heterocycles [J]. Tetrahedron 2007,63,4793-4805.
    [187]K. M. Allan, C. D. Gilmore, B. M. Stoltz, Benzannulated Bicycles by Three-Component Aryne Reactions [J]. Angew. Chem., Int. Ed.2011,50,4488-4491.
    [188]H. Yoshida, Y. Asatsu, Y. Mimura, Y. Ito, J. Ohshita, K. Takaki, Three-Component Coupling of Arynes and Organic Bromides [J]. Angew. Chem., Int. Ed.2011,50,9676-9679.
    [189]H. Yoshida, T. Morishita, H. Fukushima, J. Ohshita, A. Kunai, Three-Component Coupling of Arynes, Aminosilanes, and Aldehydes [J]. Org. Lett.2007,9,3367-3370.
    [190]X. Huang, T. Zhang, Multicomponent reactions of pyridines, α-bromo carbonyl compounds and silylaryl triflates as aryne precursors:a facile one-pot synthesis of pyrido[2,l-a]isoindoles [J]. Tetrahedron Lett.2009,50,208-211.
    [191]F. Sha, X. Huang, A Multicomponent Reaction of Arynes, Isocyanides, and Terminal Alkynes:Highly Chemo-and Regioselective Synthesis of Polysubstituted Pyridines and Isoquinolines [J]. Angew. Chem., Int. Ed.2009,48,3458-3461.
    [192]F. Sha, L. Wu, X. Huang, Chemo-and Regioselective Assembly of Polysubstituted Pyridines and Isoquinolines from Isocyanides, Arynes, and Terminal Alkynes [J]. J. Org. Chem.2012,77,3754-3765.
    [193]M. Jeganmohan, S. Bhuvaneswari, C.-H. Cheng, Synthesis of N-Arylated 1,2-Dihydroheteroaromatics Through the Three-Component Reaction of Arynes with N-Heteroaromatics and Terminal Alkynes or Ketones [J]. Chem.-Asian J.2010,5,153-159.
    [194]E. Yoshioka, S. Kohtani, H. Miyabe, Sequential Reaction of Arynes via Insertion into the π-Bond of Amides and Trapping Reaction with Dialkylzincs [J]. Org. Lett.2010,12, 1956-1959.
    [195]H. Yoshida, Y. Ito, J. Ohshita, Three-component coupling using arynes and DMF: straightforward access to coumarins via ortho-quinone methides [J]. Chem. Commun.2011, 47,8512-8514.
    [196]E. Yoshioka, S. Kohtani, H. Miyabe, A Multicomponent Coupling Reaction Induced by Insertion of Arynes into the C-O Bond of Formamide [J]. Angew. Chem., Int. Ed.2011,50, 6638-6642.
    [197]J. Barluenga, L. Llavona, M. Yus, J. M. Concellon, Reactivity of in situ generated dihalomethyllithium towards dicarboxylic acid diesters and lactones:synthetic applications [J]. Tetrahedron 1991,47,7875-7886.
    [198]M. C. Pirrung, J. Zhang, K. Lackey, D. D. Sternbach, F. Brown, Reactions of a Cyclic Rhodium Carbenoid with Aromatic Compounds and Vinyl Ethers [J]. J. Org. Chem. 1995,60,2112-2124.
    [199]G. W. Kabalka, N.-S. Li, S. Yu, Synthesis of a.a-dichloroalcohols, a-hydroxyketones and 1-chloro-1-arylalkylene oxides via protonation of acyllithium reagents [J]. J. Organomet. Chem.1999,572,31-36.
    [200]M. Vialemaringe, M.-J. Bourgeois, M. Campagnole, E. Montaudon, A general and easy synthesis of pinene oxides functionalized at C(10) [J]. Synthesis 1999,1607-1612.
    [201]Z. Wang, J. Yin, S. Campagna, J. A. Pesti, J. M. Fortunak, An Alternative Approach for the Conversion of Aldehydes to Terminal Alkynes [J]. J. Org. Chem.1999,64,6918-6920.
    [202]T. Onishi, Y. Otake, N. Hirose, T. Nakano, T. Torii, M. Nakazawa, K. Izawa, Dihalomethylation of N-protected phenylalanine esters [J]. Tetrahedron Lett.2001,42, 6337-6340.
    [203]B. Batanero, F. Barba, F. Ranz, I. Barba, M. N. Elinson, Synthesis of new derivatives of a representative o-quinone scaffold by reduction at the electrode [J]. Tetrahedron 2012,68, 5979-5983.
    [204]V. Singh, S. Batra, Advances in the Baylis-Hillman reaction-assisted synthesis of cyclic frameworks [J]. Tetrahedron 2008,64,4511-4574.
    [205]V. r. Declerck, J. Martinez, F. d. r. Lamaty, aza-Baylis-Hillman Reaction [J]. Chem. Rev. (Washington, DC, U. S.) 2009,109,1-48.
    [206]G.-N. Ma, J.-J. Jiang, M. Shi, Y. Wei, Recent extensions of the Morita-Baylis-Hillman reaction [J]. Chem. Commun. (Cambridge, U. K.) 2009,5496-5514.
    [207]D. Basavaiah, B. S. Reddy, S. S. Badsara, Recent Contributions from the Baylis-Hillman Reaction to Organic Chemistry [J]. Chem. Rev. (Washington, DC, U. S.) 2010, 110,5447-5674.
    [208]D. Basavaiah, G. Veeraraghavaiah, The Baylis-Hillman reaction:a novel concept for creativity in chemistry [J]. Chem. Soc. Rev.2012,41,68-78.
    [209]K. Okuma, Y. Fukuzaki, A. Nojima, A. Sou, H. Hino, N. Matsunaga, N. Nagahora, K. Shioji, Y. Yokomori, Three Component Reaction of Arynes with Cyclic Ethers and Active Methines:Synthesis of ω-Trichloroalkyl Phenyl Ethers [J]. Bull. Chem. Soc. Jpn.2010, 83,1238-1247.
    [210]A. J. Arduengo, R. L. Harlow, M. Kline, A stable crystalline carbene [J]. J. Am. Chem. Soc.1991,113,361-363.
    [211]D. Enders, O. Niemeier, A. Henseler, Organocatalysis by N-heterocyclic carbenes [J]. Chem. Rev.2007,107,5606-5655.
    [212]F. Wohler, J. Liebig, Untersuchungen iiber das Radikal der Benzoesaure [J]. Ann. Pharm.1832,3,249-282.
    [213]T. Ugai, S. Tanaka, S. Dokawa, Thiamin catalysis of the benzoin condensation [J]. J. Pharm. Soc. Jpn.1943,80,296-300.
    [214]R. Breslow, On the Mechanism of Thiamine Action. IV. Evidence from Studies on Model Systems [J]. J. Am. Chem. Soc.1958,80,3719-3726.
    [215]H. Stetter, Catalyzed Addition of Aldehydes to Activated Double Bond—A New Synthetic Approach [J].Angew. Chem., Int. Ed.1976,15,639-647.
    [216]M. S. Kerr, J. Read de Alaniz, T. Rovis, A Highly Enantioselective Catalytic Intramolecular Stetter Reaction [J]. J. Am. Chem. Soc.2002,124,10298-10299.
    [217]E. Sanchez-Larios, M. Gravel, Diastereoselective Synthesis of Indanes via a Domino Stetter-Michael Reaction [J]. J. Org. Chem.2009,74,7536-7539.
    [218]E. Sanchez-Larios, J. M. Holmes, C. L. Daschner, M. Gravel, NHC-Catalyzed Spiro Bis-Indane Formation via Domino Stetter-Aldol-Michael and Stetter-Aldol-Aldol Reactions [J]. Org. Lett.2010,12,5772-5775.
    [219]C. M. Filloux, S. R. Lathrop, T. Rovis, Multicatalytic, asymmetric Michael/Stetter reaction of salicylaldehydes and activated alkynes [J]. Proc. Natl. Acad. Sci. U. S. A.2010, 107,20666-20671.
    [220]K. Higashiyama, H. Nagase, R. Yamaguchi, K. Kawai, H. Otomasu, Michael Reactions of 3-Acylmethyleneoxindoles with Active Methylene Compounds [J]. Chem. Pharm. Bull.1985,33,544-550.
    [221]M. H. Bhuiyan, K. M. M. Rahman, I. Islam, Synthesis, characterization and antimicrobial evaluation of some arylidenehydrazonofuropyrimidines and thienopyrimidines [J]. Pak. J. Sci. Ind. Res.2009,52,180-185.
    [222]U. Caruso, B. Panunzi, G. N. Roviello, G. Roviello, M. Tingoli, A. Tuzi, Synthesis, structure and reactivity of amino-benzodifuran derivatives [J]. C. R. Chim.2009,12,622-634.
    [223]M. S. Coumar, M.-T. Tsai, C.-Y. Chu, B.-J. Uang, W.-H. Lin, C.-Y. Chang, T.-Y. Chang, J.-S. Leou, C.-H. Teng, J.-S. Wu, M.-Y. Fang, C.-H. Chen, J. T. A. Hsu, S.-Y. Wu, Y.-S. Chao, H.-R Hsieh, Identification, SAR Studies, and X-ray Co-crystallographic Analysis of a Novel Furanopyrimidine Aurora Kinase A Inhibitor [J]. Chemmedchem 2010,5,255-267.
    [224]C. Martins, M. C. Carreiras, R. Leon, C. de los Rios, M. Bartolini, V. Andrisano, I. Iriepa, I. Moraleda, E. Galvez, M. Garcia, J. Egea, A. Samadi, M. Chioua, J. Marco-Contelles, Synthesis and biological assessment of diversely substituted furo[2,3-b]quinolin-4-amine and pyrrolo[2,3-b]quinolin-4-amine derivatives, as novel tacrine analogues [J]. Eur. J. Med. Chem. 2011.46,6119-6130.
    [225]X. Jiao, D. J. Kopecky, J. Liu, J. Liu, J. C. Jaen, M. G. Cardozo, R. Sharma, N. Walker, H. Wesche, S. Li, E. Farrelly, S.-H. Xiao, Z. Wang, F. Kayser, Synthesis and optimization of substituted furo[2,3-d]-pyrimidin-4-amines and 7H-pyrrolo[2,3-d]pyrimidin-4-amines as ACK1 inhibitors [J]. Bioorg. Med. Chem. Lett.2012. 22,6212-6217.
    [226]S. Rubio, F. Leon, J. Quintana, S. Cutler, F. Estevez, Cell death triggered by synthetic flavonoids in human leukemia cells is amplified by the inhibition of extracellular signal-regulated kinase signaling [J]. Eur. J. Med. Chem.2012,55,284-296.
    [227]C. Cazares-Korner, I. M. Pires. I. D. Swallow, S. C. Grayer, L. J. O'Connor, M. M. Olcina, M. Christlieb, S. J. Conway, E. M. Hammond, CH-01 is a Hypoxia-Activated Prodrug That Sensitizes Cells to Hypoxia/Reoxygenation Through Inhibition of Chkl and Aurora A [J]. ACS Chem. Biol. 2013,8,1451-1459.
    [228]K. Gewald, Heterocycles from CH-acidic nitriles. IX. Reaction of a-hydroxy ketones with malononitrile [J]. Chem. Ber.1966,99,1002-1007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700