Fe(Ⅲ)/铸铁屑吸收SO_2新方法及其工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统石灰石膏法烟气脱硫工艺产生大量的固体废弃物和二次废水污染。利用过渡金属Fe(III)溶液吸收烟气中SO_2,S(Ⅳ)在溶液中被氧化为S(Ⅵ),既达到脱除SO_2的目的,又可利用产生的稀硫酸制取不同的副产物,是回收法脱硫的一种重要研究方向。以千代田法为代表的Fe(III)溶液烟气脱硫工艺,在酸性操作条件下,高液气比增加了运行费用,利用副产物稀硫酸制备石膏也限制了其发展。因此,降低运行成本,实现副产物的资源化是Fe(III)脱硫今后的重点研究的问题。此外,在以往的研究中,对于Fe(III)溶液吸收SO_2,尚缺少设备放大的动力学数据报导。综合以上的考虑,本文在系统地对Fe(III)溶液吸收SO_2工艺参数进行实验研究的基础上,提出以铸铁屑作为填料协同Fe(III)溶液吸收SO_2,通过控制吸收液的pH值,提高SO_2吸收效率,得到副产物铁盐溶液;在此基础上,进一步使用直流磁场强化铸铁填料吸收SO_2;在副产物综合利用上,采用Fe_2(SO_4)_3-Urea体系均相水解制备高附加值的纳米氧化铁红,并且得到硫酸铵化肥。本研究的Fe(III)/铸铁屑工艺实现了烟气脱硫的绿色化。具体内容如下:
     1.在Fe(III)-S(IV)反应机理分析的基础上,系统研究了0.001-0.12M浓度范围内Fe(III)溶液对SO_2的吸收,并对溶液pH值,温度,液气比,SO_2浓度等工艺参数进行优化。表明:填料塔体积质量传质系数为0.0025s-1,pH≥2.0,[Fe(III)]≥0.05M,温度控制在40℃左右,液气比保持在10L/m3,SO_2吸收效率可大于75%。
     计算了不同pH值条件下Fe(III)和SO_2水解过程中反应活性物种浓度分布,对不同实验条件下影响Fe(III)溶液吸收SO_2的影响进行了探讨。根据动力学反应方程r=k[FeOH2+][HSO3-],可以判据Fe(III)-S(IV)催化氧化反应为二级反应。
     在双膜理论和气液流体传质理论分析的基础上,计算出不同实验条件下宏观反应动力学因子-增强因子E,可解释不同条件下SO_2吸收效率的变化。验证了动力学反应方程r=k[FeOH2+][HSO3-]的正确性,为反应器的设计和放大提供理论依据。
     研究表明,在pH<2.0的条件下利用Fe(III)溶液吸收SO_2,具有较低催化氧化反应速率和增强因子,为保证一定的脱硫效率,需要较大的气液接触表面积和较高的能耗,从成本上考虑需要采用其他方法协同进行烟气脱硫。
     2.提出了利用铸铁屑填料协同Fe(III)溶液吸收烟气中SO_2的方法。对溶液pH,不同电解质溶液,SO_2浓度,温度,填料层高度等单因素,以及吸收液循环喷淋进行了研究。表明铸铁屑的腐蚀过程能够提高SO_2的吸收,所产生的Fe(III)催化氧化液相中的S(IV),并且得到了具有一定经济价值的硫酸铁盐副产物。化学分析,XRD,和FIIR等研究手段表明,腐蚀过程中沉积的铁锈累积抑制腐蚀,从而降低SO_2的吸收效率。吸收液中溶解氧不足会影响到Fe(II)氧化并导致Fe(III)浓度降,也阻碍了SO_2的吸收。
     SO_2在腐蚀过程中的增强吸收和腐蚀途径为:当SO_2进入溶液,就导致一序列电化学腐蚀反应;腐蚀初阶段的水合亚铁氧化物很容易氧化为三价铁氧化物;部分铁氧化物溶解进入溶液,从而控制吸收液的pH值并催化氧化S(IV);部分铁氧化物也反应生成难溶的羟基硫酸或亚硫酸铁盐,从而对SO_2的吸收过程产生抑制作用。
     3.提出利用直流磁场强化Fe(III)/铸铁屑填料吸收SO_2,改善了填料层的板结状况,减轻填料层的重量,提高了脱硫效率。结果表明,直流磁场强化方法适用于低浓度烟气(700ppm < Cso2in < 1350ppm)处理;随着磁场强度增加,脱硫效率也逐步增加,超过20mT的磁场强度对脱硫效率并无显著性增加;温度过高吸收将由SO_2物理吸收控制;直流磁场能够明显降低填料层高度,通过调节填料层高度,可以适应不同脱硫工况的变化。
     SO_2去除效率的增强主要由腐蚀过程控制,直流磁场的作用在于改变铸铁屑表面的铁锈沉积形态,改善了填料层的板结问题。磁流体(MHD)力和磁场梯度力两种磁场作用力都能作用于铸铁屑表面的电化学腐蚀过程,铸铁屑表面产生的离子进入溶液后,不同离子在磁场力作用下产生定向迁移和运动,从而促使沉积的铁锈结构发生变化,使其更加疏松,有利于腐蚀进行和SO_2吸收。
     4.在副产物资源化方面,探索了纳米级铁红的Fe_2(SO_4)_3-Urea体系均相水解制备,通过反应时间,铁离子浓度,尿素浓度,水解温度,煅烧温度等参数影响铁红颗粒形状和尺寸。在Urea/Fe=1.7,T=95℃,[Fe(III)]=0.125M的条件下,8hr反应时间,可以控制溶液pH低于5, 85%以上的Fe(III)形成了铁红,水解产物经过800℃高温煅烧,获得50nm左右均一的球形赤铁矿晶形的铁红。Fe_2(SO_4)_3-Urea体系水解和热处理过程为:Fe_2(SO_4)_3-Urea体系水解形成各种碱式硫酸铁盐,进一步水解生成铵化黄钾铁钒和水合氢化黄钾铁钒,并形成少量的水铁矿晶,黄钾铁钒和水铁矿经过200-800热处理,得到产生均一的赤铁矿晶形铁红。
Traditional methods employing lime and limestone for gas desulfurization are facing many problems, including producing a large amount of calcium sulfate and huge financial burdens. The process of SO_2 absorption with Fe(III) solution is a fundamental research, in which S(IV) can be catalyzed oxidation to S(VI), and the valuable product can be obtained with the sulfuric acid. The typical process was the Chiyoda which had high consumed-energy and byproduct of calcium sulfate. In order to solve those problems, the desulfurization of Fe(III) solution need to be improved. On the other hand, there lacked of reports of related kinetic data in those processes. Based on the above consideration, in this study, the systematic research was conducted on SO_2 absorption with the Fe(III) solution. Cast iron scraps were used as packing for SO_2 enhancement absorption with Fe(III) solution, which was helpful for invariability of pH and iron sulfate could be obtained; Also, the magnetic field was used for SO_2 enhanced absorption in cast iron scraps system. At last, nano-hematite was prepared with the Fe_2(SO_4)_3-Urea homogeneous system for the further uilitization of byproducts. Then a a green desulfurization processes is formed.
     1. The systematic research was conducted on SO_2 absorption with different concentration Fe(III) solution (0.001-0.12M), including: pH, [Fe(III)], gas-liquid ratio and the inlet concentration of SO_2. The optimization parameters was (kLa=0.0025s-1): pH≥2.0, [Fe(III)]≥0.05M, T=40℃, the ration of liquid/gas kept at 10L/m3.
     The distribution of Fe(III) and S(IV) species was calculated, which can be used for explain of the influence of SO_2 absorption efficiency with different [Fe(III)]. According to the kinetic equation r=k[FeOH2+][HSO3-], the reaction of Fe(III)-S(IV) can be considered as a second order, and the SO_2 absorption was controlled by gas film and liquid film.
     According to the two-film model and gas-liquid transfer theory, the enhancement factor for macro-kinetics can be calculated in different experimental conditions, which can be use for reactor design and verification of kinetic equation.
     It can be deduced that the lower rate of reaction of Fe(III)-S(IV) and enhancement factors was obtained when pH was kept below 2.0. In order to keep higher desulfurization efficiency, higher engery consumed was need. Then the enhanced way shoud be used for desulfurization with Fe(III) solution for the economic consideration.
     2. The packing of cast iron scraps was used for SO_2 absorption cooperating with Fe(III) in our research. Single factor experiments including pH, electrolyte, inlet concentration of SO_2, temperature, and height of packing, and spraying solution circularly used were conducted. It can be found that, SO_2 absorption can be effectively enhanced by corrosion processes of cast iron scraps, S(IV) can be oxidation by Fe(III) in solution, and a certain valuable iron sulfate can be obtained as byproducts. The corrosion rate was restrained by deposited corrosion product. Also, [Fe(III)] and the dissolved oxygen in solution were gradually decreased and SO_2 absorption was restrained. The SO_2 absorption and corrosion processes include: as SO_2 enters the solution, a series of electrochemical reactions occur; hydrous ferrous oxides are easily oxidized to ferric hydroxides; some of them are dissolved by proton, while others are transformed to insoluble ferrous/ferric hydroxylsulfate and hydroxylsulfite. Then pH was kept constant and the Fe(III)-S(IV) happened. As the deposited rusts were cumlative, the SO_2 absorption was inhibited. 3. DC magnetic field was used for SO_2 absorption in packing reactor of cast iron scraps, the results showed: The compacted phenonmenon was decreased dramatically. The low concentration SO_2 (700ppm < Cso2in < 1350ppm) can be effectively enhanced by DC magnetic field; With the higher intensity magnetic field, the SO_2 removal efficiency was gradually enhanced and the effect was not obvious when the intensity of magnetic field was more than 20mT; more than 50℃, SO_2 absorption was controlled by physical absorption. SO_2 absorption was enhanced by corrosion processes, and the corrosion processes can be changed by magnetic field. It can be thought that two kinds of magnetic field force (MHD and FGF) exist in electrochemical corrosion processes, and they can cause a transport of all ions because of the difference in the magnetic susceptibility in the solution at the cast iron scraps surface with oriental direction, then the deposited rusts turned to be looser and corrosion rate was increased.
     4. At last, spherical nano-hematite was prepared by homogeneous hydrolysis of Fe_2(SO_4)_3-Urea system for the uilitization of byroducts. The influence factors for the shape and size of hematite were studies, including: reaction time, [Fe(III)], [Urea], hydrolysis temperature, the calcined temperature. In the condition of Urea/Fe=1.7,T=95℃,[Fe(III)]=0.125M, t= 8h, the pH can be controlled below 5, the deposited ration of Fe(III) is above 85%, and with the thermal treatment in the condition of 800℃, the uniform spherical hematite with the size of 50nm is obtained. The hydrolysis and thermal treatment include the subsequent way: a number of ferric sulfate complex species and its basic complexes were formed at first; then ammonium–hydronium jarosite were the main products with a small amount of ferrihydrite; By the thermal treatment at 200-800℃, the poor crystalline products were gradually transformed to spherical crystalline of nano-hematite.
引文
[1]国家环保总局, 2006年中国环境状况公报. (2007.6.19).
    [2]国家环保总局,《“两控区”酸雨和二氧化硫污染防治“十五”计划》. http://www.zhb.gov.cn/info/gw/huangfa/200210/t20021030_84257.htm.
    [3]郝吉明,马广大.大气污染控制工程[M].北京:高等教育出版社,2002.
    [4]郝吉明,王书肖,陆永琪,燃煤二氧化硫污染控制技术手册.化学工业出版社北京:2001.
    [5]张慧明,祝波,燃煤工业锅炉排放二氧化硫对大气的污染及工业固硫型煤的应用.环境污染治理技术与设备. 7(1999):54-61.
    [6] Allen, S.B., Empirical evidence of advances in scrubber technology. Resource and Energy Economics. 20(1998):327-343.
    [7] Ravi, K.S., W. J, C. S, SO2 Scrubbing Technologies: A Review. . Environmental Progress. 20(2001):219-227.
    [8]刘恩栋,陆永琪,郝吉明,烟气脱硫技术综合评价.武汉理工大学学报(交通科学与工程学版). 25(2001):404-407.
    [9]孙锦余,控制大气污染的几种典型的烟气脱硫方法.节能. 2(2004):29-31.
    [10]郭汉贤,苗茂谦,张允强等,我国脱硫技术发展的回顾及展望.煤化工, (2003):51-54.
    [11]国家环保总局科技标准司,清华大学环境科学与工程系,燃煤二氧化硫污染控制技术现状及综合评价(二).环境保护. 5(1998):3-9.
    [12]李杰,吴彦,王宁会等,脉冲电晕放电烟气脱硫的影响因素.环境科学. 22(2001):276-270.
    [13]王英刚,魏德洲,高丹等,生物膜液相催化氧化烟气脱硫实验研究.安全与环境学报. 5(2005):72-75.
    [14]张云峰,归柯庭,磁流化床脱硫模型.中国电机工程学报. 26(2006):94-99.
    [15]范貌宏,庄亚辉, FeSO4水溶液吸收脱硫及其影响因素的研究.环境科学. 19(1998):5-8.
    [16]张玉,周集体,王栋等, FeSO4溶液催化氧化脱除烟气中SO2研究.大连理工大学学报. 44(2004):60-64.
    [17]国家环境保护总局,“两控区”工业废气排放及处理情况(一). 2004.
    [18]国家发展改革委环境和资源利用司,我国火电厂烟气脱硫产业化现状及有关建议.节能与环保. 11(2006):8-9.
    [19] P, L., W. P, Method of Removing Sulfur Dioxide from Flue Gases: United States 4,091,075.
    [20] P, L., W. P, Process for Regenerating Sulfur Dioxide Gas Scrubbing Solutions: United States 4, 284,608.
    [21]施亚钧等编,气体脱硫.上海科学技术出版社:1986 276-281.
    [22]南京化学工业公司研究院《硫酸工业》编辑部,低浓度二氧化硫烟气脱硫.上海科学技术出版社:1981 237-241.
    [23] Eung, H.C., Removal of SO2 with oxygen in the presence of Fe (III). J. Metallurgical Transactions B. 17B(1986): 745 -753.
    [24] Fan, M., R.C. Brown, Y. Zhuang, et al., Reaction kinetics for a novel flue gas cleaning technology. Enrionmental Science & Technology. 37(2003):1404-1407.
    [25] Butler, A.D., M. Fan, R.C. Brown, et al., Absorption of dilute SO2 gas stream with conversion to polymeric ferric sulfate for use in water treatment. Chemical Enginneering Journal. 98(2004):265-273.
    [26]宁平,宋文彪,孙佩石,液相催化氧化净化低浓度SO2生产复肥研究.环境科学. 12(1991):10-14.
    [27]王小燕, Fe3+溶液及微生物脱硫技术的研究. 2003,四川大学硕士论文.
    [28]孙佩石,宁平,几种金属离子液相催化氧化SO2研究.硫酸工业. 5(1989):38-42.
    [29]王高法,石煤提钒的烟气处理与利用.煤炭加工与综合利. 4(1993):45-47.
    [30]孙佩石,宁平,宋文彪,低浓度SO2冶炼烟气的液相催化法净化处理研究.环境科学. 17(1996):4-6.
    [31]王之肖,张云峰,归柯庭,磁流化床强化烟气脱硫的机理研究.中国电机工程学报. 25(2005):68-72.
    [32] Zhang, W.S., D.M.B. Muir, P. Singh, Iron(II) oxidation by SO2/O2 in acidic media: Part II. Effect of copper. Hydrometallurgy. 58(2000):117-125.
    [33] Conkllnt, M.H., M.R. Hoffmann, Metal Ion-Sulfur(IV) Chemistry. 3 Thermodynamics and Kinetics of Transient Iron (II)-Sulfur(IV) Complexes. Environ.Sci.Technol. 22(1988):899-907.
    [34] Martin, L.R., T.W. Good, Catalyzed oxidation of sulfur dioxide in solution: The iron-manganese synergism Atmospheric Environment - Part A General Topics. 25 A(1991):2395-2399
    [35] Faust, B.C., J.M. Allen, Sunlight-initiated partial inhibition of the dissolved iron(III)-catalysed oxidation of S(IV) species by molecular oxygen in aqueous solution Atmospheric Environment 28 (1972):745-748.
    [36] Brandt, C., R. van Eldik, Transition Metal-Catalyzed Oxidation of Sulfur(IV) Oxides Atmospheric-Revevant Processes and Mechanisms. Chem.Rev. 95(1995):119-190.
    [37] Zhuang, G., Z. Yi, R.A. Duce, et al., Link between iron and sulphur cycles suggested bydetection of Fe(II) in remote marine aerosols. Nature. 355(1992):537-539.
    [38]斯塔姆, W., J.J.摩尔根,水化学天然水体化学平衡导论.科学出版社:1987 330-332.
    [39]姚小红,陆永琪,郝吉明, et al.,酸性条件下Fe3+氧化SO2的脱硫反应机理.环境科学. 12(1998):15-17.
    [40] Kraft, J., R.v. Eldik, Kinetic an Mechanism of the Iron(III)-Catalyzed Autoxidation of Sulfur(IV) Oxides in Aqueous Solution. 1. Formation of Transient Iron(III)-Sulfur(IV) Complexes Inorg. Chem. 28(1989):2297-2305.
    [41] Kraft, J., R.v. Eldik, Kinetic an Mechanism of the Iron(III)-Catalyzed Autoxidation of Sulfur(IV) Oxides in Aqueous Solution. 2.Decompostion of Transient Iron(III)-Sulfur(IV) Complexes. Inorg.Chem. 28(1989):2306-2312.
    [42] Brandt, C., I. Fabian, R. van Eldik, Kinetics and Mechanism of the Iron(III) - catalyzed Autoxidation of Sulfur(IV) Oxides in Aqueous Solution. Evidence for the Redox Cycling of Iron in the Presence of Oxygen and Modeling of the Overall Reaction Mechanism. Inorg. Chem. 33(1994):687-701.
    [43] Ziajka, Josef, Beer, et al., Iron-catalyzed oxidation of bisulphite aqueous solution: Evidence for a free radical chain mechanism. Atmospheric Environment. 28(1994):2549-2552.
    [44] Yermakov, A.N., I.K. Larin, A.A. Ugarov, et al., Iron Catalysis of SO2 Oxidation in the Atmosphere. Kinetics and Catalysis. 44(2003):476-489.
    [45] Prinsloo, F.F., C. Brandt, V. Lepentsiotis, et al., Formation of Transient Iron(III)-Sulfur(IV) Complexes Revisited. Application of Rapid-Scan Techniques. Inorg. Chem. 36(1997):119-121.
    [46] Chang, C.S., SO2 Absorption into Aqueous Solutions. AICHE Journal. 27(1981):292- 298.
    [47]张昭,彭少方, SO2-H2O系的热力学及其应用.重庆环境科学. 12(1990):12-17.
    [48] Charles, M.F., Hydrolysis of Inorganic Iron( III) Salts. Chem. Rev. 84(1984):31-41.
    [49] Byrne, R.H., Y.R. Luo, R.W. Young, Iron hydrolysis and solubility revisited: observations and comments on iron hydrolysis characterizations. Marine Chemistry. 70(2000):23-35.
    [50] Mulay, L.N., P.W. Selwood, Hydrolysis of Fe3+: Magnetic and Spectrophotometric Studies on Ferric Perchlorate Solutions. J. Am. Chem. Soc. 77(1955):2693.
    [51] Spiro, T.G., S.E. Allerton, J. Renner, et al., Stereospecific interconversions of optically active sulfoxides, sulfilimines, and sulfoximines. J. Am. Chem. Soc. 88(1968):2721.
    [52] Ardon, M., A. Bino, Role of the H3O2 bridging ligand in coordination chemistry. 1. Structure of hydroxoaquametal ions. Inorg. Chem. 24(1985):1343.
    [53] Gouger, S., J. Stuehr, Kinetics of iron(III) interactions with phenol and o-aminophenol. Inorg. Chem. 13(1974):379-384.
    [54] Fabian, I., G. Gordon, Kinetics and mechanism of the complex formation of the chlorite ion and iron (III) in aqueous solution. Inorg. Chem. 30(1991):3994-3999.
    [55] Baensch, B., P. Martinez, D. Uribe, et al., Is the oxidation of L-ascorbic acid by aquated iron(III) ions in acidic aqueous solution substitution- or electron-transfer-controlled? A combined chloride, pH, temperature, and pressure dependence study. Inorg. Chem. 30(1991):4555-4559.
    [56]姜信真,气液反应理论与应用基础[M].烃加工出版社北京:1989.
    [57]张成芳,气液反应和反应器.化学工业出版社北京:1985.
    [58]邓修,吴俊生,化工分离工程.科学工业出版社:2000.
    [59] Dasgupta, P.K., P.A. Mitchell, P.W. West, Study of Transition Metal Ion-S(IV) Systems. Atmospheric Environment. 13(1979):775-782.
    [60] Alper, E., P.V. Danckwerts, Laboratory scale-model of a complete packed column absorber. Chemical Engineering Science. 31(1976):599-608.
    [61] Lara Marquez, A., G. Wild, N. Midoux, A review of recent chemical techniques for the determination of the volumetric mass-transfer coefficient KLa in gas-liquid reactors. Chemical Engineering and Processing. 33(1994):247-260.
    [62] Nicolaiewsky, E.M.A., F.W. Tavares, K. Rajagopal, et al., Liquid film flow and area generation in structured packed columns. Powder Technology. 104(1999):84-94.
    [63] Bewler, J.K., W.R. Nicholas, L.B. Polkowski, Effect of temperature on oxygen transfer in water. Water Res. 4(1970):115-121.
    [64]涂晋林,吴志泉,化学工业中的吸收操作-气体吸收工艺与工程.华东理工大学出版社:1994.
    [65]赖庆柯,酸性Fe3+和氧化亚铁硫杆菌催化氧化S(IV)的实验研究. 2004,四川大学硕士学位论文.
    [66]陈敏恒,丛德滋,方图南,化工原理.化学工业出版社:2002.
    [67] Lente, G., I. Fabian, Kinetics and mechanism of the oxidation of sulfur(IV) by iron(III) at metal ion excess. J. Chem. Soc., Dalton Trans, (2002):778-784.
    [68]柯斯乐, E.L.,扩散,流体系统中的传质.化学工业出版社:2002.
    [69] Thomas, D., S. Colle, J. Vanderschuren, Designing wet scrubbers for SO2 absorption into fairly concentrated sulfuric acid solutions containing hydrogen peroxide. Chem. Eng. Technol. 26(2003):497-502.
    [70] Govindarao, V.M.H., K.V. Gopalakrishna, Solubility of Sulfur Dioxide at Low Partial Pressures in Dilute Sulfuric Acid Solutions. Ind. Eng. Chem. Res. 32(1993):2111-2117.
    [71]唐兆麟,废铁屑的综合运用.化工之友. 2(1997):34-35.
    [72]庄玉贵,水处理中含铁废料综合利用的研究进展.环境污染与防治. 19(1997):27-29.
    [73]王敏,废铁屑的综合利用途径.中国资源综合利用. 8(1999):22-23.
    [74] Oesch, S., The Effect of SO2, NO2, NO and O3 on the corrosion of unalloyed carbon steel and weathering steel - the results of laboratory exposures. Corrosion Science. 38(1996):1357-1368.
    [75] Oesch, S., M. Faller, Environmental effects on materials: the effect of the air pollutants SO2, NO2, NO and O3 on the corrosion of copper, zinc and aluminum. A short literature survey and results of laboratory exposures. Corrosion Science. 39(1997):1505-1530.
    [76] Tidblad, J., T.E. Graedel, Gildes Model Studies of Aqueous Chemistry III Initial SO2-Induced Atmospheric Corrosion of Copper. Corrosion Science. 38(1996):2201-2224.
    [77] Wang, J.H., F.I. Wei, Y.S. Chang, et al., The Corrosion mechanisms of Carbon Steel and Weathering Steel in SO2 Polluted Atmospheres. Materials Chemistry and Physics. 47(1997):1-8.
    [78] Demirbas, A., T. Ozturk, F.O. Karatas, Long-term wear on outside walls of buildings by sulfur dioxide corrosion. Cement and Concrete Research. 31(2001):3-6.
    [79]万晔,严川伟,曹楚南,微量SO2条件下硫酸铵颗粒沉积对A 3钢大气腐蚀的影响.材料工程3(2003).
    [80] Wan, Y., C. Yan, J. Tan, et al., Atmospheric Corrosion of Carbon Steels Pre-corroded by Different Pollutants. Materials and Corrosion. 55(2004):119-123.
    [81] An, B.G., X.Y. Zhang, E.H. Han, et al., Corrosion and Runoff Behavior of Carbon Steel in Simulated Acid Rain. J.Mater.Sci.Technol. 20(2004): 220-222.
    [82]林翠,李晓刚,王光雍,金属材料在污染大气环境中初期腐蚀行为和机理研究进展.腐蚀科学与防护技术,. 16(2004):89-95.
    [83] Zakipour, S., J. Lidblad, C. Leygraf, Atmospheric Corrosion Effects of SO2, NO2, andO3 A Comparison of Laboratory and Field Exposed Nickel. J. Electrochem. Soc. 144(1997):3513-3517.
    [84] Aastrup, T., M. Wadsak, Leygraf, et al., In Situ Studies of the Initial Atmospheric Corrosion of Copper Influence of Humidity, Sulfur Dioxide, Ozone, and Nitrogen Dioxide. Journal of The Electrochemical Society. 147(2000):2543-2551
    [85] Vannerbreg, N.G., T. Sydberger, Reaction Between SO2 and Wet Metal Surfaces. Corrosion Science. 10(1970):43-49.
    [86] Herbert, H., R. Uhlig, R. Winstion, Corrosion and corrosion control. John Wiley & Sons:1984 90-114.
    [87] Evans, U.R., C.A.J. Taylor, Mechanism of Atmospheric Rusting. Corrosion Science. 12(1972):227-246.
    [88] Sato, T., G. T, O. T, The oxidation of Fe( II)sulfate with sulfur and oxygen mixtures. Bull. Chem. Soc. Jpn. 57(1984):2082-2086.
    [89] Zhang, W.S., P. Singh, D. Muir, Iron(II) oxidation by SO2/O2 in acidic media: Part I. Kineticsand mechanism. Hydrometallurgy. 55(2000):229-245.
    [90] Evans, U.R., Electrochemical Mechanism of Atmospheric Rusting. Nature. 205(1965):980-982.
    [91] Farmer, V.C., The infrared spectra of minerals[M]. Mineralogical Society Monograph London:1974 213-217.
    [92] Raman, A., B. Kuban, A. Razvan, The application of infrared spectroscopy to the study of atmospheric rust systems - I. Standard wpectra and illustrative applications to identify rust phases in natural atmospheric corrosion products. Corrosion Science. 32(1991):1295-1306.
    [93] Chernyshova, I.V., An in situ FTIR study of galena and pyrite oxidation in aqueous solution. Journal of Electroanalytical Chemistry. 558(2003):83-98.
    [94] Legrand L., E.F., A., Mercier, F., Chausse, A.. . (): , Reduction of aqueous chromate by Fe(II)/Fe(III) carbonate green rust: Kinetic and mechanistic studies. Environ. Sci. Technol. 38(2004):4587-4595.
    [95] Gabrielli, C., R. Jaouhariy, G. Maurin, et al., Magnetic Water Treatment for Scale Preventio. Wat. Res. 35(2001):3249-3259.
    [96] Botello-Zubiate, M.E., A. Alvarez, A. Martinez-Villafa?e, nfluence of magnetic water treatment on the calcium carbonate phase formation and the electrochemical corrosion behavior of carbon steel. Journal of Alloys and Compounds. 369 (2004):256-259.
    [97] Blums, E., Some Aspects of Heat and Mass Transfer in Magnetic Fluids. IEEE Transactions on Magnetics. 16(1980):347-351.
    [98] Al-Qodah, Z., M. Al-Busoul, M. Al-Hassan, Hydro-thermal behavior of magnetically stabilized fluidized beds. Powder Technology. 115(2001):58-67.
    [99] Chen, C.C., L.P. Leu, Hydrodynamics and mass transfer in three-phase magnetic fluidized beds. Powder Technology. 117Z(2001):198-206.
    [100] Kharicha, A., A. Alemany, D. Bornas, Influence of the magnetic field and the conductance ratio on the mass transfer rotating lid driven flow. International Journal of Heat and Mass Transfer. 47(2004):1997-2014.
    [101] Gorobets, S.V., O. Yu, A.N. Brukva, Periodic microstructuring of iron cylinder surface in nitric acid in a magnetic field. Applied Surface Science. 252(2005): 448-454.
    [102] Srivastava, K., N. Nigam, Protection of mild steel in sulphuric acid by magnetic fields. Br. Corros. J. 23(1988):172-175.
    [103]王晨,陈俊明,磁场对铁腐蚀过程中阴极析氢和阳极溶解的影响.中国腐蚀与防护学报. 14(1994):123-128.
    [104]吕战鹏,陈俊明,有、无外磁场下铁在碳酸氢钠溶液中的阳极极化行为.中国腐蚀与防护学报. 16(1996):115-121.
    [105]吕战鹏,陈俊明,磁场和Cl-对铁在中性Na2SO4溶液中阳极极化行为的影响.中国腐蚀与防护学报. 17(1997):25-30.
    [106] Chen, S.H., C. Wang, X.L. Yu, nvestigation of iron anodic process in acidic solution by holographic microphotography. Electrochim.Acta. 39(1994):731-736.
    [107] Wang, C., S.H. Chen, X.L. Yu, The nature of the potentiostatic current oscillations at iron/sulfuric acid solution interfaces. Electrochim.Acta. 39(1994):577-580.
    [108] David, W.C., A Kinetic Study of the Aquation of Sulfitoiron(III) Ion. Inorganic Chemistry. 10(1976):761-765.
    [109] Steiner, U.E., T. Ulrich, Magnetic Field Effects in Chemical Kinetics and Related Phenomena. Chem. Rev. 89(1989):51-147.
    [110] Chiriac, A.P., C.I. Simionescu, Magnetic field polymerization. Prog. Polym. Sci. 25(2000):219-258.
    [111] Yamamoto, I., K. Ishikawa, S. Mizusaki, Magneto-thermodynamic effects in chemical reactions. Jpn. J. Appl. Phys. Part 1: Regular Papers and Short Notes and Review Papers 41(2002):416-424.
    [112] Sato, A., H. Ogiwara, T. Miwa, et al., Influence of high magnetic field on the corrosion of carbon steel. IEEE Trans. Appl. Supercon. 12 (2002):997-1000.
    [113] Lu, Z.P., D.L. Huang, W. Yang, Congleton J. Effects of an applied magnetic field on the dissolution and passivation of iron in sulphuric acid. Corros. Sci. 45(2003):2233-2249.
    [114] Steven, R.R., M.G. Kyle, S.W. Henry, Electrochemically Generated Magnetic Forces. Enhanced Transport of a Paramagnetic Redox Species in Large, Nonuniform Magnetic Fields. J. Am. Chem. Soc. 120(1998):13461-13468.
    [115] Koehler, S., A. Bund, Investigations on the Kinetics of Electron Transfer Reactions in Magnetic Field. J. Phys. Chem. B. 110(2006):1485-1489.
    [116] Tang, Y.C., A.J. Davenport, Magnetic field effects on the corrosion of artificial pit electrodes and pits in thin films. J. Electrochem. Soc. 154(2007):C362-C370.
    [117] Li, X.L., K.L. Yao, H.R. Liu, he investigation of capture behaviors of different shape magnetic sources in the high-gradient magnetic field. J. Magn. Magn. Mater. 311(2007):481-488.
    [118] Fahidy, T.Z., The statistical indeterminacy of the magnetic field effect on electrolytic mass transport. Electrochim.Acta. 35(1990):929-932.
    [119] Legeai, S., M. Chatelut, M. Vittori, Magnetic field influence on mass transport phenomena. Electrochimica Acta. 50(2004):51-57.
    [120] Waskaas, M., Y. LKharkats, Magnetoconvection Phenomena: A Mechanism for Influence of Magnetic Fields on Electrochemical Processes. J.Phys.Chem.B. 103(1999):4876-4883.
    [121] Olivier, A., J. Chopart, J. Amblard, et al., Direct and indirect electrokinetic effect inducing aforced convection. EKHD and MHD transfer functions. Ach-Models in Chemistry. 137(2000):213-224.
    [122] Brien, R.N.O., K.S.V. Santhanam, Magnetic field assisted convection in an electrolyte of nonuniform magnetic susceptibility. J.Appl.electrochem. 27(1997): 573-578.
    [123] Grant, K.M., J.W. Hemmert, W. H.S, Magnetic focusing of redox molecules at ferromagnetic microelectrodes. Electrochem.Commun. 1(1999):319-323.
    [124] Tanimoto, Y., H. Yano, S. Watanabe, et al., Effect of high magnetic field on copper deposition from an aqueous solution. Bulletin of the Chemical Society of Japan. 73(2000):867-872.
    [125] Mohanta, S., T.Z. Fahidy, Magnetoelectrolysis in Nonuniform Solenoidal Fields J. Appl. Elelctrochem. 8(1978):265-267.
    [126] Opeper, G.M., J. Saekely, The effect of an externally imposed magnetic field on buoyancy driven tlow in a rectangular cavity. J. Cryst. Growth. 64(1983):505-515.
    [127]李大成,周大利,刘恒等,超细微粉体的制备(一).四川有色金属. 2(1999):1-6.
    [128] Matijevic, E., Monodispersed Colloids: Art and Science. Langmuir. 2(1986):12-20.
    [129] Matijevic, E., Preparation and Properties of Uniform Size Colloids Chem. Mate. 5(1993):412-426.
    [130]童忠良,液相合成纳米氧化铁红粉体的方法: CN1312224A.
    [131]熊国宣,张展适,王海波,包核法制取氧化铁红颜料的研究.无机盐工业. 31(1999):6-7.
    [132]王廷吉,周萍华,低pH值下尿素水解规律及其应用.江西化工, (1992):10-12.
    [133] Dong, D.H., p.J. Hong, S.H. Dai, Preparation of uniformɑ-Fe2O3 particles by microwave-induced hydrolysis of ferric salts. Materials Research Bulltin. 30(1995):531-535.
    [134] Music, S., M. Maljkovic, I. Czako-Nagy, Effect of urea on the hydrolysis of Fe3+ ions in aqueous solutions at elevated temperature. Materials Letters. 31(1997):43-48.
    [135] Ocana, M., M.P. Morales, C.J. Serna, Homogeneous precipitation of uniformɑ-Fe2O3 particles from iron salts solutions in the presence of urea. Journal of Colloid and Interface Science. 212(1999):317-323.
    [136] Kajiyama, A., T. Nakamura, Hydrothermal synthesis ofβ-FeO(OH) rod-like particles with uniform size distribution. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 163(2000):301-307.
    [137] Lian, S.Y., E.B. Wang, Z.H. Kang, et al., Synthesis of magnetite nanorods and porous hematite nanorods,. Solid State Communications. 129(2004):485-490.
    [138] Mendoza-Resendez, R., O. Bomati-Miguel, M.P. Morales, et al., Microstructural characterization of ellipsoidal iron metal nanoparticles. Nantechnology. 15(2004): s254-s258.
    [139]严新,均匀纺锤形ɑ-Fe2O3的制备及其等电性研究.华东理工大学学报. 30(2004):536-551.
    [140]欧延,邱晓滨,许宗祥,均匀沉淀法合成纳米氧化铁.厦门大学学报(自然科学版).43(2004):882-885.
    [141] Music S., O.Z., Popovic S., , Structural properties of precipitates formed by hydrolysis of Fe3+ ions in Fe2(SO4)3 solutions. Journal of Materials Science. 29(1994):1991-1998.
    [142] Kandori, K., T. Shigetomi, T. Ishikawa, Study on forced hydrolysis reaction of acidic Fe2(SO4)3 solution-structure and properties of precipitates. Colloids and surfaces A: Physicochem. Eng. Aspects. 232(2004):19-28.
    [143] Parida, K.M., J. Das, Studies on ferric oxide hydroxides Part 1 Effect of sulfate ions on the formation and physico-chemical properties of ferric oxide hydroxides prepared by a homogeneous precipitation method. Journal of Materials Science. 31(1996):2199-2205.
    [144] Parida, K.M., J. Das, Studies on ferric oxide hydroxides II. Structural properties of goethite samples (ɑ-FeOOH) prepared by homogeneous precipitation from Fe(NO3)3 solution in the presence of sulfate ions. Journal of Colloid and Interface Science. 178(1996):586-593.
    [145] Subrt, J., J. Bohacek, V. Stengl, et al., Uniform particles with a large surface area formed by hydrolysis of Fe2(SO4)3 with urea. Materials Research Bulletin. 34(1999):905-914.
    [146] Bakardjieva, S., V. Stengl, J. Subrt, et al., Characteric of hydrous iron (III) oxides prepared by homogeneous precipitation of iron (III) sulphate with urea. Solid State Sciences. 7(2005):367-374.
    [147]大连理工大学无机化学教研室编,无机化学:2006.
    [148]王燕鸿,王军,沈美庆,煅烧温度对铁泥干法制备氧化铁颜料性能的影响.化学工业与工程. 22(2005):14-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700