荧光磁性纳米微球的制备、表征及其初步应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统地开展了荧光磁性纳米微球的制备、表征以及初步应用等方面的工作,内容涉及亲水性Fe3O4磁流体的制备与表征;稀土配位的荧光磁性纳米微球Fe3O4@PHEMA-RE(RE=Sm, Eu, Tb, Dy)的制备与表征;合成了核中掺杂Dy的核壳结构的荧光磁性纳米微球Dy:Fe3O4@PHEMA-Tb;并就荧光磁性微球Dy:Fe3O4@PHEMA-Tb在蛋白标记和作为药物载体方面的初步应用进行了研究。具体说来,主要取得以下几方面的创新性研究成果:
     首先,本实验通过改进化学共沉淀法,采用将Fe3+和Fe2+溶液按n(Fe3+)/n(Fe2+)摩尔比例为1.5:1混合,为防止Fe3O4被包覆时会有Na+被同时包覆,所以不用NaOH而用NH3·H20作为沉淀剂,亲水性很强的具有良好生物相容性的PEG-4000作为表面活性剂,形成稳定磁流体;实验的反应温度控制在35~40℃,pH=6~8等温和条件下可以得到最佳产物;经单因素预实验和三水平四因素正交实验确定了影响制备磁流体性能的主要参数,讨论了n(Fe3+)/n(Fe2+)摩尔比例,沉淀剂种类和用量,表面活性剂种类和用量,反应温度,搅拌速度,超声波分散等因素对形成磁流体影响,简化了制备过程,优化了制备条件;并对制备产物进行了表征,磁性纳米微球的磁含量为22.3%,微球的平均粒径为22.3 nrn,多分散系数为0.26,比饱和磁化强度为60.2 emu/g,无矫顽力和剩磁,产物具有超顺磁性。
     其次,在亲水性Fe3O4磁流体中,以甲基丙烯酸-2-羟基乙酯(HEMA)为单体,N,N-亚甲基双丙烯酰胺(MBA)为交联剂,不加任何引发剂和乳化剂,采用光化学原位聚合合成了磁性聚甲基丙烯酸-2-羟乙酯(PHEMA)微球,并设计三水平四因素正交实验确定了Fe3O4@PHEMA的最佳工艺条件,讨论了磁流体与单体摩尔比,交联剂与单体摩尔比,光照时间,反应温度,搅拌速度等对磁性聚合物微球的影响。利用稀土离子易发光特性,将稀土离子与聚合单体进行配合作用,得到粒子的平均粒径在20~30nm之间,大小均匀,分散性好,具有超顺磁性的荧光磁性双功能纳米微球,对光化学原位聚合包覆过程中产生自由基引起链增长和稀土离子与聚合单体的配合作用可能机理进行了深入探讨。
     为了提高荧光磁性微球在实际应用中磁响应性,在磁核Fe3O4铁氧体的制备过程中掺杂磁矩高于铁的Dy3+,成功制备镝铁氧体磁流体,由于镝的加入改变了磁性阳离子在晶体内部的分布状况,提高了铁氧体磁性,进而获得粒度更小、且分布更均匀,比饱和磁化强度更高、矫顽力较低的超顺磁性荧光磁性纳米微球,与没有加Dy3+相应的磁性微球,荧光磁性微球进行了对比讨论,得到了令人满意的结果,拓展了其在生物医药领域的应用空间。
     同时探讨了荧光磁性微球在荧光标记和作为靶向药物载体方面的初步应用。由于在医学领域临床诊断和治疗是两个必要步骤,因此说荧光磁性微球对BSA的标记,是为临床诊断提供了理论依据,荧光磁性微球的靶向载药性,是为临床治疗提供方法参考。
     利用荧光磁性微球中稀土离子具有多种荧光特性、发光效率高、荧光寿命长、Stock's位移大之特点,在温和条件下,用一定量的磁性微球Dy:Fe3O4@PHEMA,稀土离子Tb3+溶液,BSA混合合成了一种荧光磁性蛋白微球,通过红外光谱讨论了此微球表面高分子聚合物结构;荧光光谱测试发现,与Dy:Fe3O4@PHEMA-Tb相比,BSA的加入显著增强磁性微球的荧光性,荧光强度的增加量与BSA浓度在一定范围内成线性关系;在一定pH下,实现了磁性微球对BSA的荧光标记。因此,荧光磁性纳米微球Dy:Fe3O4@PHEMA-Tb作为荧光探针,是具有较高的灵敏度和选择性标记BSA的新方法,该法简单、快捷,且测定过程无毒和无放射性之优点,所以它必将成为临床BSA检测的新型探针。
     利用荧光磁性微球掺杂Dy3+的铁氧体磁核具有很好磁响应性之特点,按照最佳配比将磁性微球Dy:Fe3O4@PHEMA,稀土离子Tb3+,抗肿瘤广谱药物丝裂霉素C(MMC)在一定条件下反应,制备了具有较高载药量和包封率的荧光磁性药物微球;实验发现,pH值对荧光磁性药物微球制备影响显著,荧光磁性药物微球在体外不同的pH值下释放率差别很大,并具有明显的磁响应性;荧光磁性药物微球制备方法简单,载药性好,缓释性好,可用作靶向给药载体,是胃肠道肿瘤治疗的好方法。
     对制得每一个实验样品,均用光子相关光谱仪、红外光谱仪、紫外光谱仪、扫描电子显微镜、荧光光谱仪、振动样品磁强计、热失重分析仪等进行了全面表征,了解荧光磁性纳米微球的结构、组成、形态、磁学特性和荧光特性,为荧光磁性纳米微球作为蛋白标记和药物载体以及更为广泛的应用奠定了方法上的基础。
In the present paper, we systematically study the preparation, characterization and primary application of the fluorescent magnetic nano-microspheres, which involved the preparation and characterization of hydrophilic Fe3O4 magnetic fluid, the preparation and characterization of rare earth coordinated fluorescent magnetic nano-microspheres Fe3O4@PHEMA-RE(RE=Sm,Eu,Tb,Dy), the synthesis of Dy:Fe3O4@PHEMA-Tb doped with Dy core-shell structures and its primary application in protein labeling and as drug carriers. Concretely, we have achieved several innovative achievements as follows:
     Firstly, we improved the chemical co-precipitation method and mixed Fe3+ with Fe2+ in proportion as 1.5:1 (n(Fe3+)/n(Fe2+)). We used NH3·H2O as precipitator rather than NaOH and PEG-4000 with high hydrophility and compatibility as surfactant to form stable magnetic fluid to avoid Na+ being coated with Fe3O4. As the reaction temperature was controlled at 35-40℃and PH at 6-8, we got the best product. Depending on the single element preliminary experiment and three levels-four elements orthogonal experiment, we decided the main parameters that affected the performance of the magnetic fluid in preparation, discussed the influences that the mole ratio of Fe3+ and Fe2+(n(Fe3+)/n(Fe2+)), the kinds and concentrations of precipitant and surfactant, reaction temperature, stirring velocity, ultrasonic dispersing had on formation of the magnetic fluid respectively. Besides, we simplified the preparation process, optimized the preparation conditions and conducted the characterization work of the product. As a result, we got magnetic nano-microspheres with a magnetism content to be 22.3%, average size 22.3 nm, polydispersity index 0.26, specific saturation magnetization 60.2 emu/g and without coercive force and remanent magnetism. The product had superparamagnetism.
     Secondly, we synthesized the magnetic PHEME microspheres using the photochemical in situ polymerization method. In the experiment, we used HEMA as monomer, MBA as crosslinking agent and carried it out without any initiator and emulsifier in the hydrophilic Fe3O4 magnetic fluid. Meanwhile, we devised a three levels-four elements orthogonal experiment to decide the best process conditions for Fe3O4@PHEMA and discussed the influences of the mole ratio of magnetic fluid and monomer, the mole ratio of crosslinking agent and monomer, illumination time, reaction temperature and stirring velocity had on the magnetic microspheres respectively. Based on the luminescence-prone property of rare earth ion, after its coordination reaction with monomer we got the dual functional superparamagnetic fluorescent magnetic nano-microspheres with an average size between 20nm and 30nm and a high dispersivity. The possible mechanisms for the chain increase caused by the generation of free radicals and the coordination reaction between rare earth ions and monomers were deeply studied.
     To improve the magnetic responsibility of this fluorescent magnetic microspheres in application, we doped Dy3+ whose magnetic moment is higher than iron and then prepared the dysprosium-ferrite magnetic fluid successfully. The addition of Dy changed the distribution of the positive charged magnetic ion, enhanced the magnetism of the ferrite and thus guaranteed the acquisition of the superparamagnetic fluorescent magnetic nano-microspheres with smaller range of size, more even distribution, higher specific saturation magnetization and lower coercive force. Through the comparison and discussion about the fluorescent magnetic microspheres with and without Dy3+, we got satisfying results and thus expanded its application space in biological and medical areas.
     At the meantime, we discussed the primary application of the fluorescent magnetic microspheres in fluorescence labeling and as targeted drug carriers. As clinical diagnosis and treatment are two indispensable steps in medical field, labeling BSA with fluorescent magnetic microspheres offered a theoretical basis for clinical diagnosis and the ability to be targeted drugs carriers that the fluorescent magnetic microspheres had provided a reference in method for clinical treatment.
     Rare earth ions in the fluorescent magnetic microspheres have some characteristics like containing several fluorescent properties, a high luminescence efficiency, a long life span of fluorescence and a long Stock's displacement. These characteristics were used to mix rare earth Tb3+ with a certain dose of magnetic microspheres Dy:Fe3O4@PHEMA and BSA to synthesize a kind of fluorescent magnetic protein microspheres. Depending on the Infrared Spectrum, we discussed the structure of macromolecular polymer on the surface of the microspheres. And the Fluorescence Spectrum indicated that compared with Dy:Fe3O4@PHEMA, the addition of BSA increased the magnetic microspheres'fluorescence significantly and the increase of fluorescence intensity was in linear relationship with the concentration of BSA in a certain range. Besides, we successfully conducted the fluorescent labeling to the magnetic microspheres under a certain PH. Therefore, it is a new way which has a high sensitivity and more alternative in labeling BSA that the fluorescent magnetic nano-microspheres Dy:Fe3O4@PHEMA-Tb is used as fluorescent probe. This simple and quick way with advantages of no toxicity and no radioactivity is sure to be a novel probe used in clinical BSA examination.
     Because the fluorescent magnetic microspheres doped with Dy3+ had magnetic ferrite core with high magnetic responsibility, we prepared fluorescent magnetic microspheres with drugs which had a high drug loading capacity and embedding ratio when Dy:Fe3O4@PHEMA, Tb3+, and anti-tumor broad-spectrum medicine MMC reacted under a certain condition. The result show that PH has a great effect on the preparation of the fluorescent magnetic microspheres with drugs, as in vitro, they would have a great difference in release ratio under different PH and has a very remarkable magnetic responsibility. To sum up, the way we used here is simple, having a satisfying drug loading capacity as well as relaxation ability and therefore can be used as drug carrier. It is a good way in gastroenteric tumor treatment.
     Every sample we prepared was overall characterized using photon correlation spectroscopy, infrared spectroscopy, ultraviolet spectroscopy, scanning electron microscope, fluorescence spectroscopy, vibration sample magnetometer, thermogravimetry analysis and so on. It is a must as well that understanding the fluorescent magnetic nano-microspheres' structure, composition, morphology, magnetic properties and fluorescent properties. So it will lay a foundation in method for the fluorescent nano-microspheres functioning as protein labels and drug carriers.
引文
[1]张立德,牟季美.纳米材料和纳米结构[M],北京:科学出版社,2001,1-20.
    [2]崔大祥.纳米材料在肿瘤生物治疗中的潜在应用[J],中国肿瘤生物治疗杂志,2006,13(2):79-82.
    [3]张阳德.纳米生物技术在外科的临床应用[J],中国内镜杂志,2006,12(10):1009-1013.
    [4]张亚臣,吕宝经,赵美华,等.纳米药物载体在临床医学中的应用[J],临床内科杂志,2004,21(7):502-503.
    [5]张阳德.我国纳米生物技术的医学应用及研究进展[J],中国医学科学院学报,2006,28(4):579-582.
    [6]刘冰,王忠义,陈鹏,等.纳米羟基磷灰石复合胶原材料骨膜下引导成骨及可吸收性的研究[J],实用口腔医学杂志,2005,21(6):835-836.
    [7]Colvin V L. The potential environmental impact of engineered nanomaterials [J], Nature Biotechnology,2003,21(10):1166-1170.
    [8]Gao H, Cui D. Interaction mechanisms of nanomatetial with tissue cells [J], J. Am. Chem. Soc.,2003,225(U982),199-IEC.
    [9]刘光华.稀土材料与应用技术[M],北京:化学工业出版社,2005,217-220.
    [10]严密,彭晓领.磁学基础与磁性材料[M],杭州:浙江大学出版社,2006,12-15.
    [11]Lu An-Hui, Salabas E L, Ferdi Schiith. Magnetic nanoparticles:synthesis,protection, founctionalization, and application [J], Angewandte Chemie International Edition,2007, 46(8):1222-1244.
    [12]Kittel C. Theory of the structure of ferromagnetic domains in films and small particles [J], Physical Review,1946,70(11-12):965-971.
    [13]Lee J, Isobe T, Senna M. Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation [J], Colloids and Surfaces A:Physicochemical and Engineering Aspects,1996,109,121-127.
    [14]Leslie-Pelecky D L, Rieke R D. Magnetic properties of nanostructured materials [J], Chem. Mater.1996,8(8):1770-1783.
    [15]邱细敏.分析化学[M],北京:中国医药科技出版社,2006,174-184.
    [16]曾泳淮,林树昌.分析化学[M],北京:高等教育出版社,2004,161-163.
    [17]刘光华.稀土材料与应用技术[M],北京:化学工业出版社,2005,294-295.
    [18]郑子樵,李红英.稀土功能材料[M],北京:化学工业出版社,2003,173-174.
    [19]李建宇.稀土发光材料及其应用[M],北京:化学工业出版社,2003,11-14.
    [20]Jorgensen C, Judd B R. Hypersensitive pseudoquadrupole transitions in ianthanides [J], Molecular Physics,1964,8,281-290.
    [21]Henrie D E, Fellows R L, Choppin G R. Hypersensitivity in the electronic transitions of lanthanide and actinide complexes [J], Coord. Chem. Rev.,1976,18(2):199-224.
    [22]傅妮娜,王红,张华山.近红外荧光探针及其在生物分析中的应用进展[J],分析科学学报,2008,24(2):233-239.
    [23]Blasse G, Grabmaier B C. Luminescent materials [M], New York:Springer-Verlag, Beilin Heidelberg,1994.
    [24]李光植.铕、铽离子掺杂的核-壳结构发光材料的制备及发光性能研究[D],长春:东北师范大学研究生院,2007,11-13.
    [25]Tartaj P, Morales M P, Gonzalez-Carreno T. Advances in magnetic nanoparticles for biotechnology applications [J], J. Magn. Magn. Mater.,2005,290-291,28-34.
    [26]Wells R L, Gladfelter W L. Pathways to nanocrystalline Ⅲ-Ⅴ(13-15) compound semiconductors [J], Journal of Cluster Science,1997,8(2):217-238.
    [27]叶向阳,郭奇珍.模板合成新进展[J],化学通报,1996,59(2):1-6.
    [28]张立德,解思深.纳米材料和纳米结构[M],北京:化学工业出版社,2005,395-424.
    [29]McKay I C, Forman D, White R G. A comparison of fluorescein isothiocyanate and lissamine rhodamine (RB 200) as labels for antibody in the fluorescent antibody technique [J], Immunology,1981,43(3):591-602.
    [30]Benchaib A, Delorme R, Pluvinage M, et al. Evaluation of five green fluorescence-emitting streptavidin-conjugated fluorochromes for use in immuno fluorescence microscopy [J], Histochemistry and Cell Biology,1996,106(2):253-256.
    [31]康娟,张新祥.荧光纳米颗粒标记免疫分析[J],化学进展,2006,18(11):1523-1529.
    [32]徐小妹,许孙曲.新型脂质体铁磁流体复合体[J],生物化学与生物物理进展,1996,23(1):93.
    [33]Qiu G M, Xu Y Y, Zhu B K. Novel, fluorescent, magnetic, polysaccharidebased microsphere for orientation, tracing, and anticoagulation, preparation and characterization [J], Biomacromolecules,2005,6(2):1041-1047.
    [34]Santra S, Bagwe R P, Dutta D, et al. Synthesis and characterization of fluorescent, radio-opaque, and paramagnetic silica nanoparticles for multimodal biomaging applications [J], Adv. Mater.,2005,17(18):2165-2169.
    [35]陈小兰,邹健莉,刘丽花,等.酞菁修饰的磁性二氧化硅纳米管制备及其应用[J],高等学校化学学报,2008,29(4):736-738.
    [36]Zhang J H, Ding X B. Synthesis and Characterization of novel magnetic polymer microspheres with photoconductivity [J], J. Appl. Polym. Sci.,2002,85(12):2609-2614.
    [37]Lin Y S, Wu S H, Hung Y, et al. Multifunctional composite nanoparticles:magnetic, luminescent, and mesoporous [J], Chem.Mater.,2006,18(22):5170-5172.
    [38]Zhang Y, Kohler N, Zhang M Q, et al. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake [J], Biomaterials,2002,23(7): 1553-1561.
    [39]何晓晓,王柯敏,谭蔚泓,等.超顺磁性DNA纳米富集器应用于痕量寡聚核苷酸的富集[J],高等学校化学学报,2003,24(1):40-42.
    [40]Lee J H, Jun Y W, Yeon S I, et al. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma [J], Angew. Chem.Int.Ed., 2006,45,8160-8162.
    [41]You X, He R, Gao F, et al. Hydrophilic high-luminescent magnetic nanocomposites [J], Nanotechnology,2007,18(3):035701.
    [42]Du G. H, Liu Z L, Lu Q H, et al. Fe3O4/CdSe/ZnS magnetic fluorescent bifunctional nanocomposites [J], Nanotechnology.2006,17 (12):2850-2854.
    [43]Sathe T R, Agrawal A, Nie S. Mesoporous silica beads embedded with semiconuctor quantum dots and iron nanocrystals:dual-function microcarriers for optical encoding and magnetic separation [J], Analytical Chemistry.2006,78(16):5627-5632.
    [44]Kim J, Lee J E, Lee J, et al. Magnetic fluorescent delivery vehicle using uniform mesoporous silica spheres embedded with monodisperse magnetic and semiconductor nanocrystals [J], J. Am. Chem. Soc.,2006,128(3):688-689.
    [45]Kim J, Lee J E, Lee J, et al. Generalized fabrication of multifunctional nanoparticle assemblies on silica spheres [J], Angew. Chem. Int. Ed.. Engl.2006,45(29):4789-4793.
    [46]Hong X, Li J, Wang M J, et al. Fabrication of magnetic luminescent nanocomposites by a layer-by-layer self-assembly approach [J], Chem. Mater.2004,16(21):4022-4027.
    [47]王伟财,张琦,张兵波,等.氨基化单分散超顺磁性荧光PGMA多功能微球制备[J],科学通报,2007,52(21):2477-2481.
    [48]Wang D S, He J B, Rosenzweig N, et al. Superparamagnetic Fe2O3 beads-CdSe/ZnS quantum dots core-shell nanocomposite particles for cell separation [J], Nano Letters,2004, 4(3):409-413.
    [49]Salgueirino-Maceira V, Correa-Duarte M A, Spasova M, et al. Composite silica spheres with magnetic and luminescent functionalities [J], Advanced Functional Materials,2006, 16(4):509-514.
    [50]Yi D K, Selvan S T, Lee S S, et al. Silica-coated nano composites of magnetic nanoparticles and quantum dots [J], J. Am. Chem. Soc.,2005,127(14):4990-4991.
    [51]Selvan S T, Patra P K, Ang C Y, et al. Synthesis of silica-coated semiconductor and magnetic quantum dots and their use in the imaging of live cells [J], Angew. Chem. Int. Ed. Engl.,2007,46(14):2448-2452.
    [52]Yoon T J, Yu K N, Kim E, et al. Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials [J], Small.2006,2(2):209-215.
    [53]Kim H, Achermann M, Balet L P, et al. Synthesis and characterization of Co/CdSe core/shell nanocomposites:bifunctional magnetic-optical nanocrystals [J], J. Am. Chem. Soc., 2005,127(2):544-546.
    [54]Tan W B, Zhang Y. Multifunctional quantum-dot-based magnetic chitosan nanobeads [J], Adv. Mater.,2005,17(19):2375-2375.
    [55]邓勇辉.功能磁性聚合物微球的制备、表征及其初步应用[D].上海:复旦大学,2005,109-110.
    [56]洪霞.磁性纳米材料的合成、组装及应用[D],长春:吉林大学研究生院,2004,115-130.
    [57]Molday R S, Yen S P S, Rembaum A. Application of magnetic microspheres in labeling and separation of cells [J], Nature.1977,268,437-438.
    [58]Treleaven J G, Gibson F M, Ugelstad J. Cell labeling and magnetic separation by means of immunoreagents based on polyacrolein microspheres [J], Journal of Immunological methods.1982,52,341-351.
    [59]Kronick P, Gilpin R W. Use of superparamagnetic particles for isolation of cells [J], Journal of Biochemical and Biophysical Methods.1986,12(1-2):73-80.
    [60]Bose A, Sonti S V. Separation of cells and biological macromolecules by ferritin conjugates [P], U.S. Patent 5248589,1993.
    [61]Levison P R, Badger S E, Dennis J, et al. Recent developments of magnetic beads for use in nucleic acid purification [J], Journal of Chromatography A,1998,816(1):107-111.
    [62]Lee S M, Wroble M H, Ross J T. L-asparaginase from erwinia carotovora:an improved recovery and purification process using affinity chromatography [J],. Applied Biochemistry and Biotechnology,1989,22(1):1-11.
    [63]Nustad K, et al. Magnetic separation techniques applied to cellular and molecular biology, bristol [M]. UK:Wordsmiths'Conference Publications,1991,39.
    [64]Pourfarzaneh M, Kamel R S, Landon J, et al. The use of magnetizable particles in solid phase immunoassay [J], Methods. Biochem. Anal.,1982,28,267-295.
    [65]Nakamura N, Hashimoto K, Matsunaga T. Immunoassay method for the determination of immunoglobulin G using bacterial magnetic particles [J], Analytical Chemistry,1991,63(3): 268-272.
    [66]郭佳.多功能有机/无机聚合物复合微球的制备、表征及其生物应用[D],上海:复旦大学,2007,127-142.
    [67]Matsunaga T, Kawasaki M, Yu X, et al. Chemiluminescence enzyme immunoassay using bacterial magnetic particles [J], Analytical Chemistry,1996,68(20):3551-3554.
    [68]顾学裘.药物制剂新剂型选编[M],北京:人民卫生出版社,1984.1-221.
    [69]Brodesky F M. Monoclonal antibodies as magic bullets [J], Pharmaceutical Research, 1988,5(1):1-9.
    [70]Freeman M W, Arrott A. Magnetism in medicine [J], Journal of Applied Physics,1960, 31(5):404.
    [71]Widder K J, Senyel A E, Scarpelli G D. Magnetic microspheres:a model system for site specific drug delivery in vivo [J], Proceedings of the Society for Experimental Biology and Medicine,1978,158(2):141-146.
    [72]Widder K J, Senyei A E, Ranny D F. Invitro release of biologically active adriamycin by magnetically responsive albumin microspheres [J], Cancer Research.1980,40(10): 3512-3517.
    [73]Vyas S P, Malaiya A. In vivo characterization of indomethacin magnetic polymethyl methacrylate nanoparticles [J], Journal of Microencapsulation.,1989,6(4):493-499.
    [74]Ruxandra G, Yoshiharu M, Rorbert L. Biodegradable particles, WO Patent 03357,1995.
    [75]Liibbe A S, Bergemann C, Riess H, et al. Clinical experiences with magnetic drug targeting:a phase Ⅰ study with 4'-epidoxorubicin in 14 patients with advanced solid tumors [J], Cancer Research.1996,56(20):4686-4693.
    [76]常津.医用磁性纳米材料的制备一制备条件对有效粒径的影响[J],中国生物医学工程学报,1996,15(4):378-381.
    [77]常津.具有靶向抗癌功能的纳米高分子材料一阿霉素免疫磁性毫微粒的体外磁靶向定位试验[J],中国生物医学工程学报,1996,15(4):354-358.
    [78]陈道达,艾时斌,马建华,等.磁液载附阿霉素靶向定位治疗消化系肿瘤[J],中华实验外科杂志,1996,13(1):1-2.
    [79]张阳德,龚连生.阿霉素白蛋白磁纳米粒在正常肝脏的靶向性[J],中国现代医学杂志,2001,11(3):4-7.
    [80]张阳德,王荣兵,龚连生,等.半乳糖化白蛋白磁性阿霉素纳米粒在家兔体内的药物动力学研究(英文)[J],中国医学工程,2004,12(3):4-8.
    [81]Rittich B, Spanova A, Ohlashennyy Y, et al. Characterization of deoxyribonuclease I immobilized on magnetic hydrophilic polymer particles [J], Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences,2002,774(1):25-31.
    [82]Bilkova Z, Slovakova M, Lycka A, et al. Oriented immobilization of galactose oxidase to bead and magnetic bead cellulose and poly(HEMA-co-EDMA) and magnetic poly(HEMA-co-EDMA) microspheres [J], Journal of Chromatography B:Analytical Technologies in the Biomedical and Life Sciences,2002,770(1-2):25-34.
    [83]Robinson P J, Dunnill P, Lilly M D. The properties of magnetic supports in relation to immobilized enzyme reactors [J], Biotechnology and Bioengineering,1973,15(3):603-606.
    [84]Kobayashi H, Matsunaga T. Amino-silane modified superparamagnetic particles with surface-immobilized enzyme [J], Journal of Colloid and Interface Science,1991,141(2): 505-511.
    [85]Sakai Y, Kuwahata M, Takahashi F. The effect of alternating magnetic field on the magnetic anisotropic gel beads immobilized catalase [J], Bulletin of the Chemical Society of Japan,1990,63(8):2358-2362.
    [86].Garcia Ⅲ A, Oh S, Engler C R. Cellulase immobilization on Fe3O4 and characterization [J], Biotechnology and Bioengineering,1989,33(3):321-326.
    [87]Goetz V, Remaud M, Graves D J. A novel magnetic silica support for use in chromatographic and enzymatic bioprocessing [J], Biotechnology and Bioengineering.1991, 37(7):614-626.
    [88]Dekker R F H. Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite [J], Applied Biochemistry and Biotechnology,1989,22(3):289-310.
    [89]Koneracka M, Kopcansky P, Antalik M, et al. Immobilization of protein and enzymes to fine magnetic particles [J], J. Magn. Magn. Mater.,1999,201,427-430.
    [90]邱广明,孙宗华.磁性高分子微球共价结合中性蛋白酶[J],生物医学工程杂志,1995,12(3):209-213.
    [91]Lauterbur P C. Image formation by induced local interactions:examples employing nuclear magnetic resonance [J], Nature,1973,242,190-191.
    [92]Lauffer R B. Paramagnetic metal complexes as water proton relaxation agents for NMR imaging:theory and design [J], Chemical Reviews,1987,87(5):901-927.
    [93]Pykett I L. NMR imaging in medicine[J], Scientific American,1982,246(5):54-64.
    [94]Weissleder R. Liver MR imaging with iron oxides:toward consensus and clinical practice [J], Radiology 1994,193(3):593-595.
    [95]徐辉碧.纳米医药(第一版)[M],北京:清华大学出版社,2004,217.
    [96]Poeckler-Schoeniger C, Koepke J, Gueckel F, et al. MRI with superparamagnetic iron oxide:Efficacy in the detection and characterization of focal hepatic lesions [J], Magnetic Resonance Imaging.1999,17(3):383-392.
    [97]刘祖黎,杜玉卿,胡道予,等.超小型超顺磁性氧化铁磁共振对比剂的制备及性能研究[J],功能材料,2005,36(3):350-356.
    [98]Zhao M, Beauregard D A, Loizou L, et al. Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent [J], Nature Medicine,2001,7, 1241-1244.
    [99]. Blankenberg F G, Katsikis P D, Storrs R W, et al. Quantitative analysis of apoptotic cell death using proton nuclear magnetic resonance spectroscopy [J], Blood,1997,89(10): 3778-3786.
    [100]严密,彭晓领.磁学基础与磁性材料[M],杭州:浙江大学出版社,2006,198-210.
    [101]李德才.磁性液体理论及运用[M],北京:科学出版社,2003,1.
    [102]顾红,祝琳华,王先逵,等.一种极具潜力的新型化工材料——磁流体[J],云南化工,2001,28(2):37-40.
    [103]Papell, Solomon S. Propellant containing magnetic particles [P]. U.S. Patent 3215572, 1965.
    [104]刘蓄,杨海涛,刘勇健.液相法制备纳米Fe304的研究进展[J],应用化工,2003,32(5):6-10.
    [105]Arturo M, Quintela L, Rivas J. Magnetic iron oxide nanoparticles synthesized via microemulsions [J], Journal of Colloid and Interface Science,1993,158(2):446-451.
    [106]Feltin N, Peleni M P. New technique for synthesizing iron ferrite magnetic nanosized particles [J], Langmuir,1997,13(15):3927-3933.
    [107]Zhou Z H, Wang J, Liu X, et al. Synthesis of Fe3O4 nanoparticles from emulsions [J], J. Mater. Chem.,2001,11(6):1704-1709.
    [108]何秋星,杨华,陈权启,等.微乳化法制备纳米磁性Fe304微粒工艺条件研究[J],磁性材料及器件,2003,34(2):9-11.
    [109]柴波.微乳法制备Fe304磁性纳米粒子的研究[J],武汉工业学院学报,2006,25(1):65-67.
    [110]杨华,黄可龙,刘素琴,等.水热法制备的Fe304磁流体[J],磁性材料及器件,2003,34(2):4-6,15.
    [11l]Chen D, Xu R. Hydrothermal synthesis and characterization of Fe3O4 powders[J]. Materials Research Bulletin,1998,33(7):1015-1021.
    [112]Fan R, Chen X H, Gui Z, et al. A new simple hydrothermal preparation of nanocrystalline magnetite Fe3O4 [J],. Materials Research Bulletin,2001,36(3-4):497-502.
    [113]唐波,葛介超,王春先,等.金属氧化物纳米材料的制备新进展[J],化学进展,2002,21(10):707-712.
    [114]Deng H, Li X L, Peng Q, et al. Monodisperse magnetic single-crystal ferrite microspheres [J], Angewandte Chemie(International ed. Print),2005,44(18):2782-2785.
    [115]Rockenberger J, Scher E C, Alivisatos P A. A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides [J], J. Am. Chem. Soc. 1999,121(49):11595-11596.
    [116]Hyeon T, Lee S S, Park J, et al. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J], J. Am. Chem. Soc. 2001,123(51):12798-12801.
    [117]Guo Q, Teng X, Rahman S, et al. Patterned langmuir-blodgett films of monodisperse nanoparticles of iron oxide using soft lithograp [J], J. Am. Chem. Soc.2003,125(3):630-631.
    [118]Luis M, Liz-Marzan, David J, et al. New aspects of nanocrystal research [J], Materials Research Society Bulletin,2001,12,981-984.
    [119]Murray C B, Sun S, Gaschler W, et al. Colloidal synthesis of nanocrystals and nanocrystal superlattices [J], IBM Journal of Research and Development,2001,45(1):47-55..
    [120]Sun S, Murray C B. Synthesis of monodisperse cobalt nanocrystals and their assembly into magnetic superlattices [J],Journal of Applied Physics,1999,85(8):4325-4330.
    [121]Li Z, Chen H, Bao H, et al. One-pot reaction to synthesis water-soluble magnetite nanocrystals [J], Chemistry of.Materials,2004,16(8):1391-1393.
    [122]Dong W T, Wu S X, Chen D P, et al, Preparation of α-Fe2O3 nanoparticles by sol-gel process with inorganic iron salt [J], Chemistry Letters,2000,29(5):496-497.
    [123]Xu J, Yang H, Fu W, et al. Preparation and magnetic properties of magnetic nanoparticles by sol-gel method [J], J. Magn. Magn. Mater.,2007,309(2):307-311.
    [124]Aharon Gedanken. Using sonochemistry for the fabrication of nanomaterials [J], Ultrasonics Sonochemistry,2004,11(2):47-55.
    [125]Vijayakumar R, Koltypin Y, Felner Z, et al. Sonochemical synthesis and characterization of pure manometer-sized Fe3O4 particles [J], Materials Science Engineering A,2000,286(1):101-105.
    [126]Massart R. Preparation of aqueous magnetic liquids in alkaline and acidic media [J], IEEE Transactions on Magnetics,1981,17(2):1247-1248.
    [127]Molday R S. Magnetic iron-dextran microspheres [P]. U. S. Patent.4452773,1984.
    [128]Shen L, Laibinis P E, Hatton T A. Bilayer surfactant stabilized magnetic fluids: synthesis and interactions at interfaces [J], Langmuir 1999,15(2):447-453.
    [129]Kim D K, Zhang Y, Voit W, et al. Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles [J], Joural of Magnetism and Magnetic Materials,2001,225(1-2):30-36.
    [130]Kang Y S, Risbud S, Rabolt J F, et al. Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles [J], Chem. Mater.,1996,8(9):2209-2211.
    [131]Lee D K, Kang Y S, Lee C S, et al. Structure and characterization of nanocomposite langmuir-blodgett films of poly(maleic monoester)/Fe3O4 nanoparticle complexes [J], J. Phys. Chem. B,2002,106(29):7267-7271.
    [132]谌岩,裴宝全.影响液相法制备Fe3O4纳米粒子因素的研究[J],物理测试,2001,5:3-5,31.
    [133]邹涛,郭灿雄,段雪等.强磁性Fe3O4纳米粒子的制备及及其性能表征[J],精细化工,2002,19(12):707-710.
    [134]李砅,侯乙东,李旦振,等.纳米Fe3O4磁性粒子的制备及物性研究[J],无机材料学报,2003,18(4):929-932.
    [135]林本兰,沈晓冬,崔升.纳米四氧化三铁磁性微粒的表面有机改性[J],无机盐工业,2006,38(3):19-21.
    [136]邱星屏.四氧化三铁磁性纳米粒子的合成及表征[J],厦门大学学报(自然科学版),1999,38(5):711-715.
    [137]王伟.Fe304纳米颗粒改性详析[J],材料科学与工艺,2001,9(12):431
    [138]Shen L, Stachowiak A, Hatton T A, et al. Polymerization of olefin-terminated surfactant bilayers on magnetic fluid nanoparticles [J], Langmuir,2000,16(25):9907-9911.
    [139]任欢鱼,刘蕾,刘勇健,等.水基磁流体的制备与性质研究[J],化工新型材料,2003,31(1):15-17.
    [140]张金升,尹衍升,张银燕,等.均匀超细Fe3O4磁流体的研究[[J],化工进展,2003,22(5):494-497.
    [141]陈晓青,张俊山,杨娟玉,等.双层表面活性剂分散制备水基磁流体[J],无机化学学报,2003,19(5):547-551.
    [142]蒋新宇,周春山,张俊山,等.导向药物用纳米Fe3O4磁性粒子的制备及表征[J],中南工业大学学报(自然科学版),2003,34(5):516-521.
    [143]程海斌,刘桂珍,等.纳米Fe3O4的ξ电位和分散稳定性[J],武汉理工大学学报,2003,25(5):4.
    [144]Tawaura Yutaka, Yoshda Takashi, et al. The synthesis of green rust Ⅱ(FeⅢ-FeⅡ2) and its spontaneous transformation into Fe3O4 [J], The Chemical Society of Japan,1984,57, 2411-2416.
    [145]孟哲,张冬亭,王春平.磁性纳米级Fe3O4的氧气诱导、空气氧化液相合成与表征[J],光谱实验室,2003,20(7):489-491.
    [146]邱广明,孙宗华.水溶性磁流体的制备和性质[J].化学试剂,1993,15(4): 234-237,255.
    [147]Ding X B, Sun Z H, Wan G X, et al. Preparation of thermosensitive magnetic particles by dispersion polymerization [J], Reactive & functional polymers,1998,38(1):11-15.
    [148]Yu L Q, Zheng L J, Yang J X. Study of preparation and properties on magnetization and stability for ferromagnetic fluids [J], Mater. Chem. Phy.,2000,66(1):6-9.
    [149]李铁福,邓英杰,宋小平,等.氧化铁纳米粒子的制备[J],沈阳药科大学学报,2003,20(5):325-327.
    [150]姚思德,孙汉文,乔向利,等.中国发明专利,1690127,2004.
    [151]宫陪军,孙汉文,洪军,等.光化学原位合成PHEMA磁性纳米凝胶[J],中国科学B辑化学,2006,36(4):331-337.
    [152]孙汉文,徐冬梅,孟繁宗,等.聚丙烯酰胺包覆磁性纳米凝胶的光化学法制备及其机理研究[J],辐射研究与辐射工艺学报,2006,24(5):271-274.
    [153]苑星海,林穗云,张小弟,等.水基Fe3O4磁流体的制备工艺研究[J],广东化工,2007,34(7):37-39.
    [154]林本兰,沈晓冬,崔升.纳米Fe3O4磁流体的制备及其影响因素研究[J],润滑与密封,2006,10,137-140.
    [155]张金升,尹衍升,吕忆农,等.磁性流体中纳米Fe3O4粒子包覆结构的研究[J],中国科学(E辑),2003,33(7):609-613.
    [156]韦勇强,赖琼钰,余鼎,等.Fe3O4磁液的悬浮率测定及稳定性研究[J],2003,19(4):411-414.
    [157]李德才.磁性液体理论及应用[M],北京:科学出版社,2005,3-26.
    [158]顾惕人.表而化学[M],北京:科学出版社,1999,6.
    [159]苑星海,林穗云,黄建伟.共沉淀法制备纳米Fe3O4磁性粒子的工艺研究[J],嘉应学院学报(自然科学),2007,25(3):39-42.
    [160]张茂润,陶昭才,李广学.影响Fe3O4磁性流体的磁性能因素[J],合肥工业大学学报(自然科学版),2003,26(6):1221-1222.
    [161]李珠柱,文利雄,黎颖,等.正交实验法优化空心多孔SiO2纳米球对阿维菌素的吸附条件[J],过程工程学报,2006,6(1):82-86.
    [162]王国斌,刘敬伟,陶凯雄,等.丝裂霉素C磁性纳米微球的制备[J],中国新药杂志2004,13(12):1120-1123.
    [163]施锋,吴敏.磁流体的制备条件对Fe3O4粒径的影响[J],上海生物医学工程学报, 1999,20(4):25-28.
    [164]刘颖,王长葆,王建华.Fe304超细粉分散体系的制备[J],功能材料,1999,30(1):24-25,28
    [165]Anderson M A, Rubin A J. Adsorption of inorganics at solid—liquid interfaces[M], Michigan:Ann Arbor Science Publishers, Inc.,1981.
    [166]Khalafalla S, Reimers G. Preparation of dilution-stable aqueous magnetic fluids [J], Magnetics, IEEE Transactions on,1980,16,178-183.
    [167]Cornell M R, Schwertmann U. The Iron Oxides [M], New York:Cam bridge Press, 1996.
    [168]阎青,白耀文,孟哲,等.乙酸中沉淀聚合制备窄分散聚二乙烯基苯微球[J],高分子学报,2007,11,1102-1104.
    [169]Lee J, Isobe T, Senna M. Preparation of ultrafine Fe3O4 particles by precipitation in the presence of PVA at high pH [J], Journal of Colloid and Interface Science,1996,177(2): 490-494.
    [170]Popplewell J, Sakhnini L. The dependence of the physical and magnetic properties of magnetic fluid particle size [J], Journal of Magnetism and Magnetic Materials,1987,65,252.
    [171]Sohn B H, Cohen R E, Papaefthymiou G C. Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers [J], Journal of Magnetism and Magnetic Materials,1998,182(1-2):216-224.
    [172]宋丽贤,卢忠远,廖其龙.双微乳液法制备纳米磁性Fe3O4粉体的研究[J],功能材料,2005,36(11),1762-1764,1768.
    [173]Lee J H, Jun Y, Yeon S I, et al. Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma [J], Angew. Chem. Int. Ed., 2006,45,8160-8162.
    [174]邱广亮,邱广明,胡玲.稀土磁性复合微球的显微形貌及复合微相结构[J],电子显微学报,2001,20(4):364-365.
    [175]Liu X Q, Guan Y P, Xing J M, et al. Synthesis and properties of micron-size magnetic polymeric spheres with epoxy group [J], Chinese J Chem Eng,2003,11(6):731-735.
    [176]Liu Z L, Ding Z H, Yao K L, et al. Preparation and characterization of polymer-coated core-shell structured magnetic microbeads [J], J Magn Magn Mater,2003,265(1):98-105.
    [177]Horak D. Magnetic poly-glycidylmethacrylate microspheres by dispersion polymerization [J], J Polym Sci, Part A:Polym Chem,2001,39(21):3707-3715.
    [178]Rong M Z, Zhang M Q, Wang H B, et al. Surface modification of magnetic metal nanoparticles through irradiation graft polymerization [J], Appl Surf Sci,2002,200(1-4): 76-93.
    [179]Hoffmann A J, Mills G, Yee H, et al. Q-sized cadmium sulfide:synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers [J], J Phys Chem,1992,96(13):5546-5552.
    [180]Stroyuk A L, Granchak V M, Korzhak A V, et al. Photointiation of buthylmethacrylate polymerization by colloidal semiconductor nanoparticles [J], J Photochem Photobiol A-Chem, 2004,162(2-3):339-351.
    [181]孟繁宗,孙汉文,张连营,等.荧光磁性微球Fe3O4@PMAA-Dy的制备与表征[J],材料导报,2008,22(6):133-136.
    [182]唐黎明,戴或.新型pH及温度敏感性水凝胶[J],高分子学报,2003,3,426-429.
    [183]洪军,徐冬梅,宫培军,等.粒径可控的羧基化磁性纳米凝胶的合成[J],辐射研究与工艺学报,2006,24(5):279-282.
    [184]赵艳芳,赵永亮,白峰.2,4,6-三吡啶基三嗪稀土配合物的红外光谱和荧光性能[J],稀土,2008,29(2):86-89.
    [185]黄宝贵,陶栋梁,徐怡庄,等.稀土发光配合物和高分子PVK之间的能量传递及其在高分子中的分散状态研究[J],光谱学与光谱分析,2001,21(6):740-744.
    [186]林美娟,王文,章文贡.掺三异丙氧基稀土的聚甲基丙烯酸甲酯的结构与性能[J],应用化学,2003,20(12):1188-1191.
    [187]李建宇.稀土发光材料及其应用[M],北京:化学工业出版社,2003,160.
    [188]张秀菊,陈鸣才,冯嘉春,等.Eu3+—邻菲罗啉-苯甲酸-丙烯酸配合物与甲基丙烯酸甲酯共聚物的研究[J],功能高分子学报,2002,15(4):395-399.
    [189]张梅,赵永亮,王连蒙,等.2-噻吩乙酸邻菲啰啉铕、铽配合物的合成表征及荧光性能研究[J],稀土.2008,29(3):27-31.
    [190]李文先,张瑞平,郭磊,等.铕与三种不同结构羧酸配合物的低温固相合成及发光性能研究[J],稀土.2008,29(4):1-5.
    [191]朱晓伟,布仁,宝金荣.钐、镝-2-噻吩甲酸-2,2’-联吡啶三元配合物的合成及Dy3+的荧光性质研究[J],化学试剂,2007,29(6):361-362,365.
    [192]马东哲,吴谊群,雷军,等.新型稀土-β-二酮配合物的合成与表征[J],染料与染 色,2006,43(4):6-9.
    [193]沈莉,石梅,石恩娴,等.吡唑酮类稀土配合物的发光性质研究[J],高等学校化学学报,2006,27(8):1413-1417.
    [194]林美娟,章文贡,邓友娥,等.非水凝胶原位聚合法制备含铽PMMA及其荧光性质研究[J],稀有金属材料与工程,2003,32(8):654-657.
    [195]刘光华.稀土材料与应用技术[M],北京:化学工业出版社,2005,55-66.
    [196]Elmore W C. The magnezation of ferromagnetic colloids [J]. Phys Rew.1938,54,1092
    [197]王丁林,沈侵,朱传征,等.稀土镝铁氧体磁流体的W/O微乳液法制备及性质研究[J],华东师范大学学报(自然科学版),2001,1,71-76.
    [198]Zhu Chuanzheng, Shen Qin, Hu Xiaoluo, et al. Preparation of PMAA coated dysprosium ferriteferr of luids and study on the superparamagnetism [J], Chemical Research in Chinese Universities,2002,18(2):30-33.
    [199]Zhang Ming, Wang zhifeng, Zhang Hong, et al. Study on magnetic responsibility of rare earth ferrite/polyacrylamide magnetic microsphere [J], Journal of rare earths,2005,23(3): 285-287.
    [200]姜寿亭,李卫.凝聚态磁性物理[M],北京:科学出版社,2003,120-121.
    [201]田民波.磁性材料[M],北京:清华大学出版社,2001,71-73.
    [202]庄稼,陈学平,迟燕华,等.掺杂Co2+和Sm3+对纳米ZnFe2O4铁氧体的电磁损耗性质的影响[J],化学学报,2006,64(2):151-157.
    [203]徐烽,李良超,蒋静,等.Zn0.4Ni0.6Cr0.5LaxFe1.5-xO4铁氧体纳米粉晶的制备及磁性[J],化学学报,2007,65(9):816-820.
    [204]陈俊明.湿法制备铁氧体磁粉的新途径[M],北京:国防工业出版社,2001,2-7.
    [205]蒋荣立,陈文龙,张宗祥,等.镝掺杂铁氧体纳米晶的制备、表征和磁性[J],化学学报,2008,66(11):1322-1326.
    [206]Ahmed M A, Ateia E, EI-Dek S I. Spectroscopic analysis of ferrite doped with different rare earth elements [J], Vibrational Spectroscopy,2002,30(1):69-75.
    [207]Hemeda O M, Said M Z, Barakat M M. Spectral and transport phenomena in Ni ferrite-substituted Gd2O3 [J], J. Magn. Magn. Mater.,2001,224(2):132-142.
    [208]郭明,孔亮,毛希琴,等.微透析取样法研究金属离子与蛋白质的竞争结合作用[J],中国科学(B辑),2000,31(6):499-503.
    [209]仲维清,张琦,岳晟,等.六氯合铂酸钾与金属硫蛋白的体外反应[J],无机化学 学报,1997,13(3):241-250.
    [210]张保林,王文清.稀土离子(Ⅲ)与牛血清白蛋白的相互作用[J],无机化学学报,1993,9(4):369-373.
    [211]梁宏,周永洽,申泮文Mn(Ⅱ)-HAS和Mn(Ⅱ)-BSA金属中心的结构研究[J],科学通报,1994,39(11):994-997.
    [212]常希俊,杨芳,张莉,等.牛血红蛋白与镝(Ⅲ),钛(Ⅳ)的相互作用[J],兰州大学学报(自然科学版),2004,40(2):62-66.
    [213]夏其昌.蛋白质化学研究技术与进展[M],北京:科学出版社,1999,5.
    [214]Yuan J, Matsumoto K. Synthesis of a new tetradentate β-diketonate-europium chelate its application for time-resolved fluorimetry of albumin [J], Journal of Pharmaceutical and Biomedical Analysis,1997,15(9-10):1397-1403.
    [215]Hara T, Tsukagoshi K. Chemiluminescence analyses of biological constituents using metal-complex catalysts A review [J], Analytical Sciences,1990,6(6):797-806.
    [216]Luo Y J, Shen H X. Study on acridine orange dimmer as a new fluorescent probe for the determination of protein [J], Analytical Communications,1999,36,135-137.
    [217]Guo Z X, Shen H X. Determination of protein based on absorbance decrease of molybdenum(VI) complex with 2,6,7-trihydroxy-9-(4'-chlorophenyl)-3H-xanthen-3-one [J], Analyst,1999,124,1093-1098.
    [218]Jiang Chongqiu, Luo Li. Spectrofluorimetric determination of human serum albumin using a doxycycline-europium probe [J], Analytica Chimica Acta,2004,506(2):171-175.
    [219]敖登高娃,李文静.氟罗沙星-铽(Ⅲ)络合物荧光探针对牛血清白蛋白的测定[J],稀土,2008,29(4):87-89.
    [220]何华,叶海英,戴丽,等.洛美沙星-Tb3+配合物与BSA相互作用的荧光光谱研究[J],光谱学与光谱分析,2006,26(3):480-483.
    [221]李振甲.时间分辨荧光分析技术与应用[M],北京:科学出版社,1996.
    [222]Bornhop D J, Hubbard D S, Houlne M P, et al. Fluorescent tissue site-selective lanthanide chelate, Tb-PCTMB for enhanced imaging of cancer [J], Analytical Chemistry, 1999,71(14):2607-2615.
    [223]杨军,任宇,徐怡庄,等.环丙沙星铽荧光配合物与DNA的相互作用及染色新方法[J],高等学校化学学报,2004,25(2):243-246.
    [224]何华,王羚郦,刘旭辉,等.环丙沙星-铽络合物的荧光特性及其应用研究[J],光 谱学与光谱分析,2006,26(8):1516-1519.
    [225]Gupta P K, Hung C T. Magnetically controlled targeted micro-carrier systems [J], Life Sciences,1973,44(33):175-186.
    [226]任非,陈建海,陈志良.丝裂霉素C-聚氰基丙烯酸正丁酯磁性纳米球的制备方法及性质研究[J],中国药学杂志,2005,40(15):1163-1166.
    [227]阎玺庆,陈建海,蒋青锋,等.丝裂霉素磁性前体药物纳米粒的制备[J],中国医院药学杂志,2006,26(5):507-509.
    [228]朱瀛,陆伟根,邹凌燕,等,丝裂霉素C磁性纳米粒I.制备和质量评价[J],中国医药工业杂志,2006,37(3):168-171.
    [229]Hata T, Sano Y, Sugawara R, et al. Mitomycin a new antibiotic from streptomyces [J], The Journal of Antibiotics, Ser,A 9,1956,141.
    [230]Tomasz M. The mitomycins:natural cross-linkers of DNA, in:S. Neidle, M J. Waring(Eds.), mecular basis of drug-DNA antitumor action [M], London:M Acmillan Press, 1993,12-349.
    [231]Cummings J, Spanswick V J, Tonmasz M, el al. Enzymology of mitomycin C metabolic activation in tumour tissue:implications for enzyme-directed bioreductive drug development [J], Biochemical Pharmacology,1998,56(4):405-414.
    [232]王肇炎,韩锐.肿瘤药物治疗学[M],北京:人民卫生出版社,1984,84.
    [233]陈锋,李春忠.抗癌丝裂霉素白蛋白微球的制备及体外释药性能[J],华东理工大学学报(自然科学版),2006,32(2):184-187,192.
    [234]全红,李林,胡晓玲,等.紫外分光光度法测丝裂霉素C微球的含量[J],山西医科大学学报,2002,33(1):36-37.
    [235]姚磊,刘军.医学实用数据手册[M],北京:中国广播电视出版社,1993,182.
    [236]何晓晓,王柯敏,谭蔚泓,等.基于生物荧光纳米颗粒的新型荧光标记方法及其在细胞识别中的应用[J],科学通报,2001,46(16):1353-1356.
    [237]汪联辉,章文贡,王文.稀土高分子聚合物及其应用[J],稀土,1999,20(3):38-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700