基于微凝胶模板法制备核—壳型有机—有机复合微球研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核-壳型材料是一类由中心粒子为核,不同组分为壳层而组成的复合型材料,由于其在组成、结构、表面性质等方面具有可调控性和可剪裁性等特点,这类材料的制备和应用研究已成为众多学科领域的科学家们关注的热点课题。模板法由于具有方法简单、重复率高、预见性好、产品形态均一、性能稳定等诸多特点而被广泛用于制备核-壳结构材料。根据化学组成的不同,模板可分为有机模板和无机模板。其中,有机模板因其结构的多样性和尺寸的可控性等特点,已成为制备核-壳型材料的有效方法之一。与其它有机模板材料相比,高分子微凝胶由于(1)制备方法简单、容易引入反应性基团,尺寸大小可控;(2)对外界刺激如温度、pH值、离子强度、光、电、磁等有明显的体积变化等特点,已成为制备多种类型具有特异形貌和特殊性能的微纳米材料复合材料的理想模板。
     在实验室已有研究工作的基础上,本论文开展了基于高分子微凝胶模板制备具有特异表面结构的有机-有机复合微球材料的研究工作。以丙烯酰胺为反应单体,利用反相悬浮聚合法制备得到了聚丙烯酰胺高分子微凝胶,通过控制不同的反应条件,实施甲醛和尿素的缩聚反应,得到了两种具有不同表面形貌的聚丙烯酰胺/脲醛树脂有机-有机复合微球材料,主要研究内容包括以下两个方面:
     (1)利用反相悬浮聚合法制备出聚丙烯酰胺微凝胶,以其为反应模板,在反相悬浮体系中实施甲醛和尿素的缩聚反应,即将脲醛树脂的形成反应控制在油、水相界面上进行,从而得到脲醛树脂和聚丙烯酰胺两种组分均匀复合的微球材料。实验结果表明,甲醛和尿素溶液的pH值、甲醛和尿素溶液的浓度、甲醛和尿素的摩尔比以及模板微凝胶的化学组成等因素对复合微球的表面结构产生重要的影响。
     (2)以聚丙烯酰胺高分子微凝胶为模板,在微凝胶/气相界面原位实施甲醛和尿素的缩合反应,在一定温度条件时得到具有典型核-壳结构的有机-有机复合微球材料。通过改变甲醛和尿素溶液的pH值、甲醛和尿素溶液的浓度、甲醛和尿素的摩尔比、模板化学组成等条件可以得到具有草莓状表面结构特征的脲醛树脂/聚丙烯酰胺复合微球材料。该合成技术方法简单,且适于大量制备。
     利用扫描电子显微镜(SEM)、热重分析(TGA)、红外(FT-IR)等手段对样品的形态、结构和组成进行了表征。
Core-shell structure materials are a kind of composite materials that composed of central particles as "core" and different components as "shell" layers. The preparation and application research of core-shell structure materials have aroused many scientist's interests because of their controllable and tunable special features in composition, structure, and surface properties. Template methods have been extensively used for preparing core-shell structure materials due to their simplicity, high repeating ration, being foreseeable, uniform product morphology, and stable properties. Template can be divided into organic and inorganic types according to their chemical compositions. Organic template have become one of an effective approach for synthesis core-shell materials based on their structure's diversity and size's controllability. Compared with other organic templates, polymer microgels have become a kind of ideal template material for preparing micro- or nano- composites with special morphologies and properties. This is because polymer microgels have the advantages of simple synthesis, adjustable chemical functionality, and the controllable sizes. In addition, polymer microgels have stimulus-responsive volume changes, where the stimuli could be temperature, pH, electric and magnetic fields, etc.
     Based upon the previous work in our group, in this study, we focus on research interest on the synthesis of organic-organic composite microspheres with special surface structures using the polymer microgel template. Polyacrylamide (PAM) microgels were produced by the inverse suspension polymerization technique using acrylamide as monomer. Two types of Urea-formaldehyde resin (UF Resin)/PAM composite microspheres with different surface morphologies were prepared by conducting the polycondensation between formaldehyde and urea via controlling the different reaction conditions. This thesis includes two parts as follows:
     (1) Polyacrylamide microgels were produced by the inverse suspension polymerization technique. The UF Resin/PAM composite microspheres with novel surface morphology were prepared via polycondensation between formaldehyde and urea in the inverse suspension system using PAM as a reaction template. It was demonstrated that the surface morphologies of the composite microspheres could be controlled by varying the pH value and concentrations of the formaldehyde and urea solutions, the molar ratio of formaldehyde to urea and the composition of the used template.
     (2) Using PAM mierogel as template, the UF Resin/PAM composites microspheres with typical core-shell structure were prepared by in-situ polycondensation of formaldehyde and urea between the microgel and gas interface under the stated temperature. The research results indicate that the as-prepared composite microspheres with raspberry-like morphologies could be obtained by controlling the pH value and concentrations of the formaldehyde and urea solutions, the molar ratio of formaldehyde to urea and the composition of the used template. The approach we proposed is characteristics of facile and mass.
     The morphologies, the structure and the composition of composite microspheres were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier transform infrared spectrometer (FTIR) techniques, respectively.
引文
[1]J.J.Schneider Magnetic Core-Shell and Quantum-Confined Semiconductor Nanoparticles via.Chimie Douce Organometallic Synthesis[J].Adv.Mater.2001,13(7):529-533.
    [2]刘忠范,朱涛,张锦.纳米化学[J].大学化学,2001,16(5):1-10.
    [3]W.D.Williams,N.Giordnao.Fabrication of 80A Metal Wires[J].Rev.Sci.Instrum.,1984,55,410-412.
    [4]杨菊香,宋少飞,沈淑坤,胡道道.模板法制备新型有机-无机复合微球材料研究进展[J].材料导报,2007,21,(3):54-58.
    [5]M.Wu,J.Long,A.Huang.et al.Microemulsion-Mediated Hydrothermal Synthesis and Characterization of Nanosize Rutile and Anatase Particles[J].Langmuir,1999,15(26):8822-8825.
    [6]L.Guo,Z.Wu,T.Liu et al.Synthesis of Novel Sb203 and Sb_2O_5 Nanorods[J].Chem.Phys.Lett.,2000,318(1):49-52.
    [7]W.J.Kim,S.M.Yang.Helical Mesostructured Tubules from Taylor Vortex-Assisted Surfactant Templates[J].Adv.Mater.,2001,13(15):1191-1195.
    [8]S." Kwan,F.Kim,J.Akana etal.Synthesis and Assembly of BaWO4 Nanorods[J].Chem.Commun.,2001,1(5):447-448.
    [9]H.Shi,L.Qi,J.Ma et al.Synthesis of Single Crystal BaWO4 Nanowires in Catanionic Reverse Micelles[J].Chem.Commun.,2002,2(16):1704-1705.
    [10]H.T.Shi,L.M.Qi,J.M.Ma,et al.Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles[J].J.Am.Chem.Soc.,2003,125(12):3450-3451.
    [11]M.E.Spahr,P.Bitterli,R.Nesper,et al.Redox-Active Nanotubes of Vanadium Oxide[J].Angew.Chem.Int.Ed.,1998,37(9):1263-1265.
    [12]H.J.Muhr,F.Krumeich,U.P.Schnholzer,et al.Vanadium Oxide Nanotubes-A New Flexible Vanadate Nanophase[J].Adv.Mater.,2000,12(3):231-234.
    [13]H.C.Lee,H.J.Kim,S.H.Chung,et al.Synthesis of Unidirectional Alumina Nanostructures without Added Organic Solvents[J].J.Am.Chem.Soc.2003,125(10):2882-2883.
    [14]C.M.Bender,J.MBurlitch,D.Barber Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles[J].Chem.Mater.,2000,12(7):1969-1976.
    [15]M.H.Cao,C.W.Hu,E.B.Wang.The First Fluoride One-Dimensional Nanostructures:Microemulsion-Mediated Hydrothermal Synthesis of BaF_2Whiskers[J].J.Am.Chem.Soc.,2003,125(37):11196-11197.
    [16]L.Manna,E.C.Scher,A.P.Alivisatos.Synthesis of Soluble and Processable Rod-,Arrow-,Teardrop-,and Tetrapod-Shaped CdSe Nanocrystals[J].J.Am.Chem.Soc.,2000,122(51):12700-12706.
    [17]J.L.Zhang,B.X.Han,J.C.Liu,et al.A New Method to Recover the Nanoparticles from Reverse Micelles:Recovery of ZnS Nanoparticles Synthesized in Reverse Micelles by Compressed CO2[J].Chem.Commun.,2001,1(24):2724-2725.
    [18]Y.F.Liu,J.B.Cao,J.H.Zeng,et aI.A Complex-Based Soft Template Route to PbSe Nanowires[J].Eur.J.Inorg.Chem.,2003,(4):644-646.
    [19]姚勇敢,梁梦兰,辛秀兰.用表面活性剂模板制备纳米物质[J].精细化工,2002,19(9):497-499
    [20]K.Soulantica,A.Maisonnat,F.Senocq,et al.Selective Synthesis of Novel In and In3Sn Nanowires by an Organometallic Route at Room Temperature[J].Angew.Chem.Int.Ed.,2001,40(16):2983-2986.
    [21]V.F.Puntes,K.M.Kfishnan,A.P.Alivisatos.Colloidal nanocrystal shape and size Control:The Case of Cobalt[J].Science.2001,291:2115-2117.
    [22]J.Legrand,A.T.Ngo,C.Petit,et al.Domain Shapes and Superlattices Made of Cobalt Nanocrystals[J].Adv.Mater.,2001,13(1):58-62.
    [23]N.R.Jana,L.Gearheart,C.J.Murphy.Wet Chemical Synthesis of Silver Nanorods and Nanowires of Controllable Aspect Ratio[J].Chem.Commun.,2001,1(7):617-618.
    [24]J.L.Zhang,B.X.Han,J.C.Liu et al.Recovery of Silver Nanoparticles Synthesized in AOT/C_(12)E_4 Mixed Reverse Micelles by Antisolvent CO_2[J].Chem.Eur.J.,2002,8(17):3879-3883.
    [25]J.Jang,J.H.Oh,G.D.Stucky.Fabrication of Ultrafine Conducting Polymer and Graphite Nanoparticles[J].Angew.Chem.Int.Ed.,2002,41(21):4016-4019.
    [26]M.Ikegame,K.Tajima,T.Aida.Template Synthesis of Polypyrrole Nanofibers Insulated within One-Dimensional Silicate Channels:Hexagonal versus Lamellar for Recombination of Polarons into Bipolarons[J].Angew.Chem.Int.Ed.,2003,42(19):2154-2157.
    [27]张其春,吴培基,朱道本.高电导有机金属聚合物的制备及性质研究[J].功能材料,2000,31(2):136-138.
    [28]Z.H.Kang,E.B.Wang,M.Jiang et al.Convenient Controllable Synthesis of Inorganic 1D Nanocrystals and 3D High-Ordered Microtubes[J].Eur.J.Inorg.Chem.,2003,2003(2):370-376.
    [29]X.Q.Liu,Y.P.Guan,Z.Y.Ma,et al.Surface Modification and Characterization of Magnetic Polymer Nanospheres Prepared by Miniemulsion Polymerization[J].Langmuir,2004,20(23):10278-10282.
    [30]Y.J.Xiong,Y.Xie,J.Yang,R.Zhang,C.Z.Wu,G.A.Du.In situ Micelle-Template-Interface Reaction Route to CdS Nanotubes and Nanowires[J].J.Mater.Chem.,2002,12:3712-3716.
    [31]D.Z.Wu,X.W.Ge,Z.C.Zhang,M.Z.,S.L.Wang.Novel One-Step Route for Synthesizing CdS/Polystyrene Nanocomposite Hollow Spheres[J].Langmuir,2004,20(13):5192-5195.
    [32]司玲,王利侠,张杰,包建春,梁永晔,徐正.亚微米级Ag_2S空心球的乳液法合成[J].无机化学学报,2003,19(11):1253-1256.
    [33]J.Jang,J.H.Oh,X.L.Li.A Novel Synthesis of Nanocapsules..using Identical Polymer Core/Shell Nanospheres[J].J Mater.Chem.,2004,14:2872-2880.
    [34]齐利民.利用有机模板合成具有特定形态、结构的无机材料.新世纪的物理化学——学科前沿与展望267-272.
    [35]袁建军,程时远,封麟先.嵌段共聚物自组装及其在纳米材料制备中的应用(下)[J].高分子通报,2002,2:9-17.
    [36]L.M.Qi,H.C(o|¨)fen,M.Antonietti.Synthesis and Characterization of CdS Nanopartic Stabilized by Double-Hydrophilie Block Copolymers[J].Nano.Letters,2001,1(2):61-65.
    [37]L.M.Qi,H.C(o|¨)lfen,M.Antonietti.Crystal Design of Barium Sulfate using Double-Hydrophilic Block Copolymers[J].Angew Chem Int Ed.,2000,39(3):604-607.
    [38]D.B.Zhang,L.M.Qi,J.M.Ma,et al.Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer[J].Chem.Mater.,2001,13(9): 2753-2755.
    [39] H. T. Shi, L. M. Qi, J. M. Ma, et al. Polymer-Directed Synthesis of Penniform BaWO_4 Nanostructures in Reverse Micelles[J]. J Am. Chem. Soc., 2003, 125(12): 3450-3451.
    [40] D. B. Zhang, L. M. Qi, J. M. Ma., et al. Morphological Control of Calcium Oxalate Dihydrate by a Double-Hydrophilic Block Copolymer[J]. Chem. Mater., 2002, 14(6): 2450-2457.
    [41] F. Bouyer, C. Gerardin, F. Fajula, et al. Role of Double-Hydrophilic Block Copolymers in the Synthesis of Lanthanum-based Nanoparticles [J]. Colloids Surf. A, 2003, 217(1-3): 179-184.
    [42] D. B. Zhang, L. M. Qi, J. M. Ma. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions.[J]. Adv. Mater., 2002, 14(20): 1499-1502.
    
    [43] Y. R. Ma, L. M. Qi, J. M. Ma, et al. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer[J].Langmuir, 2003,19 (21): 9079-9085.
    [44] Y. R. Ma, L. M. Qi, J. M. Ma, et al. Facile Synthesis of Hollow ZnS Nanospheres in Block Copolymer Solutions [J]. Langmuir, 2003,19(9): 4040-4042.
    [45] L. M. Qi, J. Li, J. M. Ma. Biomimetic Morphogenesis of Calcium Carbonate in Mixed Solutions of Surfactants and Double-Hydrophilic Block Copolymers Advanced Materials [J]. Adv. Mater., 2002,14(4): 300-303.
    [46] D. B. Zhang, L. M. Qi, J. N. Ma, et al. Synthesis of Submicrometer-Sized Hollow Silver Spheres in Mixed Polymer-Surfactant Solutions[J]. Adv. Mater., 2002, 14(20): 1499-1502.
    [47] K. Wormuth. Suspenraar Magnetie Latex via Invesre Emulsion Polymerization[J]. J. Colloid Inter. Sci., 2001,241, 366-377.
    
    [48] Q. Sun, P. J. Kooyman, J. G. Grossmann, et al. The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure[J]. Adv. Mater.,2003, 15(13): 1097-1100.
    [49] J. Du, Y. Chen, et al. Organic/Inorganic Hybrid Vesicles Based on A Reactive Block Copolymer[J]. J Am. Chem. Soc, 2003,125(48): 14710-14711.
    [50] J. W. Ha, I. J. Park, S. B. Lee, et al. Preparation and Characterization of Core-Shell Particles Containing Perfluoroalkyl Acrylate in the Shell[J]. Macromolecules, 2002, 35(18): 6811-6818.
    [51] S. Kirsch, A. Doerk, E. Bartsch, et al. Synthesis and Characterization of Highly Cross-Linked Monodisperse Core-Shell and Inverted Core-Shell Colloidal Particles. Polystyrene/Poly(tert-butyl Acrylate) Core-Shell and Inverse Core-Shell Particles[J]. Macromolecules, 1999, 32(14): 4508-4518.
    [52] M. Antonietti, F. Grohn, J. Hartmann. Nonclassical Shapes of Noble-Metal Colloids by Synthesis in Microgel Nanoreactors[J]. Angew. Chem. Int. Ed., 1997, 36(19): 2080-2083.
    [53] F. Caruso., H. Lichtenfeld, H. Mhwald, et al. Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles[J]. J Am. Chem. Soc, 1998,120(33): 8523-8524.
    [54] F. Caruso, R. A. Caruso, H. Mhwald Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating[J]. Science, 1998, 282,1111-1114.
    [55] R. A. Caruso, A. Susha, F. Caruso. Multilayered Titania, Silica, and Laponite Nanoparticle Coatings on Polystyrene Colloidal Templates and Resulting Inorganic Hollow Spheres[J]. Chem Mater., 2001,13(2): 400-409.
    [56] A. S. Susha, F. Caruso, A. L. Rogach, et al. Formation of Luminescent Spherical Core-Shell Particles by the Consecutive Adsorption of Polyelectrolyte and CdTe(S) Nanocrystal on Latex Colloids[J]. Colloids and Surfaces A, 2000,163(1): 39-44.
    [57] F. Caruso, A. S. Susha, M. Giersig. Magnetic Core-Shell Particles: Preparation of Magnetite Multilayers on Polymer Latex Microspheres[J]. Adv. Mater., 1999,11 (11): 950-953.
    [58] Z. J. Liang, A. Susha, F. Caruso. Gold Nanoparticle-Based Core-Shell and Hollow Spheres and Ordered Assemblies Thereof[J]. Chem. Mater., 2003, 15(16): 3176-3183.
    [59] V. Valtchev. Core-Shell Polystyrene/Zeolite A Microbeads[J].Chem. Mater., 2002, 14, 956-958.
    [60] V. Valtchev. Silicalite-1 Hollow Spheres and Bodies with A Regular System of Macrocavities[J]. Chem. Mater., 2002,14(10): 4371-4377.
    [61] J. Ugelstad, P. C. Mork, R. Schmid, et al. Preparation and Biochemical and Biomedical Applications of new Monosized Polymer Particles[J]. Polym. Int., 1993, 30 (2): 157-168.
    [62] J. Ughelstad, T. Ellingsen, A. Berge, et al. WO 8303920, US 47742651 1983 2042221
    [63] M. Chen, J. Zhou, L. Xie, G. X. Gu, L. M. Wu. Facile Fabrication Method of PS/Ni Nanocomposite Spheres and Their Catalytic Property [J]. J. Phys. Chem. C, 2007, 111(32): 11829-11835.
    [64] D. B. Cairns, S. P. Armes. Synthesis and Characterization of Submicrometer-Sized Polypyrrole-Polystyrene Composite Particles [J]. Langmuir, 1999, 15(23): 8052-8058.
    [65] D. B. Cairns, S. P. Armes, M. ChehimiM, et al. X-Ray Photo Electron Spectroscopy Characterization of Submicrometer Sized Polypyrrole-Polystyrene Composites[J]. Langmuir, 1999,15(23): 8059-8066.
    [66] C. Barthet, S. P. Armes, S. F. Lascelles, et al. Synthesis and Characterization of Micrometer-Sized, Polyaniline-Coated Polystyrene Latexes[J]. Langmuir, 1998, 14(8): 2032-2041.
    
    [67] M. A. Khan, S. P. Armes. Synthesis and Characterization of Micrometer Sized Poly(3, 4-ethylene-dioxythio-phene)-Coated Polystyrene Latexes [J]. Langmuir, 1999,15(10): 3469-3475.
    [68] D. B. Cairns, M. A. Khan, C. Perruchot, et al. Synthesis and Characterization of Polypyrrole-Coated Poly(AlkylMethacry-late) Latex Particles [J]. Chem. Mater., 2003,15(1): 233-239.
    [69] M. A. Khan, S. P. Armes, C. Perruchot, et al. Surface Characterization of Poly(3, 4-ethylene-dioxythio-phene)-Coated Latexes by X-Ray Photoelectron Spectroscopy [J]. Langmuir, 2000,16(9): 4171-4179.
    [70] S. F. Lascelles, S. P. Armes. Synthesis and Characterization of Micrometersized Polypyrrole-Coated Polystyrene Latexes[J]. Adv. Mater., 1995,7(10): 864-866.
    [71] S. F. Lascelles, S. P. Armes. Synthesis and Characterization of Micrometre-sized, Polypyrrole-Coated Polystyrene Latexes[J]. J Mater. Chem. 1997, 7(8): 1339-1347.
    [72] S. F. Lascelles, S. P. Armes, P. A. Zhdan, et al. Surface Characterization of Micrometre-sized, Polypyrrole-coated Polystyrene Latexes: Verification of a " Core-Shell" Morphology [J]. J Mater. Chem., 1997, 7(8): 1349-1355.
    [73] M. A. Khan, S. P. Armes. Conducting Polymer-Coated Latex Particles[J]. Adv. Mater., 2000,12(9): 671-674.
    [74] Z. Niu, Z. Yang, Z. Hu, et al. Polyaniline-Silica Composite Conductive Capsules and Hollow Spheres[J].Adv.Funct.Mater.,2003,13(12):949-954.
    [75]Y.Yang,Y.Chu,F.Y.Yang,et al.Uniform hollow Conductive Polymer Microspheres Synthesized with the Sulfonated Polystyrene Template[J].Mater.Chem.Phy.2005,92(1):164-171.
    [76]Y.Yang,Y.Chu,Y.P.Zhang,et al.Polystyrene-ZnO Core-Shell Microspheres and Hollow ZnO Structures Synthesized with the Sulfonated Polystyrene Templates[J].J.Solid State Chem.,2006,179(2):470-475.
    [77]杨洋.聚苯乙烯模板的改性及核.壳材料制备的研究[D].长春:东北师范大学,2005.
    [78]黄俐研,杜江,刘正平,壳层可控导电聚吡咯-聚苯乙烯复合微球及聚吡咯中空微胶囊的制备[J].高等学校化学学报,2005,26(6):1186-1188.
    [79]黄俐研,张艳,刘正平,牛静芳,模板法制备明胶多孔微球[J].北京师范大学学报(自然科学版),2006,42(2):177-179.
    [80]H.M.Li,M.Z.Wang,L.Y.Song,X.W.Ge.Uniform Chitosan Hollow Microspheres Prepared with the Sulfonated Polystyrene Particles Templates[J].Colloid P01ym Sci.,2006,(300):527-529.
    [81]M.Narita,R.Nomura,et al.Synthesis of Star-Shaped Block Copolymer of Tetrahydrofuran and Methyl Methacrylate[J].Macromoleeules,2000,33(13):4979-4981.
    [82]J.G.Zhang,S.Q.Xu,E.Kumacheva.Polymer Microgels:Reactors for Semiconductor,Metal and Magnetic Nanoparticles IJ].J.Am.Chem.Soc.,2004,126(25):7908-7914.
    [83]S.Q.Xu,J.G.Zhang,E.Kumaeheva,et al.From Hybrid Microgels to Photonieerystals[J].Ady.Funct.Mater.,2003,13(6):468-472.
    [84]J.G.Zhang,N.Coombs,E.Kumaeheva,et al.A new Aproach to Hybrid Polymer-Metal and Polymer-Semicoductor Particles[J]Adv.Mater.,2002,14(23):1756-1759.
    [85]J.G.Zhang,N.Coombs,E.Kumaeheva,A New approach to Hybrid Nanocomposite Materials with Periodic Structures[J].J.Am.Chem.Soc.,2002,124(49):14512-14513.
    [86]J.G.Zhang,S.Q.Xu,E.Kumacheva.Photogeneration of Fluoresecnt Silver Nanoclusters in Polymer Microgels[J].Adv.Mater.,2005,17(19):2336-2340.
    [87]A.Pich,J.Hain,Y.Lu,et al.Hybrid Microgels with ZnS Inclusions[J]. Macromolecules,2005,38(15):6610-6619.
    [88]W.Franziska,A.Pieh.Fabrication of Thermo-Responsive Hybrid Hydrogels by In-Situ Mineralization and Self-Assembly of Microgel Particles[J].Macromol.Rapid Commun.,2006,27,(21):1865-1872.
    [89]C.L.Bai,Y.Fang,Y.Zhang,et al.Synthesis of Novel Metal Sulfide-polymer Composite Mierospheres Exhibiting Patterned Surface Structures[J].Langmuir,2004,20(1):263-265.
    [90]Y.Fang,C.L.Bai,Y.Zhang.Preparation of Metal Sulfide-polymer Composite Microspheres with Patterned Surface Structures[J].Chem.Commun.,2004,(4):804-805.
    [91]Y.Zhang,Y.Fang,H.Y.Xia,et al.Preparation of AgCl-Polyacrylamide Composite Microspheres via Combination of a Polymer Mierogel Template and a Reverse Mieelle Technique[J].J.Colloid Interface Sei.2006,300(1):210-218.
    [92]Y.Zhang,Y.Fang,S.Wang,et al.Preparation of Spherical Nanostructured Poly(methaerylie aeid)/PbS Composites by a Microgel Template Method[J].J.Colloid and Interface Sci.,2004,272(2):321-325.
    [93]J.X.Yang,Y.Fang,D.D.Hu,et al.CuS-Poly(N-isopropylacryl-amide-co-acrylic Acid) Composite Microspheres with Patterened Surface Structures:Preparation and Characterization[J].Chinese Science Bulletin,2004,49(19):2026-2032.
    [94]白超良,王姗,张颖,房喻.微凝胶模板法制备PNIPAM/PbS有机.无机复合微球[J].陕西师范大学学报(自然科学版),2003,31(4):62-66.
    [95]张颖,房喻,林书玉等.纳米结构型复合微球的微凝胶模板法制备研究[J].物理化学学报,2004,20(专刊):897-901.
    [96]吴华涛,张颖,宁向莉,梁红莲,房喻核.壳结构P(AM-co-MAA)-W-Ag复合微球的制备[J].物理化学学报,2008,24(4):646-652.
    [97]F.Zhou,S.Li,C.D.Vo,J.J.Yuan,S.Chai,Q.Gao,S.P.Armes,C.Lu,S.Cheng.Biomimetic Deposition of Silica Templated by a Cationic Polyamine-Containing Microgel[J].Langrnuir,2007,23(19):9737-9744.
    [98]A.Picha,Y.Lua,H.-J.Adler,et al Thermo-Sensitive Poly(N-vinylcaprolactam-co-acetoacetoxyethyl methacrylate) Microgels:2.Incorporation of Polypyrrole [J].Polymer,44(2003):7651-7659.
    [99]A.Picha,Y.Lua,H.-J.Adler,et al.Thermo-sensitive poly(N-vinyleaprolactam-co-aeetoaeetoxyethyl methacrylate) microgels.3.Incorporation of Polypyrrole by Selective Microgel Swelling in Ethanol-Water Mixtures[J].Polymer,45(2004):1079-1087.
    [100]M.Peng,H.J.Wang,Y.Chen.Encapsulation of Microgels with Polystyrene(PS):A novel Method for the Preparation of Hollow PS Particles[J].Materials Letters 62(2008):1535-1538.
    [101]J.Kim,S.Choi,P.Lillehei,et al.Cobalt Oxide Hollow Nanoparticles Derived by Bio-Templating[J].Chem.Commun.,2005,5(32):4101-4103.
    [102]S.Fujikawa,T.Kunitake.Surface Fabrication of Hollow Nanoarchitectures of Ultrathin Titania Layers from Assembled Latex Particles and Tobacco Mosaic Viruses as Templates[J].Langmuir,2003,19(16):6545-6552.
    [103]李桂村,王卫伟,张志.纳米卡拉胶微球的制备[J].青岛科技大学学报,2003,24(1):45-47.
    [104]K.Molvinger,F.Quignard,C.Brunel,et al.Porous Chitosan-Silica Hybrid Microspheres as a Potential Catalyst[J].Chem.Mater.,2004,16(17):3367-3372.
    [105]V.Pedroni,P.C.Schulz,F.Gschaider,et al.A Chitosan-Templated Monolithic Siliceous Mesoporous-macroporous Material[J].Colloid Polym Sci,2000,278(10):964-971.
    [106]M.R.Ayers,A.J.Hunt.Synthesis and Properties of Chitosan-Silica Hybrid aerogels[J].J Non-Cryst.Solids,2001,285(1-3):123-127.
    [107]C.Airoldi,J.Monteiro,A.C.Oyrton.Chitosan-Organosilane Hybrids-Syntheses,Characterization,Copper Adsorption,and Enzyme Immobilization[J].J Appl.Polym.Sci.,2000,77(4):797-804.
    [108]Y.W.Zhang,Z.X.Wang,Y.S.Wang,J.X.Zhao,C.X.Wu.Facile Preparation of pH-Responsive Gelatin-Based Core-Shell Polymeric Nanoparticles at High Concentrations via Template Polymerization[J].Polymer,2007,48(19):5639-5645.
    [109]汪山献松,路平,张幼维,吴承训原位自组装明胶/PAA纳米微球[J].材料科学与工程学报2007,25(5),662-667.
    [110]A.S.Angelatos,B.Radt,F.Caruso.Light-Responsive Polyelectrolyte/Gold Nanoparticle Microcapsules[J].J.Phys.Chem.B,2005,109(7):3071-3076.
    [111]H.X.Guo,X.P.Zhao,H.L.Guo,Q.Zhao.Preparation of Porous SiO_2/Ni/TiO_2Multicoated Microspheres Responsive to Electric and Magnetic Fields[J].Langmuir,2003,19(23):9799-9803.
    [112]J. F. Quinn, F. Caruso. Thermoresponsive Nanoassemblies: Layer-by-Layer Assembly of Hydrophilic-Hydrophobic Alternating Copolymers[J]. Macromolecules, 2005,38(8): 3414-3419.
    [113] A. Kondo, H. Fukuda. Preparation of Thermo-sensitive Magnetic Microspheres and their Application to Bioprocesses[J]. Colloids Surf. A, 1999, 153(1-3): 435-438.
    [114] P. Judeinstein, C. Sanchez, Hybrid Organic-Inorganic Materials: A Land of Multidisciplinarity[J]. J. Mater. Chem., 1996, 6(4): 511-525.
    [115] S. Shinkai, A. Friggeri, J. C. Kjeld, van Bommel. Organic Templates for the Generation of Inorganic Materials[J]. Angew. Chem. Int. Ed., 2003, 42(9): 980-999.
    [116] S. Mann. The Chemistry of Form[J]. Angew. Chem. Int. Ed, 2000, 39(19): 3392-3406.
    [117] W. L. Murphy, D. J. Mooney. Bioinspired Growth of Crystalline Carbonate Apatite on Biodegradable Polymer Substrate[J]. J. Am. Chem. Soc., 2002,124(9): 1910-1917.
    [118] R. A. Caruso, M. Antonietti. Sol-Gel Nanocoating: An Approach to the Preparation of Structured Materials[J]. Chem. Mater., 2001,13(10): 3272-3282.
    [119] N. Kawahshi, E. Matijevic. Interaction between Phosphine Oxide Surfactant Layers Adsorbed on Hydrophobed Mica[J]. J. Colloid Interface Sci., 1991,143(1): 1-8.
    [120] J. Aizenberg, A. J. Black, G. Whitesides. Control of Crystal Nucleation by Patterned Self-Assembled Monolayers[J]. Nature, 1999, 398, 495-498.
    [121] J. J. Storhoff, C. A. Mirkin. Programmed Materials Synthesis with DNA[J]. Chem. Rev. 1999, 99(7): 1849-1862.
    [122] N. C. Woodward, M. J. Snowden, B. Z. Chowdhry. Measurement of the Interaction Forces between Poly(iV-isopropylacrylamide-acrylic acid) Microgel and Silica Surfaces by Colloid Probe Microscopy [J]. Langmuir, 2002, 18(6): 2089-2095.
    [123] S. A. Davis, S. L. Burkett, N. H. Mendelson. Mann, S. Bacterial Templating of Ordered Macrostructures in Silica and Silica-surfactant Mesophases[J].Nature, 1997, 385,420-423.
    [124] D. H. W. Hubert, M. Jung, A. L. German. Vesicle Templating[J]. Adv. Mater., 2000,12(17):1291-1294.
    [125]S.J.Cooper,R.B.Sessions,S.D.Lubetkin.A new Mechanism for Nucleation beneath Monolayer Films[J].J.Am.Chem.Soc.,1998,120(9):2090-2098.
    [126]E.Braun,Y.Eichen,U.Sivan,G.Ben-Yoseph.DNA-templated Assembly and Electrode Attachment of a Conducting Silver Wire[J].Nature,1998,391,775-778.
    [127]B.R.Saunders,B.Vincent.Microgel Particles as Model Colloids:Theory,Properties and Applications[J].Adv.Colloid Interface,1999,80(1):1-25.
    [128]W.Funke,O.Okay,B.Joos-Müller.Microgels-Intramolecularly Crossünked Macromolecules with a Globular Structure[J].Adv.Polym.Sci.,1998,136,139-234.
    [129]M.J.Murray,M.J.Snowden.The Preparation,Characterisation and Applications of Colloidal Microgels[J].Adv.Colloid Interface Sci.,1995,54(3):73-91.
    [130]A.Z.Pich,H.Adler.Composite Aqueous Microgels:An Overview of Recent Advances in Synthesis,Characterization and Application[J].Polym.Int.,2007,56(3):291-307.
    [131]M.Das,H.Zhang,E.Kumacheva.Microgels:Old Materials with New AppliCations[J].Annu.Rev.Mater.Res.,2006,36,117-142.
    [132]I.Martinez-Rubio,T.G.Ireland,G.R.Fern,J.Silver,M.J.Snowden.A New Application for Microgels:Novel Method for the Synthesis of Spherical Particles of the Y_2O_3:Eu Phosphor Using a Copolymer Microgel of NIPAM and Acrylic Acid[J].Langmuir,2001,17(22):7145-7149.
    [133]M.Kuang,D.Wang,M.Gao,J.Hartmann,H.Mohwald.A Bio-Inspired Route to Fabricate Submicrometer-Sized Particles with Unusual Shapes-Mineralization of Calcium Carbonate within Hydrogel Spheres[J].Chem.Mater.,2005,17(3):656-660.
    [134]M.Yang,J.Ma,F.Lu,et al Phenolic Resin and Derived Carbon Hollow Spheres[J].Macromol.Chem.Phys.,2006,207(18):1633-1639.
    [135]N.Nishat,S.Ahmad,T.Ahamad.Synthesis and Characterization of Antibacterial Polychelates of Urea-formaldehyde Resin with Cr(Ⅲ),Mn(Ⅱ),Fe(Ⅲ),Co(Ⅱ),Ni(Ⅱ),Cu(Ⅱ),and Zn(Ⅱ) Metal ions[J].J.Appl.Polym.Sci.,2006,100(2):928-936.
    [136]周文瑞,李建章,李文军等.脲醛树脂胶粘剂及其制品低毒化研究新进展[J].中国胶粘剂,2003,13(1):54-58.
    [137]M.H.Swann,G.G.Esposito.Determination of Urea-Formaldehyde Resins in Coatings via Urea Analysis[J].Anal.Chem.,1956,28(12):1984-1984.
    [138]雷姝蕾,黄国才,周瑞林,杨屹,于世林.动力学增强填料—脲醛树脂与二氧化锆复合物微球的合成[J].离子交换与吸附,2000,16(6):500-507.
    [139]G.Sun,Z.Zhang.Mechanical Strength of Microcapsules Made of Different Wall Materials[J].Int.J.Pharm.,2002,242(1-2):307-311.
    [140]M.Sinibaldi,L.Castellan,F.Federici,A.Messina,A.M.Girelli,A.Lentini,E.Tesarova.New Organic Monosized Microspheres for Use in Enantiomer Separations by High-Performance Liquid Chromatography[J].J.Liq.Chromatogr.,1995,18(16):3187-3203.
    [141]X.F.Sun,Z.K.Chai.Urea-Formaldehyde Resin Monolith as a New Packing Material for Affinity Chromatography[J].J.Chromatogr.A,2001,943(2):209-218.
    [142]Z.X.Hao,B.Guo,L.H.Gan,Z.X.Xu,L.W.Chen.Synthesis of Mesoporous Silica using Urea-formaldehyde Resin as an Active Template[J].Microporous Mesoporous Mater.,2006,95(1-3):359-359.
    [143]郭彬,刘辉,郝志显,甘礼华,徐子颉,陈龙武.原位合成的活性脲醛树脂作为模板剂制备二氧化硅介孔材料[J].化学学报,2006,64(8):756-760.
    [144]Z.G.Shi,L.Y.Xu,Y.Q.Feng.A new Template for the Synthesis of Porous Inorganic Oxide Monoliths[J].J.Non-Cryst.Solid.,2006,352(38-39):4003-4007.
    [145]I.S.Chuang,G.E.Maciel.Carbon-~(13)CP/MAS NMR Study of the Structural Dependence of Urea-Formaldehyde Resins on Formaldehyde to Urea Molar Ratios at Different Urea Concentrations and pH Values[J].Macromolecules,1992,25(12):3204-3226.
    [146]丁明惠,硕士论文,脲醛树脂微胶囊的制备及应用研究[D]哈尔滨:哈尔滨工程大学,2006.
    [147]李爱萍,阚成友,杜奕,刘德山.脲醛树脂合成反应过程的FTIR研究[J].物理化学学报,2006,22(7):873-877.
    [148]J.F.Zhu,Y.J.Zhu.Microwave-Assisted One-Step Synthesis of Polyacrylamide-Metal(M-Ag,Pt,Cu) Nanocomposites in Ethylene Glycol[J].J.Phys.Chem.B,2006,110(17):8593-8597.
    [149]Y.G.Sun,Y.N.Xia.Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction[J]. Nano Lett.,2003,3(11):1569-1572.
    [150]C.C.Huang,Z.Yang,H.T.Chang.Synthesis of Dumbbell-Shaped Au-Ag Core-Shell Nanorods by Seed-Mediated Growth under Alkaline Conditions[J].Langmuir,2004,20(15):6089-6092.
    [151]Y.G.Sun,B.Wiley,Z.Y.Li,Y.N.Xia.Synthesis and Optical Properties of Nanorattles and Multiple-Walled Nanoshells/Nanotubes Made of Metal Alloys[J].J.Am.Chem.Soc.2004,126(30):9399-9406.
    [152]谈勇,杨可靖,曹跃霞,周蓉,陈明,钱卫平.聚苯乙烯光子晶体的制备及其在传感中的应用.[J].化学学报,2004,62(20):2089-2092.
    [153]Y.G.Sun,Y.N.Xia.Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J].Science,2002,298,2176-2179.
    [154]P.Schuetz,F.Caruso.Semiconductor and Metal Nanoparticle Formation on Polymer Spheres Coated with Weak Polyelectrolyte Multilayers[J].Chem.Mater.,2004,16(16),3066-3073.
    [155]S.Link,M.Elsayed.Shape and Size Dependence of Radiative,Non-Radiative and Photothermal Properties of Gold Nanocrystals[J].Int.Rev.Phys.Chem.,2000,19(3):409-453.
    [156]L.Z.Wang,Y.Ebina,K.Takada,T.Sasaki.Ultrathin Hollow Nanoshells of Manganese Oxide[J].Chem.Commun.,2004,4(9):1074-1075.
    [157]Y.D.Jin,S.J.Dong.One-Pot Synthesis and Characterization of Novel Silver-Gold Bimetallic Nanostructures with Hollow Interiors and Bearing Nanospikes [J].J.Phys.Chem.B 2003,107(45):12902-12905.
    [158]谈勇,丁少华,王毅,钱卫平.金纳米壳球体的制备及其潜在的生物学应用[J].化学学报,2005,63(10),929-933.
    [159]K.Chatterjee,S.Banerjee,D.Chakravorty.Plasmon Resonance Shifts in Oxide-coated Silver Nanoparticles[J].Phys.Rev.B,2002,66,(8):085421-7.
    [160]M.Y.Hong,H.C.Yoon,H.S.Kim.Protein-Iigand Interaction at Poly(amidoamine)Dendrimer Monolayers on Gold[J].langmuir,2003,19(11):4866-4566.
    [161]M.Narita,R.Nomura,I.Tomital,et al.Synthesis of Star-shaped Block Copolymer of Tetrahydrofuran and Methylmethaerylate[J].Macromoleeules,2000,33(13):4979-4981.
    [162]C.Ménager,O.Sandre,J.Mangili,et al.Preparation and Swelling of Hydrophilic Magnetic Microgels[J]. Polymer, 2004, 45(8): 2475-2481.
    [163] J. Li, B. Liu, J. H. Li. Controllable Self-Assembly of CdTe/Poly (N-isopropylacrylamide-acrylic acid) Microgels in Response to pH Stimuli [J]. Langmuir, 2006, 22(2): 528-531.
    [164] T. Yonezawa, T. Kunitake. Practical Preparation of Anionic Mercapto ligand-stabilized gold nanoparticles and their Immobilization [J]. Colloids Surf. A, 1999,149(1-3): 193-199.
    [165] D. Suzuki, H. Kawaguchi. Gold Nanoparticle Localization at the Core Surface by Using Thermosensitive Core-Shell Particles as a Template[J]. Langmuir, 2005, 21(25): 12016-12024.
    [166] M. S. Fleming, T. K. Mandal, D. R. Walt. Nanosphere-Microsphere Assembly: Methods for Core-Shell Materials Preparation[J]. Chem. Mater., 2001, 13(6): 2210-2216.
    [167] S. M. Klein, V. N. Manoharan, D. J. Pine, F. F. Lange. Synthesis of Spherical Polymer and Titania Photonic Crystallites [J]. Langmuir, 2005, 21(15): 6669-6674.
    [168] H. trohm, P. Lobmann. Porous TiO_2 Hollow Spheres by Liquid Phase Deposition on Polystyrene Latex-stabilised Pickering Emulsions[J]. Mater. Chem., 2004, 14(17): 2667-2673.
    [169] X. Hong, J. Li, M. Wang, J. Xu, et al. Fabrication of Magnetic Luminescent Nanocomposites by a Layer-by-Layer Self-Assembly Approach [J]. Chem. Mater., 2004,16(21): 4022-4027.
    [170] M. Cavallini, J. Gomez-Segura, D. Ruiz-Molina, M. Massi, et al. Magnetic Information Storage on Polymers by Using Patterned Single-Molecule Magnets [J]. Angew. Chem. Int. Ed., 2005, 44(6): 888-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700