几种氧化物球形核壳结构的制备及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,核壳纳米结构受到了科学界的广泛关注是因为相对于单一的组分材料,核壳纳米结构材料的物理与化学性质得到了大大的改善。本文主要通过利用碳球和硅球作为模板,使用水热、回流、溶胶—凝胶等简单的化学方法合成出几种氧化物的空心球型结构。探讨了在空心球的制备过程中模板、水热时间和温度、煅烧温度和速度等一系列条件参数对最终产物的形貌及性质的影响作用,取得的研究结果如下:
     1、通过两步包覆的方法合成了壳层厚度在30—60nm范围可调,金核尺寸在10—40nm可调的含可移动纳米金核的Y_2O_3:Eu~(3+)空心球核壳结构,核壳球体的直径可以根据硅球模板的大小在100—1000nm之间调节。此外核壳结构的发射峰的位置在613nm,与传统的Y_2O_3:Eu~(3+)块体的吸收峰位置相类似,紫外吸收峰位置蓝移到526nm。这种新颖的核壳结构复合了Y_2O_3:Eu~(3+)和Au颗粒的光学性质,再加上其独特的空心球结构,将在生物载体、生物探针等领域有潜在的应用前景。
     2、通过牺牲碳球模板合成了内含金核的二氧化钛空心球。此空心球的壳层厚度在30—80nm范围可调,纳米金核颗粒在10-40nm范围内可调,核壳球体的直径可以根据碳球模板的大小在100-800nm之间调节。这种新颖的核壳结构相对于单纯的二氧化钛空心球结构和纯P-25商业二氧化钛粉体材料显示出更加良好的光催化效果,能够在3分钟内对亚甲基蓝催化降解率达到40%左右,另外两个对比样品的降解率都在20%以下。另外,空心球结构及内部的金核为分子反应器的构成提供了良好的环境,在生物探测、药物释放等领域具有良好的前景。
     3、通过牺牲碳球模板法合成了一种结构新颖的含有金、铂纳米颗粒的二氧化硅空心球。此空心球的壳层厚度在30-120nm范围可调,纳米金核颗粒在10-40nm范围内可调,纳米铂颗粒可以在5-60纳米范围内调控,核壳球体的直径可以根据碳球模板的大小在100-800nm之间调节。合成过程利用稍加修改的St(?)ber方法在碳球外壁包覆上二氧化硅层,并利用碳球表面的功能团还原金属盐来控制沉积的金属颗粒的尺寸。这种结构呈现出良好的电催化性质。另外由于其新颖的空心球结构,可能应用于定向药物释放、生物探针、电池材料等领域。
Recently, core-shell structures were considered to the hot issue compared to single composite materials because of their great improvement on chemical and physical propriety. In this dissertation, using carbon and silica spheres as sacrificial template, hydrothermal, reflux and sol-gel etc methods were used to synthesize several metal oxide core-shell spheres. A series of parameters such as template, the reaction time and temperature of hydrothermal process and the temperature and velocity of calcinations have been investigated on how they affect the morphology and propriety of ultimate products. The main results can be summarized as follows:
     1. Anew kind of Au@Y_2O_3:Eu~(3+) hollow spheres with moveable gold nanoparticle core and Y_2O_3:Eu~(3+) as shell have been successfully fabricated via a two-step coating process. The thickness of shell was controlled from 30 to 60nm. The size of Au core was about 10-40nm. The diameter of hollow spheres was controlled from 100-1000nm according to the size of silica template. The Au@Y_2O_3:Eu~(3+) hollow spheres with moveable Au nanoparticle core showed red light emission intensity at 613 nm as that for the Y_2O_3:Eu~(3+) hollow spheres, but are of blue-shifted absorption peak at 526 nm compared with pure Au nanoparticles and Au@SiO_2 core-shell spheres. These new core-shell structures with moveable gold particles have the optical properties of both Au nanoparticles and Y_2O_3:Eu~(3+) phosphor materials, which might have potential applications such as biologic detectors.
     2. Novel hollow nanospheres of moveable Au particle core/nanoporous titanium oxide particles shell structure have been successfully fabricated via two-step coating processes. The thickness of shell can be controlled in the range of 30 to 80nm. The size of Au core was about 10-40nm. The diameter of hollow spheres can be controlled in the range of 100-800nm according to the size of carbon spheres. This new structure shows excellent photocatalytic properties compared with that of pure TiO_2 hollow spheres and P-25 titanium powders. During three minutes, the degradation rate of methylene blue solution loaded with Au particle core/nanoporous titanium oxide shell structure was about 40%, whereas the other contrasted samples were lower than 20%. Therefore it might provide an efficient way to improve the photocatalytic property of TiO_2.
     3. Pt nanoparticles embedded silica hollow spheres with moveable Au core have been successfully fabricated via simply templating against Au@carbon spheres. The shell thickness can be controlled from 30 to 120nm. The size of Au core was about 10-40nm. The size of Pt core was about 5-60nm. The diameter of hollow spheres was controlled from 100-800nm according to the size of carbon spheres. Such novel materials shows excellent electrocatalytic properties compared with both typical hollow spheres and pure Pt nanoparticles. This might provide an efficient way to improve the electrocatalytic property of a bulk Pt/GC electrode. In addition, these hollow spheres loaded with noble metal nanoparticels will also find application in the molecule level nanoreactors by taking advantage of their unique hollow structures.
引文
1 张立德,牟季美,纳米材料和纳米结构,科学出版社,2002
    2 张立德,科学,1993,45,13
    3 张立德编著,严东生,冯端主编,材料新星-纳米材料科学。长沙湖南科学技术出版社 1997
    4 Peng,X.G.,Manna,L.,Yang,W.D.,Wickham,J.,Scher,E.,Kadavanich,A.and Alivisatos,A.P.Nature,2000 404 59
    5 Ahmadi TS,Wang ZL,Green TC,Henglein A,EL-Sayed MA,Science,1996 272,1924.
    6 Li M,Schnablegger,H.and Mann,S.Nature,1999 402 393
    7 Yang,P.D.,Wu,Y.Y.and Fan,R.Inter.J.Nanosci.,2002 1 1
    8 Xia,Y.N.,Yang,P.D.,Sun,Y.G.,Wu,Y.Y.,Mayers,B.,Gates,B.,Yin,Y.D.,Kim,F.and Yan,Y.Q.Adv.Mater.,2003 15 353
    9 Rao,C.N.R.,Deepak,F.L.,Gundiah,G.and Govindaraj,A Prog.Solid State Chem.,2003 31,5.
    10 Dai,Z.R.,Pan,Z.W.,Wang,Z.L.Adv.Funct.Mater.,2003 13 9
    11 Steinhart,M.,Wehrspohn,R.B.,Gosele,U.and Wendorff,J.H.Angew.Chem.Int.Ed.,2004 43 1334.
    12 A special issue in MRS Bull.1999,24,20.
    13 F.Cerrina,C.Marrian,MRS Bull.1996,December,56.
    14 S.H.Hong,J.Zhu,C.A.Mirkin,Science 1999,286,523.
    15 Ball,P.;Garwin,L Nature,1992,355,761
    16 Service,R.F.Science 1996,271,920
    17 Bruchez,M.Y;Maronne,M.;Gin,P.;Weiss,S.;Alivisator,A.P.Science 1998,281,2016
    18 Han,M.Y.;Gao,X.H.;Su,J.Z.;Nie,S.M.Nature Bio.2001,19,631
    19 Kato,S.;Hirano,Y.;Iwata,M.;Sano,T.;Takeuchi,K.;Matsuzawa,S.Appl.catal.B.Enc.,2005,57,109
    20 Hahn,H.Nanostruct Mater,1993,251
    21 Choudhary,T.V.; Sicadinarayana,C.; Chusuei,C.C.; Datye,A.K.; Goodman , D.W. Journal of Catalysis, 2002,207,247
    22 Li,P.; Miser,D.E.;Rabiei,S.; Yadav.R.T.; Hajaligol,M.R. Appl.Catal.A.Gen. 2005,61,83
    23 Strauss, E.; Golodnitsky,D.; Peled,E. Electrochemical and Solid-state Lett. 1999,2,115
    24 Yamaki,J.; Makidera,M.; Kawamura,T.;Egashira,M.; Okada,S. J.Power Source 2005,81,231
    25 Caruso, F.; Chem. Eur. J. 2000, 6,413.
    26 Zhou, Y.; Antonietti, M. J. Am. Chem. Soc. 2003,125,14960
    27 Caruso, R. A.; Antonietti, M. Chem. Mater. 2001,13, 3272
    28 Jeong, U.; Wang, Y. L; Ibisate, M.; Xia, Y. N. Adv. Funct. Mater. 2005,15, 1907
    29 Kamata,K.; Lu,Y.; Xia,Y.N. J. Am. Chem. Soc. 2003,125, 2384
    30 Sun,Y.G.; Mayers,B.T.; Xia Y N. Nano Lett, 2002 ,2 ,481.
    31 Kim,S W.; Kim M.; Lee,W Y. J Am Chem Soc , 2002 ,124,7642
    32 Liang,Z.J.; Susha,A.S.; Caruso,F. Adv Mater ,2002 ,14:1160.
    33 Sun,Y. G.; Mayers ,B. T.; Xia,Y.N. Nano Lett, 2002 ,2,481
    34 Zhu,G.S.; Qiu,S.L; Terasaki,O. J Am Chem Soc, 2001 ,123 :7723
    35 a) Chan, W. C. W.; Nie, S. Science 1998, 281, 2016. b) Jin, R. C.; Cao, Y. C.; Hao, E. C.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003,425, 487.
    36 Henglein, A.. J Phys Chem B , 2000 ,104 ,2201
    37 Homola A M , Rice S L . US Patent: 4280918 ,1981
    38 Prakash,A.; McCormick, A V.; Zachariah, M.R. Nano Letters ,2005, 5, 7, 1357
    39 Kamata, K.; Lu, Y.; Xia, Y. N. J. Am. Chem. Soc. 2003,125, 2384.
    40 Chah, S.; Fendler, J. H.; Yi, J. Journal of Colloid and Interface Science .2002, 250, 142.
    41 Liang, H.P.; Wan, L.J.; Bai, C. L.; Jiang, L J. Phys. Chem. B 2005,109, 7795
    42 (a)K. Kamata, Y. Lu, Y. N. Xia, J. Am. Chem. Soc, 2003,125 2384. (b) Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science, 2004 304 ,711
    43 (a) F. Caruso, Adv. Mater, 2001, 13 11, b) K J. C. Van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed, 2003, 42, 3027.
    44 Albert P. Philipse., Michel P. B. Van Bruggen., Cgekkaoag Pathmamanoharan. Langumuir 1994,10, 92.
    45 Liz-Marzan, L. M.; Mulvaney, P. J. Phys. Chem. B 2003,107, 7312.
    46 Arnal, P. M.; Comotti, M.; Schuth, F. Angew. Chem. Int. Ed. 2006, 45, 8224.
    47 (a) Luo, L. B.; Yu, S. H.; Qian, H. S.; Zhou, T. J. Am. Chem. Soc. 2005, 127,2822. (b) Gong, J. Y.; Luo, L. B.; Yu, S. H.; Qian, H. S.; Fei, L. F. J. Mater.Chem. 2006.16,101
    48 Qian, H. S.; Luo, L. B.; Gong, J. Y.; Yu, S. H.; Fei, L. F. Cryst.Growth Des. 2006, 6, 607.
    49 Chau Chung Nin, Salvipaul W, Silloway Tracy V, EP Patent, No 0852255.
    50 Czarnojan wolfram, Mayr Walter, Bechtel Helmut. US Patent, No 5998047
    51 Van Mommel, K. C.; Friggeri, A.; Shinkai, S. Angew. Chem., Int. Ed. 2003, 42,980.
    52 Xia, Y. N.; Jeong, U.; Wang, Y. L.; Ibisate, M. Adv. Func. Mater 2005,15, 1907.
    53 Liz-Marzan, L. M.; Mulvaney, P . J. Phys. Chem. B 2003,107, 7312.
    54 Margaret, A.; Hines, B. F. J. Phys. Chem. 1996,100, 468.
    55 Chan, W. C. W.; Maxwell, D. J.; Han, M. Y. Current. Opinion in Biotechnoligy. 2002,13, 40.
    56 INOE KIYOSHI, WATANABE MINORU, Filter-coated phosphor US Patent, No 4339501.
    57 Y. Wang.; Y. Xia, J. Am. Chem. Soc. 2003, 125,16176
    58 Cao, Y.; Jin, R.; Mirkin,C. A. J. Am. Chem. Soc. 2001,123, 7961.
    59 Yang, Yan.; Hangquan, Li.; Ruckenstein, E. J. Colloid. Interface. Sci. 2001, 238,414
    60 Caruso, F. Adv. Mater. 2001,13,11. Caruso, F. Top. Curr. Chem. 2003, 227,145.
    61 Li, H. Q.; Ruckenstein, E.; J. Appl. Polym. Sci. 1996. 61. 2129.
    62 Yun, Y.; Li, H. Q.; Ruckenstein, E. J. Colloid. Interface. Sci. 2001.238.414.
    63 Chen, M.; Wu, L. M.; Zhou, S. X.; You, B. Adv. Mater. 2006,18, 801.
    64 Wan, P. H.; Yu, R. J. Colloid. Interface. Sci. 1993,156, 56.
    65 Hanprasopwattana, A.; Srinivasan, S.; Langmuir, 1996,12 , 3173.
    66 Srinivasan, S.; Datye, A. K. J. Catal. 1991,131, 260.
    67 Subramanian, V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004,126, 4943.
    68 Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282,1111.
    69 Angel,P.D.; Dominguez, J.M.; Angel, G. D. Langmuir, 2000 ,16 ;8,7210.
    70 Zhang,J.; Lima,F.H.; Shao.M.H. J Phys Chem B ,2005 ,109, 48,22701.
    71 Liu, C.; Wu, X. W.; Klemmer, T. J Phys Chem B ,2004,108, 20, 6121.
    72 Cho, S.J.; Shahin, A.M.; Longy, G. J. Chem Mater, 2006,18, 4, 960.
    73 Foley,T.J.; Johnson,C.E.; Higa,K.T. Chem Mater ,2005 ,17,16,4086.
    74 Hofman, C. H. M. New J. Chem. 1994,18,1087.
    75 St(o|¨)ber, W.; Fink, A.; Bohn, E. J.Colloid Interface Sci. 1968, 26, 62.
    76 Dutta Arunava.; Dullea Leonard v.; US Patent, No 5441774.
    77 Nin, chun. Chung.; Salvipaul, W. EP Patent, No 0852255.
    78 Sun, X. M.; Liu, J. F.; Li, Y. D. Chem. Eur. J. 2006, 12, 2039.
    79 Sun, X. M.; Li, Y. D. Angew. Chem. Int. Ed. 2004, 43, 3827.
    80 Chamber, R. D.; Chvatal, Z.; J. Mater. Chem, 1991,1, 59.
    81 Michael. S. F.; Tarun. K. M.; David. R. W. Chem. Mater. 2001,13, 2210.
    82 CohenB.I, Piotr K, Patrizia L, D, C, Roger, G, Jens ,W, Claudia ,W, Stefan K. J. Am. Chem. Soc. 2001,122, 303.
    83 Feldheim.I Srinivasan, S.; Langmuir, 1994,10 , 331.
    84 Qian, H. S.; Yu, S. H.; Luo, L. B.; Gong, J. Y.; Fei, L. F.; Liu, X. M. Chem.Mater. 2006,18, 2102-2108.
    85 Jimin Du, Jianling Zhang, Zhimin Liu, Buxing Han, Tao Jiang, Ying Huang, Langmuir, 2006, 22,1307.
    86 Daming Cheng, Xuedong Zhou, Haibing Xia, Hardy Sze On Chan, Chem. Mater. 2005,17,3578.
    87 Lei Fu, Yunqi Liu, Zhimin Liu, Buxing Han, Lingchao Cao, Dacheng Wei, Gui Yu, Daoben Zhu, Adv. Mater. 2006,18,181
    88 M. LBreen, A. D. Dinsmore, R. H. Pink, S. B. Qadri, B. R. Ratna,Langmuir 2001,17,903
    89 Jong-Sung Yu, Suk Bon Yoon, Yun Jo Lee, Kyung Byung Yoon. J. Phys. Chem. B 2005,109, 7040
    90 Takafumi Seto, Hiroyuki Akinaga, Fumiyoshi Takano, Kenji Koga, Takaaki Orii, Makoto Hirasawa. J. Phys. Chem. B .2005,109,13403
    91 Yu, J. M.; Hu, X. L. Li, Q.; Zhang, L. Z. Chem. Comm. 2005. 2704
    92 (a) R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, Science, 1993, 259, 346. (b)S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty, Nature, 1993, 362, 503. (c) S. C. Tsang, Y. K. Chen, P. J. F. Harris, M LH. Green, Nature, 1994, 372,159.
    1 Cao, Y.; Jin, R.; Mirkin,C. A. J. Am. Chem. Soc. 2001,123, 7961.
    2 Caruso, F. Adv. Mater. 2001,13,11. Caruso, F. Top. Curr. Chem. 2003, 227, 145.
    3 Van Mommel, K. C.; Friggeri, A.; Shinkai, S. Angew. Chem., Int. Ed. 2003, 42, 980.
    4 Xia, Y. N.; Jeong, U.; Wang, Y. L; Ibisate, M. Adv. Func. Mater 2005,15, 1907.
    5 Liz-Marzan, L. M.; Mulvaney, P . J. Phys. Chem. B 2003,107, 7312.
    6 a) Chan, W. C. W.; Nie, S. Science 1998, 281, 2016. b) Jin, R. C.; Cao, Y. C.; Hao, E. C; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Nature 2003, 425, 487.
    7 a) Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111. b) Caruso, F.; Lichtenfeld, H.; Giersig, M.; Mohwald, H. J. Am.Chem. Soc. 1998, 120, 8523. c) Caruso, F.; Caruso, R. A.; M(o|¨)hwald,H. Chem. Mater. 1999,11,3309.
    8 a) Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Langmuir 1996,12,4329. b) Ung, T.; Liz-Marzan, L. M.; Mulvaney, P. J. Phys. Chem. B 2001, 105, 3441.
    9 a) Lu, Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. Nano Letter 2002, 2, 785. b) Lu, Y.; Yin, Y. D.; Mayers, B.T.; Xia, Y. N. Nano Letter 2002, 2,183.
    10 a) Liu, S. H.; Han, M. Y. Adv. Func. Mater 2005, 15, 961. b) Liu, S. H.; Zhang, Z. H.; Han, M. Y. Adv. Mater 2005,17,1862.
    11 Rodriguez-Gonzalez, B.; Salgueirino-Maceira, V.; Garca-Santamaria, F.; Liz-Marzan, L. M. Nano. Letter. 2002, 2, 5, 471
    12 Kamata, K.; Lu, Y.; Xia, Y. N. J. Am. Chem. Soc. 2003,125, 2384.
    13 Chah, S.; Fendler, J. H.; Yi, J. Journal of Colloid and Interface Science .2002, 250,142.
    14 Liang, H.P.; Wan, L.J.; Bai, C. L.; Jiang, L J. Phys. Chem. B 2005, 109, 7795
    15 Arnal, P. M.; Comotti, M.; Sch(u|¨)th, F. Angew. Chem. Int. Ed. 2006,45, 8224
    16 Liu, G. X.; Hong, G. Y. Journal. Solid. State .Chemistry 2005,178,1647
    17 Bhargava, R. N. J. Lumin. 1996, 70, 85。
    18 Enustun, B. V.; Turkevich, J. J. Am. Chem. Soc. 1963, 85, 3317.
    19 St(o|¨)ber, W.; Fink, A.; Bonn, E. J.Colloid Interface Sci. 1968, 26, 62.
    20 Graf, C; Vossen, D. L. J.; Imhof, A.; Blaaderen, A. V. Langmuir 2003,19, 6693.
    21 Wang, D.; Liz-Marzan, L. M.; Caruso, F. Adv. Mater. 2002,14,12, 908.
    22 Wang, D.; Li, J.; Liz-Marzan, L. M.; Caruso, F. Small, 2005,1,122.
    23 Taton, T. A.; Kang, Y. J. Angew. Chem. Int. Ed. 2005, 44, 409.
    1 (a) Caruso, F.; Chem. Eur. J. 2000, 6, 413-419. (b) Caruso, F. AdV. Mater. 2001,13,11.
    2 Liz-Marzan ,L. M.; Mulvaney, P. J. Phys. Chem. B 2003,107, 7312.
    3 Zhou, Y.; Antonietti, M. J. Am. Chem. Soc. 2003,125,14960.
    4 Caruso,R. A.; Antonietti, M.. Chem. Mater. 2001,13, 3272-3282.
    5 Dawson, A.; Kamat, P. V. J. Phys. Chem. B 2001,105, 960.
    6 Du ,J.; Zhang ,J.; Liu Z.; Han, B.; Jiang , T.; Huang, Y. Langmuir 2006, 22, 1307.
    7 Shanmugam, S.; Gabashvili ,A,; Jacob, D,; Yu, J,; Gedanken, Aharon. Chem. Mater. 2006,18, 2275.
    8 Bard, A. J.; Fox, M.A. Acc. Chem. Res. 1995, 28,141.
    9 Rodriguez, J. A.; Liu, G.; Jirsak, T.; Hrbek, J.; Chang, Z.; Dvorak,J.; Maiti, A. J. Am. Chem. Soc. 2002,124, 5242.
    10 Maciejewski, M.; Fabrizioli, P.; Grunwaldt, J. D.; Baiker, O. S. B. Phys. Chem. Chem. Phys., 2001, 3,3846
    11 X. M. Sun, Y. D. Li, Angew. Chem., Int. Ed. 2004, 43, 597
    12 Subramanian,V.; Wolf, E. E.; Kamat, P. V. J. Am. Chem. Soc. 2004,126, 4943
    13 Wang, J.; Yin, S.; Zhang, Q.; Saito, F.; Sato, T. J. Mater. Chem., 2003,13, 2348.
    14 Endo, I; Kobayashi, T.; Sato, T.; Shinada, M. J. Mater. Sci.,1990, 25(1B), 619.
    15 Djalali, R.; Chen,Y.; Matsui, H. J. Am. Chem. Soc. 2003,125, 5873
    1 (a) R. S. Ruoff, D. C. Lorents, B. Chan, R. Malhotra, S. Subramoney, Science, 1993, 255, 346. (b)S. Seraphin, D. Zhou, J. Jiao, J. C. Withers, R. Loufty, Nature, 1993, 362, 503. (c) S. C. Tsang, Y. K. Chen, P. J. F. Harris, M L H. Green, Nature, 1994, 372,159.
    2 (a)K. Kamata, Y. Lu, Y. N. Xia, J. Am. Chem. Soc, 2003, 125 2384. (b) Y. D. Yin, R. M. Rioux, C. K. Erdonmez, S. Hughes, G. A. Somorjai, A. P. Alivisatos, Science, 2004 304,711.
    3 (a) F. Caruso, Adv. Mater, 2001, 1311. b) K J. C. Van Bommel, A. Friggeri, S. Shinkai, Angew. Chem. Int. Ed, 2003, 42, 3027.
    4 Y. N. Xia, Adv. Funct. Mater, 2005, 15,1709.
    5 (a) H. R. Wang, Y. J. Song, C. J. Medforth, J. A. Shelnutt. J. Am. Chem. Soc, 2006, 128, 9284. (b) C. Graf, S. Dembski, A. Hofmann, E R(u|¨)hl, Langmuir, 2006,22, 5604.
    6 Y. Takasu, H. Itaya, T. Iwazaki, R. Miyoshi, T. Ohnuma, W. Sugimoto, Y. Murakami, Chem. Commun, 2001, 4, 341.
    7 (a) G. G. Wildgoose, C. E. Banks, R. G. Compton, Small, 2006, 2,182 (b) K. Balasubramanian, M. Burghard, Small, 2005, 7,180.
    8 B. T. Kennedy, A. Hamnett, J. Electroanal Chem, 1990, 283, 271
    9 X. M. Sun, Y. D. Li, Angew. Chem., Int. Ed. 2004, 43, 597
    10 (a) S. Z. Zou, M. J. Weaver, J. Anal. Chem, 1998, 70, 2387 (b) S. H. Park, P. X Yang, P. Corredor, M. J. Weaver J. Am. Chem. Soc, 2002, 124,2428.
    11 (a) Iwasita T. 2002 Electrochimica Acta.47 3663 (b) Spendelow J. S. and Wieckowski A. 2004 Phys . Chem. Chem. Phys 6 5094.
    12 Kennedy B T and Hamnett A 1990 J. Electroanal Chem 283 271.
    13 Biswas P.C, Nodasake Y; Enyo M. and Haruta M 1995 J. Electroanal. Chem. 381 167

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700