生物模板法制备铜掺杂TiO_2空心球光催化剂及其性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要
     环境污染和能源短缺问题是国际社会普遍面临的问题,如何利用太阳能治理环境污染问题已经引起了世界各国的广泛关注。半导体光催化氧化技术作为一种深度氧化技术具有氧化效率高、反应速度快、绿色环保、可利用太阳能等优点,因而备受瞩目。以Ti02为代表的半导体光催化材料更是重要的绿色环保材料。
     世界范围内,对金属半导体光催化材料的改性研究已经进行了几十年。研究认为,光催化剂催化性能受到晶型、晶粒大小、焙烧温度、金属离子负载量、不同半导体材料复合等因素的影响。其中,光催化材料的微观形貌也是一个重要的影响因素。材料不同的微观形貌通过改变表面吸附量、吸附方式、光照路径等因素来提高光催化性能。空心球型光催化剂的制备研究是该研究方向的一个重要分支。传统的空心球型光催化剂的制备方法是利用各种可牺牲性材料作模板,使金属半导体微粒吸附在模板的表面,再通过高温焙烧、溶剂溶解等方式去除模板,称为模板法。本课题研究中,利用花粉作为生物模板,控制制备了Cu掺杂的Ti02空心微球光催化剂。生物模板法具有形貌多样化(筛状、网状、球形、筒形等)、尺寸小(纳米级)、自组装、生物模板形貌重复性高、制备产物结构性能可预期等特点,以及廉价、丰富、可再生、容易得到、环境友好等优点。
     本论文中,应用改进溶胶-凝胶法制备铜掺杂Ti02光催化剂。相比传统的溶胶-凝胶法,不在反应体系中加入水,水的生成来自醇和酸的酯化作用和钛酸四正丁酯水合产物-Ti(OR)3(OH)之间缩合脱水两个途径。该方法可有效地避免凝胶形成过程中缩合过快,凝胶迅速长大聚团,不能在花粉模板表面较好地覆盖,球体破裂,成球性差的缺点。水解凝胶过程温度、pH变化规律明显,其中温度在300min时达到最大值,随后逐渐降低,这说明反应过程在300min左右达到平衡。
     改变醇钛比、pH、铜离子掺杂量等制备条件,制备了一系列Cu/Ti02空心球光催化剂。研究认为醇钛比为1:4:4、水解pH为3、Cu掺杂量为2wt.%时制备的光催化剂催化性能最好。SEM、XRD、BET等仪器表征表明,空心球光催化剂的平均直径为20μm,壁厚为0.6μm,呈球形好;半导体材料的晶型随着焙烧温度的升高而呈现不同的结果,焙烧温度为500℃时,以锐钛矿相为主并伴有一定的金红石相,表现出混晶效应;比表面积在141.80-172.51 m2/g之间,与微粒型和p-25光催化剂的51.85 m2/g、50m2/g相比,有明显的提高,因此有更强的表面吸附能力。
     在光催化剂催化降解盐酸金霉素的过程中,空心球型光催化剂表现出较高地催化活性。反应120min后,金霉素降解率最高可达99.66%, COD、TOC降解较为完全,降解率均在95%以上。光照反应1h后BOD5/COD>0.3,明显改善了水质地可生化性能。降解过程的最佳工艺条件为:催化剂投加量1.2g/L金霉素初试浓度50mg/L,体系pH=2。当加入H202浓度达到300mg/L时,可缩短一半的反应时间。金霉素在光催化过程中,发生了一系列光氧化和光催化过程,其中间产物包括多种双环、三环化合物,多环化合物进一步开环生成醛、醌、烯醇等较小分子化合物,最终生成CO2、H2O、NH4+等无机物。
     光催化剂的良好性能与模板的作用密不可分。花粉在制备空心球型光催化剂的过程中起到了硬模板的作用,其作用过程包括包覆和模板去除两个过程。花粉参与反应提供吸附活性位,是第一层吸附发生的必要条件;花粉表面反应活性位的多少也决定了吸附量的多少,可控制空心球的壁厚。包覆好的花粉在高温下逐渐燃烧去除,留下良好的空心结构。
     综上所述,本课题研究制备了具有较好三维空间形貌和结晶特点的半导体光催化材料,其性能超越p-25,有良好的应用前景。对金霉素抗生素废水的降解工艺条件研究和降解产物分析,对日后的科研工作有一定的帮助。但研究中还有很多工作需进一步完善,以求精益求精。
ABSTRACT
     Environmental pollution and energy crisis are the common problem in all of the countries. Effective utilization of solar energy to solve pollution problems has become of great interest in the world. The photocatalytic technology, which is a kind of advanced oxidation technology, has the advantages of high efficiency, fast, green, utilization of solar energy. And TiO2 photocatalyst is the most important environmental material.
     The research of metal semiconductor photocatalystic materials has been lasted for many years. It has been pointed out that the property of photocatalyst is affected by factors-crystal form, crystal size, temperature, quality of loaded mental ion, coupled semiconductor materials and so on. Meanwhile, morphology is also a important factor, which will affect the quality of surface absorption, absorbed ways, light path, et al. The synthesis of hollow sphere structure is a part of morphology research. The traditional synthesized method of hollow sphere is to use varies of templates which is cheap and removed easily. Mental ion semiconductor particulars absorb onto the surface of templates firstly, then the templates removed by high temperature or solvent. In our research, pollens have been employed to synthesize copper loaded TiO2 hollow spheres photocatalysts. Biotemplates has so many shapes (griddle shape, reseau, sphere, cylinder, et al.) and advantages such as small size, easy control, cheap, green, no-pollution and so on.
     Copper-loaded titania hollow microspheres were synthesized using the pollen grains as a natural biotemplate via an improved sol-gel method and a succedent calcinations process. In the synthesized process, the water was provided by two processes, esterification of normal butanol and acetic acid, as well as Ti(OR)3(OH) condensation reaction, unlike the conventional sol-gel procedure of adding water directly. This synthesized method can obviously avoid the rapid condensation reactive speed and gel reunion. In the experiment, the temperature and pH changes regularly. Temperature doesn't reach the maximum value until 300min reaction; meanwhile, reaction equilibrium will also be attained.
     A series of photocatalysts has been synthesized through the distinct processes-different molar ratio, pH, and quality of copper loaded. The best synthesized condition is Ti (OC4H9)4:n-C4H9OH:CH3COOH=1:4:4, pH=3,2 wt.% copper loaded quality. Knowing from SEM, XRD, BET equipment analysis, average diameter of hollow spheres is 20μm and thickness of cell is 0.6μm. The crystal form of semiconductor material is changed with the temperature. When the calcination temperature is at 500℃, the samples crystal forms are anatase, as the main crystal phase, coupled with rutile. BET values are ranging from 141.80m2/g to 172.51m2/g, compared with values of particular and p-25 photocatalyst,51.85 m2/g and 50 m2/g, respectively. The hollow sphere photocatalysts have higher BET surface area so that it will, have stronger absorption ability.
     The hollow sphere photocatalyst has exhibited a high photocatalytic activity when it is employed to degrade chlortetracycline hydrochloride (CTC) solution. After 120min irradiation, the maximum degradation ratio of CTC is 99.66%, COD removal efficiency could reach up to 95%, as well. Meanwhile, chemical and biologic properties of waster water will be improved, when the value of BOD5/COD> 0.3. The best technological conditions of degradation process are as follow:dosage of catalysts is 1.2g/L, initial concentration of CTC is 50mg/L, pH=2. When the concentration of H2O2, added into the reaction system, exceeds 300mg/L, the reaction time will be cut down in half. During the photocatalytic processes, chemical mechanism on degradation of CTC involves series of photooxidation processes and subsequent chemical reactions. Intermediate products of Chlortetracycline included a variety of bicyclic, tricyclic compounds. Polycyclic compounds will be opened up, and then aldehydes, quinones, enolase and other small molecular compounds were produced. Ultimately, CO2, H2O, NH4+ and other inorganic products were investigated.
     We can come to the conclusion that the pollen has played three important roles in the process. Firstly, it serves as a hard template to form the morphology of the products. Secondly, the abundant functional groups on the surface of pollen gains are active sites to absorb the reactants. And the groups are also critical factor to control the first-step encapsulation process. Thirdly, the bimolecular on the cell walls exert an influence on restraining the growth of nanoparticles.
     In summary, Cu/TiO2 photocatalysts with good three dimensional morphology and crystal characteristics have been synthesized successfully, which have better activity and utilization prospect than p-25. The analysis of degradation process conduction of CTC antibiotic waster water, as well as degradation product can be helpful to further research. However, there is a lot of work to be improved in order to strive for excellence.
引文
[1]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238(5358):37-38.
    [2]Fox M A, Dulay M Y. Heterogeneous Photocatalysis [J].Chem. Rev,1993,93(1):341-357.
    [3]Linsebigler A.L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces:principles, mechanisms, and selected results [J].Chem. Rev,1995,95(3):735-758.
    [4]Hoffmann M R, Martin S T, Choi W, et al. Environmental application of semiconductor photocatalysis[J]. Chem. Rev,1995,95(1):69-96.
    [5]董庆华.半导体光催化[J].感光科学与光化学,1993,11(2):76-81.
    [6]Cary J Hetal. Photodechlorination of PCB's in the Presence of titanium dioxide in aqueous suspendions [J]. Bull of Environ Contam Toxical,1976,16(5):697-701
    [7]Frank S N, heterogeneous photo-catalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders [J]. Phys. Chem,1977(81):1484-1487.
    [8]胡春,王怡中,汤鸿霄.多相光催化氧化的理论与实践[J].环境科学进展,1995,3(1):55-64.
    [9]白波,王鹏鹏,王翠芳等.酵母菌生物模板法组装Ti-W-Si三元复合空心微球及其光催化性能[J].现代化工,2009,29(6):37-41.
    [10]苏碧桃,孙佳星,胡常林等.模板法制备的Fe+/TiO2中空纳米纤维的光催化性能[J].无机化学学报,2009,25(11):1988-1993.
    [11]Huang J X, Xie Y, Li B, et al. In-Situ Source-Template-Interface Reaction Route to Semiconductor CdS Submicrometer Hollow Spheres [J]. Adv Mater,2000,12(11): 808-812.
    [12]Yin J L, Qian X F, Yin J, et al. Preparation of polystyrene/zirconia core-shell microspheres and zirconia hollow shells [J]. Inorganic Chemistry Communications,2003, 6(7):942-945.
    [13]Chen Z, Zhan P, Wang Z L, et al. Preparation of metallodielectric composite particles with multi-shell structure [J]. Adv Mater,2004,16(3):417-422.
    [14]Zhang D, Qi L, Ma J, et al. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions [J]. Adv. Mater.,2002,14(20):1499-1502.
    [15]Li G C, Zhang Z K. Synthesis of submicrometer-sized hollow titania spheres with controllable shells [J]. Materials Letters,2004,58(6):2768-2771.
    [16]Ding X F, Yu K F, Jiang Y Q, et al. A novel approach to the synthesis of hollow silica nanoparticles [J]. Materials Letters,2004,58(14):3618-3621.
    [17]Zhong Z Y, Yin Y D, Gates B, et al. Preparation of mesoscale hollow spheres of TiO2 and SnO2 by templating against crystalline arrays of polystyrene beads [J]. Adv Mater,2000, 12(3):206-209.
    [18]Penner R.M., Martin C.R., Controlling the morphology of electronically conductive polymers [J]. Electrochem.Soc.,1986,133(10):310-313.
    [19]Z Z Yang, Z W Niu, Y F Lu et al. Templated Synthesis of Inorganic Hollow Spheres with Tunable Cavity Size onto Core/Shell Gel Particles [J]. Angew. Chem. Int. Ed.,2003, 42(17):1943-1945.
    [20]Y D Yin, Y Lu, B Gates et al. Synthesis and characterization of mesoscopic hollow spheres of ceramic materials with funetionalized interior surfaces [J]. Chem. Mater.,2001, 13(4):1146-1148.
    [21]Z Chen, P Zhan, ZL Wang et al. Preparation of silver-coated polystyrene composite particles [J]. Adv. Mater.,2004,16(5):417-422.
    [22]J C Bao, Y YLiang, Z Xu et al. Facial synthesis of hollow nickle submicrometer spheres [J].Adv. Mater.,2003,15(2):1832-1835.
    [23]C X Song, D B Wang, G H Gu, et al. Preparation and characterization of silver/TiO2 composite hollow spheres [J]. Colloid and Interface Science,2004,272:340-344.
    [24]L Z Wang, Y S Ebina, K Takada et al. Ultrathin hollow nanoshells of manganese oxide[J].Chem. Commun.,2004:1074-1075.
    [25]F Caruso, X Y Shi, R A Caruso, et al. Hollow Titania Spheres from Layered Precursor Deposition on Sacrificial Colloidal Core [J]. Adv. Mater.,2001,13:740-744.
    [26]Y.J hotta, P.C Alberius, L Bergstrom. Coated Polystyrene Particles as Templates for Ordered Macroporous Silica Structures with Controlled Wall Thickness [J]. Mater. Chem., 2003,13:496-501.
    [27]Chen J F, Wang J X, Liu R J, et al. Synthesis of Porous Silica Structures with Hollow Interiors by Templating Nanosized Calcium Carbonate [J]. Inorg. Chem. Commun.,2004, 7(3):447-449.
    [28]S C Zhang, X Li. Synthesis and characterization of CaCO3@SiO2 core shell nanoparticles [J]. Powder Technol.,2004,141(1-2):75-79.
    [29]X Sun, YD Li. Ga2O3 and GaN semiconductor hollow spheres [J]. Angew.Chem. Int. Ed., 2004,43(29):3827-3831.
    [30]D Wang, F Caruso. Synthesis of Macroporous Titania and Inorganic Composite Materials from Coated Colloidal Spheres-A Novel Route to Tune Pore Morphology [J]. Chem. Marer.,2002,14(12):1909-1214.
    [31]D J Nottis, YA Vlasov. Chemical approaches to three- dimensional semiconductor photonic crystals [J]. Adv.Mater.,2001,13(6):371-374.
    [32]P Jin, Q Chen, L Hao et al. Synthesis and catalytic properties of nickel-silica composite hollow nanospheres[J]. Phys. Chem.B,2004,10:6311-6314.
    [33]宋彩霞,王德宝,古国华等.无机空心球材料的乳胶粒模板法制备及应用[J].材料导报,2003,56(17):32-34.
    [34]Chen Z, Zhan P, Wang Z L, et al. Spheres prepared by colloidal crystal templating [J]. Adv Mater,2004,16(6):417-422.
    [35]Prins L J, Reinhoudt D N, Timmerman P. Noncovalent synthesis using hydrogen bonding [J]. Angew Chem,2001,113(40):2446-2492.
    [36]吴庆生,郑能武,丁亚平,等.活体生物膜控制合成纳米半导体硫化镉[J].高等学校化学学报,2000,21(10):1471-1472.
    [37]李丽,吴庆生,丁亚平,等.活体生物膜双模板同步诱导合成硫化镉半导体纳米管和纳米球[J].科学通报,2006,2(2):129-132.
    [38]Dameron C T,Reese R N,Mehra R K,et al. Biosynthesis of Cadmium Sulphide Quantum Semiconductor Crystallites [J]. Nature,1989,338(6216):596-597.
    [39]Holmes J D, Richardson D J, Saed S, et al. Cadmium specific formation of metal sulfide Q-particles by Klebsiella pneumoniae [J]. Microbiogy-UK.1997,143(8):2521-2530.
    [40]Wayne S, Trevor D, Mark Y, et al. Inorganic-Organic Nano-tube Composites from Template Mineralization of Tobacco Mosaic Virus [J].Adv Mater,1999,11(3):253-256.
    [41]Absar A,Priyabrata M,Deendayal M, et al. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, fusarium oxysporum [J]. Am Chem Soc,2002,124(41): 12108-12109.
    [42]李湛.模拟生物矿化制备壳聚糖(衍生物)/CdS纳米颗粒复合物及性能研究[D].武汉:武汉大学,2003,1.
    [43]Yang L,Shen Q M,Zhou J G,et al. Biomimetic synthesis of CdS nanocrystals in the pepsin solution[J]. Mater Lett,2005,59(23):2889-2892.
    [44]Kummerer K. Antibiotics in the aquatic environment-A review-Part Ⅰ[J]. chemosphere, 2009,75(4):417-434.
    [45]Schwarzenbach RP, Escher BI, Fenner K, Hofstetter TB, Johnson CA, von Gunten U, Wehrli B. The challenge of micropollutants in aquatic systems [J]. Science,2006, 313(5790):1072-1077.
    [46]Segura PA, Francois M, Gagnon C, Sauve S. Review of the occurrence of anti-infectives in contaminated wastewaters and natural and drinking waters [J]. Environ Health Persp, 2009,117(5):675-684.
    [47]Ternes TA, Joss A, Siegrist H. Scrutinizing pharmaceuticals and personal care products in wastewater treatment [J]. Environ Sci Technol,2004,38(20):392A-399A5
    [48]Miege C, Choubert JM, Ribeiro L, Eusebe M, Coquery M. Fate of pharmaceuticals and personal care products in wastewater treatment plants - Conception of a database and first results [J]. Environ Pollut,2009,157(5):1721—1726.
    [49]贾瑷,胡建英,孙建仙,施嘉琛.环境中的医药品与个人护理品[J].化学进展,2009,21(6):389-399
    [50]Watkinson AJ, Murby EJ, Kolpin DW, Costanzo SD. The occurrence of antibiotics in an urban watershed:From wastewater to drinking water [J].Sci Total Environ,2009,407(8): 2711-2723
    [51]Gulkowska A, Leung HW, So MK, Taniyasu S, Yamashita N, Yeunq LWY, Richardson BJ, Lei AP, Giesy JP, Lam PKS. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Res,2008,42(1-2): 395-403
    [52]Edhlund B.L., Arnold W.A., McNeill K. Aquatic photochemistry of nitrofuran antibiotics [J]. Environ Sci Technol,2006,40(17):5422-5427
    [1]王振辉.分光光度法测定COD[J].环境保护科学,2003,4,29(116):43-44.
    [2]Daughton C G, Ternes T A. Pharmaceuticals and personal care products in the environment:agents of subtle change [J]. Environ Health Perspectives,1999,107(6): 907-938.
    [3]Boxall A B A, Kolpin D W, Halling-S Grensen B, et al. Are veterinary medicines causing environmental risks? [J]. Environ Sci Technol,2003,37 (15):286A-294A.
    [4]Chopra I, Roberts M. Tetracycline antibiotics:Mode of action, applications, molecular biology, and epidemiology of bacterial resistance [J]. Microbiol Mol Biol Rev,2001,65 (2):232-260.
    [5]Kumar K, Thompson A, Singh A K, et al. Enzyme-linked immunosorbent assay for ultratrace determination of antibiotics in aqueous samples[J]. Environ Qual,2004,33(2): 250-256.
    [6]Boxall A B A, Fogg L A, Blackwell P A, et al. Veterinary medicines and the environment[J]. Rev Environ Contain Toxicol,2004,180(4):1-91.
    [7]Kolpin D W, Furlong E T, Meyer M T, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in U. S.streams,1999-2000:a national reconnaissance [J]. Environ Sci Technol,2002,36 (6):1202-1211.
    [8]Halling-S Grensen B, Sengelov G, Tjornelund J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline resistant bacteria [J]. Arch Environ Contam Toxicol,2002,42 (2):263-271.
    [1]Yamashita, H., Harada, M., Misaka, J. Degradation of propane diluted in water under visible light irradiation using metal ion-implanted titanium dioxide photocatalysts[J]. Photochem. Photobiol. A:Chern.,2002,148(14):257-261.
    [2]Jeffrey C.S., Wu, I.-Hsiang Tseng and Wan-Chen Chang. Synthysis of titania-supported copper nanoparticles via refined alkoxide sol-gel process[J].Journal of Nanoparticle Research 3,2001,3(6):113-118.
    [3]Doeuff S., M. Henry, C.Sanchez. Sol-gel synthesis and characterization of titanium oxoacetate polymers[J]. Mat.Res.Bull.1990,25(12):1519-1529.
    [4]Wolf C, C.Russel. Sol-gel formation of zirconia:preparation, structure and rheology of sols[J]. Mater.Sci.1992,27(12):3749-3755.
    [5]曹丰,李东旭,管自生.生物模板法制备具有特殊表面形貌的二氧化硅中空微球[J].无机材料学报,2009,24(3):501-506.
    [6]李平,曾昌风,张利雄等.以油菜花粉为模板水热法制备TiO2中空微球[J].无机材料学报(Journal or Inorganic Materials),2008,23(1):49-54.
    [7]郑红,汤鸿霄,王怡中.有机污染物半导体光催化氧化机理及动力学研究进展[J].环境科学,1996,4(3):1-18.
    [8]Alfano O M, Bahnemann D, Cassano A E. Photocatalysis in water environments using artficial and solar light[J]. Catalysis Today,2002,32(58):199-230.
    [9]Kim Hongrok, Eom Yujin, Lee Taigyu. Preparation and photocatalytic properties of Cr/Ti hollow spheres[J]. Microporous and Mesoporous Materials.2008,10(8):154-159.
    [10吴树新,伊燕华,马智等.掺铜方法对二氧化钛光催化氧化还原性能的影响[J].河北大学学报,2005,9,25(5):486-494.
    [11]Jing L.Q., Xu Z.L., Sun X.J. et al. The surface properties and photocatalytic activities of Zno ultrafine particles [J]. Appl Surf Sci,2001,180 (3/4):308-314.
    [12]袁伟,戴遐明,艾德生,李庆丰.Ti02分体的光谱特性与光催化性能的研究[J].硅酸盐学报.2002,30(增刊):31-35.
    [13]Serpone N, et al. Photocatalyzed destruction of water contaminants [J]. photochem.1987,36(9):373-379.
    [14]Rodriguez-Talaveraa R., Vargas S., Aarroyo-Murillo R. et al. Montiel-Campos and E. Haro-Poniatowsk [J]. Mater.Res.,1997,12(2):439-443.
    [15]Lin J, Yu J C. An investigation on photocatalytic activities of mixed TiO2-rare earth oxides for the oxidation of acetone in air [J]. Photochem Photobiol A:Chem,1998, 116(1):63-69.
    [16]袁志好,张立德.掺锌Ti02纳米粉的结构相变及发光性质[J].高等学校化学学报,1999,20(7):1007-1011.
    [1]Kummerer K. Significance of antibiotics in the environment [J]. Antimicrobial Chemot herapy,2003,52(9):527-532.
    [2]郭佳,张渊明,杨骏,李明玉.光催化氧化降解制药废水中头孢曲松钠的研究[J].生态科学,2008,27(6):12-14.
    [3]肖明威,罗建中.光催化氧化法处理抗生素废水新技术研究.广州工业大学学位论文.
    [4]C.Reyes, J.Fernandez, J.Freer, M.A.Mondaca, et al. Degradation and inactivation of tetracycline by TiO2 photocatalysis [J].photochemistry and photobiology,2006,184(1-2): 141-146.
    [5]余江,张丹,韦力,胡梦婷,蒋永平.微波光催化反应强化有机废水处理及资源化过程[J].化工进展,2009,4(2):35-37.
    [6]Rozas, O; Contreras, D; Mondaca, M.A, et al. Experimental design of Fenton and photo-Fenton reactions for the treatment of ampicillin solutions[J]. Journal of hazardous materials,2010,117(1-3):1025-1030.
    [7]范山湖,沈勇,陈六平,等.TiO2固定床光催化氧化头孢拉啶[J].催化学报,2002,2(6):22-24.
    [8]李静玲,蒋晓瑜,徐升.Fe2O3-TiO2-SiO2光催化降解头孢氨苄试验研究[J].福建工程学院 学报,2005,12(6):595-599.
    [9]许明霞.碘掺杂与碘氮共掺杂TiO2的制备及其可见光催化活性研究.南昌大学,2007.
    [10]赵纯,邓慧萍.疏水沸石负载纳米Ti02光催化去除水中土霉素[J].同济大学学报(自然科学版).2009,37(10):1360-1365.
    [11]刘颖,张高科,邹曦,等.SrCoO_x粉体的合成及其光催化氧化活性[J].硅酸盐学报.2005(3):375-379.
    [12]Xekoukoulotakis, NP; Xinidis, N; Chroni, M, et al. UV-A/TiO2 photocatalytic decomposition of erythromycin in water:Factors affecting mineralization and antibiotic activity [J]. Catalysis today,2010,151(1-2):29-33.
    [13]Lindner M. Photocatalytic degradation of organic compounds:acceleration the process efficiency [J]. Water Sci. TechnoL.,1997,35(5):8-10.
    [14]Ruya R.O., John L.F. Investigation of the photocatalytic activity of TiO2-polyoxometalate systems [J].Environ. Sci. Technol.,2001,35(15):3242-3246.
    [15]P. Calza, V.A. Sakkas, A. Villioti, C. Massolino, et al. Multivatiate experimental design for the photocatalytic degradation of imipramine Derermination of the reaction pathway and identification of intermediate products[J]. Applied Catalysis B:Environmental,2008, 186(84):379-388.
    [16]Fabiola Mendez-Arriag, Santiago Esplugas, Jaime Gime'nez. Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation[J]. Water research,2008,60(42):585-594.
    [17]Lin X.P., Huang F.Q., Wang W.D., Zhang K.L.A novel Photocatalyst BiSbO4 for degradation of methylene blue[J].APPI.Catal.A:Gen.,2006,307(2):257-262.
    [18]刘彦平,郝利辉.改性纳米二氧化钛光催化降解水中微量溶解性亚甲基蓝[J].石化技术与应用,2008,3,26(2):124-127.
    [19]Guillard C., Lachhed H., Houas A., Ksibi M., Elaloui E. and Herrmann J. Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of Powder and supported TiO2[J].Photoehem. Photobiol.A:Chem.,2003,158(1):27-36.
    [20]郑红,汤鸿霄,王怡中.有机污染物半导体光催化氧化机理及动力学研究进展[J].环境科学,1996,4(3):1-18.
    [21]Alfano O M, Bahnemann D, Cassano A E. Photocatalysis in water environments using artficial and solar light[J]. Catalysis Today,2002,32(58):199-230.
    [22]Kim Hongrok, Eom Yujin, Lee Taigyu. Preparation and photocatalytic properties of Cr/Ti hollow spheres [J]. Microporous and Mesoporous Materials.2008,10(8):154-159.
    [23]Sioi, M., Bolosis, A., Kostopoulou, E., Poulios, I. Photocatalytictreatment of colored wastewater from medicallaboratories:photocatalytic oxidation of hematoxylin [J]. Photochem. Photobiol. A:Chem.2006,184(1-2),18-25.
    [24]Zhang, ZZ, Wang, XX, Long, JL, et al. H2O2 promoting effect on photocatalytic degradation of organic pollutants in an aqueous solution without an external H2 supply [J]. Applied catalysis a-general.2010,380(1-2):178-184.
    [25]Wolfrum, E.J., Ollis, D.F. Hydrogen peroxide in heterogeneous photocatalysis. In:Helz, G., Zepp, R., Crosby, D. (Eds.), Aquatic and Surface Photochemistry [M]. Lewis Publishers, CRC Press, UK, p.1994.261 Chapter 32.
    [26]Chatzitakis A, Berberidou C, Paspaltsis I et al. Photocatalytic degradation and drug activity reduction of Chloramphenicol [J]. Water research,2008,42(1-2):386-394.
    [27]Sauer, T., Neto, G.C., Jose, H.J., Moreira, R.,2002. Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor [J]. Photochem Photobiol A-Chem. 149(1-3):147-154.
    [28]Dionysiou, D.D., Suidan, M.T., Baudin, I., Laine, J.M. Effect of hydrogen peroxide on the destruction of organic contaminants synergism and inhibition in a continuous-mode photocatalytic reactor[J]. Appl. Catal. B-Environ.2004,50(4):259-269.
    [1]白波,王鹏鹏,王翠芳,杨莉.酵母菌生物模板法组装Ti-W-Si三元复合空心微球及其光催化性能[J].现代化工.2009,29(6):37-41.
    [2]龚良玉,曹永军,李群国.纳米CeO2的生物模板法制备[J].化学研究.2009,20(4):31-33.
    [3]Zampieri A, Mabande G T P, Selvam T, et al. Biotemplating of Luffa cylindrica sponges to self-supporting hierarchical zeolite macrostructures for bio-inspired structured catalytic reactors [J]. Materials Science and Engineering C,2006,26(1):130-135.
    [4]M.I. Boyanov, S.D. Kelly, K.M. Kemner, B.A. Bunker, J.B. Fein, D.A. Fowle. Adsorption of Cadmium to B.Subtilis Bacterial Cell Walls:a pH-Dependent x-ray absorption fine structure spectroscopy Study [J]. Geochimica Cosmochimica Acta.2003,67(18): 3299-3311.
    [5]L. Spanhel, M.A. Anderson, et al. Effect of the (OH) Surface Capping on ZnO Quantum Dots [J].Am. Chem. Soc.1991.11 (3):825-828.
    [6]Boreen AL, Arnold WA, McNeill K. Photodegradation of pharmaceuticals in the aquatic environment:A review [J]. Aquat Sci,2003,65(4):320-341
    [7]Araki T, Kawai Y, Ohta I, Kitaoka H. Photochemical behavior of sitafloxacin, fluoroquinolone antibiotic in an aqueous solution [J]. Chem Pharm Bull,2002,50(2): 229-234
    [8]Chiron S, Minero C, Vione D. Photodegradation processes of the antiepileptic drug carbamazepine, relevant to estuarine waters [J]. Environ Sci Technol,2006,40(19): 5977-5983
    [9]Espinoza L.A.T, Neamtu M, Frimmel F.H. The effect of nitrate, Fe(Ⅲ) and bicarbonate on the degradation of bisphenol A by simulated solar UV-irradiation [J]. Water Res,2007, 41(19):4479-4487
    [10]Sanchez-Prado L, Llompart M, Lores M, Garcia-Jares C, Bayona JM, Cela R. Monitoring the photochemical degradation of triclosan in wastewater by UV light and sunlight using solid-phase microextraction [J]. Chemosphere,2006,65(8):1338-1347
    [11]Bachman J, Patterson HH. Photodecomposition of the carbamate pesticide carbofuran: Kinetics and the influence of dissolved organic matter [J]. Environ Sci Technol,1999, 33(6):874-881
    [12]Evgenidou E, Fytianos K. Photodegradation of triazine herbicides in aqueous solutions and natural waters [J]. Agr Food Chem,2002,50(22):6423-6427
    [13]Vione D, Maurino V, Minero C, Calza P, Pelizzetti E. Phenol chlorination and photochlorination in the presence of chloride ions in homogeneous aqueous solution[J]. Environ Sci Technol,2005,39(13):5066-5075
    [14]Zhan MJ, Yang X, Xian QM, Kong LG. Photosensitized degradation of bisphenol A involving reactive oxygen species in the presence of humic substances[J]. Chemosphere, 2006,63(7):378-386
    [15]Vione D, Falletti G, Maurino V, Minero C, Pelizzetti E, Malandrino M, Ajassa R, Olariu RI, Arsene C. Sources and sinks of hydroxyl radicals upon irradiation of natural water samples [J]. Environ Sci Technol,2006,40(12):3775-3781
    [16]Liu QT, Williams HE. Kinetics and degradation products for direct photolysis of beta-blockers in water [J]. Environ Sci Technol,2007,41(3):803-810
    [17]Chen Y, Hu C, Hu XX, Qu JH. Indirect photodegradation of amine drugs in aqueous solution under simulated sunlight [J]. Environ Sci Technol,2009,43(8):2760-2765
    [18]B. Halling Sorensen, G. Sengelov, J. Tjornelund. Toxicity of Tetracyclines and Tetracycline Degradation Products to Environmentally Relevant Bacteria, Including Selected Tetracycline-Resistant Bacteria [J]. Environmental contamination toxicology. 2002,42(4):263-271.
    [19]Doerschuk AP, Bitler BA, McCornik. Reversible isomerizations in the tetracycline family [J]. Am Chem Soc.1955,77(12):4687.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700