液柱冲击塔湿法烟气脱硫的试验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济和社会的发展,燃煤锅炉排放的二氧化硫严重地污染了我们赖以生
    存的环境。石灰石-石膏湿法烟气脱硫技术具有工艺成熟、脱硫剂来源广泛、价
    格低廉、脱硫效率高、副产品可以回收利用等优点,获得了广泛的应用。但是湿
    法烟气脱硫系统的投资和运行成本较高。以提高脱硫效率、降低投资和运行成本
    为目的,本文提出了液柱冲击塔,对这种湿法脱硫装置的性能进行了研究。
     本文对液柱冲击塔的阻力特性和脱硫特性进行了试验研究和分析。试验研究
    了喷液量、塔内风速,结构等因素对阻力特性的影响,以及喷液量、塔内风速、
    循环水池pH值、SO_2入口浓度、烟气入口温度、结构等因素对脱硫效率的影响,
    还研究了添加剂甲酸、甲酸钠和己二酸的脱硫添加剂的作用。根据试验研究结果
    给出了液柱冲击塔的运行工况设计。
     液柱冲击塔内,液柱冲击雾化形成的液滴的粒径分布、液滴速度等流场特性
    对二氧化硫的吸收有着重要的影响。本文利用PIV方法对液柱塔内雾化液滴的粒
    径分布和运动状态进行了试验研究,给出了浆液流量、烟气流速、喷嘴与挡板间
    距、挡板类型等因素对雾化液滴粒径分布和运动特性的影响。试验研究的结果表
    明:烟气流速一定时,浆液流量越大,浆液液滴的平均粒径也越大;浆液流量一
    定时,液滴平均粒径随烟气流速增大而减小;在相同的烟气流速和浆液流量下,
    喷嘴与挡板间距越小,雾化效果越好;雾化后的浆液液滴粒径分布符合
    Rosin-Rammler分布。
     以多相流体力学、化学反应动力学、湍流扩散和传质理论为基础,对液柱冲
    击塔建立二氧化硫吸收模型,考虑了喷淋密度、烟气流速、液滴粒径变化和分布
    等参数对塔内流场分布和SO_2吸收的影响,运用CFD对塔内的流场和二氧化硫的
    吸收过程进行了数值模拟,并根据数值模拟的结果对液柱塔入口的几何形状进行
    了相应的优化。数值模拟和试验结果吻合较好,对液柱冲击塔的工业应用具有一
    定的指导意义。
     本文还对适用于中小型电站锅炉的湍流式简易湿法脱硫除尘装置的阻力特性
    和脱硫特性进行了试验研究和工程应用,分析了简易湿法脱硫除尘装置烟气带水
    的原因,通过试验研究优化旋流板设计,提高除湿效率,解决了烟气带水问题。
With the development of economy, the environment we live in is badly polluted by SO_2 from coal-fired boilers. Limestone-gypsum wet flue gas desulfurization technology is being widely applied all over the world because of its advantages: high desulfurization efficiency, widespread and cheap absorbent, retrievable and available byproduct. But the capital cost and operation cost are too expensive to be accepted by our consumer in China. In the thesis, impinge stream scrubber are carried out in order to decrease its capital cost and operation cost.The resistance and desulfurization characteristic of impinge stream scrubber are studied. The effects of slurry flux density and flue gas velocity on the resistance in the scrubbers and the effects of slurry flux density, flue gas velocity, circulating tank pH, SO_2 inlet concentration, and flue gas inlet temperature on desulfurization in the scrubbers are studied. The effects of additives (formic acid, sodium formate and adipic acid) on desulfurization in the scrubbers are also studied. The characteristics of the scrubbers are found. Optimum operation parameters are obtained on the basis of experimental investigation results.The flow field characteristic in impinge stream scrubber such as the diameter and velocity distribution of atomized slurry droplets has great effect on SO_2 absorption. With PIV technology, the diameter distribution and motion state of droplets is investigated. The effects of slurry flux, flue gas velocity, the distance between damper and nozzles and damper type are studied. As can be seen from the experimental investigation results, the mean diameter of slurry droplets increase with a greater slurry flux when the flue gas velocity is indefinite; but when the slurry flux is infinite, it will decrease when the flue gas velocity increases. The atomization effect is better with a less distance between damper and nozzles. And the droplets diameter distribution is Rosin-Rammler.On the basis of multiphase fluid dynamics, chemical reaction kinetics, turbulent diffusion and mass transfer theory, the SO_2 absorption model in impinge stream scrubber is set up. The effect s of slurry flux density, flue gas velocity, droplets diameter change and distribution on flow field distribution and SO2 absorption are taken into consideration. The flow field and SO_2 absorption in 1 impinge stream scrubber has been simulated by CFD method. In order to improve the distribution of flow field, the geometry of tower entrance is optimized. The calculated results agreed well with the test results. The results may give some directions on the design and operation of impinge stream scrubber.The resistance and desulfurization characteristic of turbulent ball scrubber which is fit for medium and small sized station boiler is also studied on pilot-scale and industry application. The reason of flue gas carrying water is analyzed and solved by the optimum design of rotating dehumidification plate to improve dehumidification efficiency.
引文
1.米都斯,《增长的极限》,四川人民出版社,1984:6.
    2.张新生、李长春、李光霞,《燃煤烟气脱硫》,中国地质大学出版社,1991.
    3.冯玲、杨景玲、蔡树中,烟气脱硫技术的发展及应用现状,环境工程,Vol.15,No.2,1997.15(2):19-24.
    4.中国环境科学学会,脱硫技术,北京:中国环境科学出版社,1995:30-31.
    5.联合国,《能源统计年鉴》,1996.
    6.经济信息,市场经济研究,2004(3):95-96
    7.戴和武等,控制燃煤硫污染与动力煤全硫比介划分,洁净煤技术,1997年第1期
    8.庾晋等,烟气脱硫技术的进展及其产业化,50-54
    9.郝吉明、贺克斌,中国燃煤二氧化硫污染控制战略,中国环境科学,1996.16(3):208-212.
    10.国家环保总局,中国环境公报,1995—2003.
    11.王玮、屠传经、胡亚才,微生物烟气脱硫技术的展望,环境污染与防治,1997,19(2):28.
    12.江爱伟,范家峰,锅炉燃煤脱硫技术概述,山东煤炭科技,2003(3):15-17
    13.周志付、王中谦、崔振扬、魏德洲、王英敏,燃煤微生物法脱硫研究及应用前景,中国电力,2000,33(11):90-92.
    14.孟祥和,陈华,火电厂烟气脱硫技术现状综述,中国环保产业,2003(11):31-33
    15.周祖飞,金新荣,影响湿法烟气脱硫效率的因素分析,浙江电力,2001(3):42-45
    16.毛健全等,对脱硫石灰岩质量要求初探,贵州地质,2003,20(4):270-275
    17.王佩璋、王芳,应用湿法、简易湿法烟气脱硫技术综述,华北电力技术,2001(2):48-52
    18.张可钜,珞璜电厂4×360MW机组烟气脱硫工程评述,电力环境保护,2000,12(4):1-10
    19.陈善能,徐李全,太原第一热电厂简易湿法脱硫技术及其经济分析,电力环境保护.1999,15(3):1-3
    20.马双忱,赵英,季守信,先进的烟气脱硫工艺-CT121工艺,电力环境保护,1998,14(1):27-31
    21.肖凌涛,谭永茂,海水烟气脱硫在深圳西部电厂的应用,广东电力,2000,13(5):28-32
    22.姚彤,深圳西部电厂海水烟气脱硫工程及示范作用,电力环境保护,2000, 16(1):1-3,6
    23.胡昌华,氨吸收法(NADS氨-肥法)烟气脱硫技术经济分析,四川电力技术,2001(5):1-3,22
    24.崔莲溪,磷铵肥法(PAFP)烟气脱硫技术,硫酸工业,1992,4:3-10
    25.徐正中,磷铵肥法(PAFP)烟气脱硫试验,火电厂烟气脱硫技术资料汇编,电力工业部环境保护办公室,1997。2:225-233
    26.马广大等,大气污染控制工程[M],北京:中国环境科学出版社,1985
    27.李玉平,谭天恩,双碱法烟气脱硫的基础研究,重庆环境科学,1999,21(5):49-52
    28. J, L, Hudson & G, T, Rochelle, Flue gas desulfurization, ACS Symposium Series, 188, 1982
    29. D, G, Sloat et al, Options ate increasing for reducing emissions of SO_2 and NO_x,Power Engineering, 1998, 12: 12-16
    30.曹霞,陈秀萍,浅谈氢氧化镁法脱硫技术,有色金属设计与研究,2000,21(1):47-51
    31.战余英,王德荣等,电子射线辐射法在烟气中脱硫脱硝的技术和经济,环境科技,1993,13(2):70-74
    32.徐息,试述电子束法烟气治理技术的应用前景,中国电力,2002,35(4):54-57
    33.杨世江,介绍一种适合我国国情的烟气脱硫技术-荷电干式吸收剂喷射脱硫系统(CDSI),热电技术,1998(1):7-11
    34.周全,周军,LIFAC工艺在下关发电厂的应用,江苏电力技术,2001(1):7-12
    35.朱传雄,LIFAC烟气脱硫工艺及其应用,电力技术,1992(8):14-18
    36.张凤兰,程岩,小龙谭发电厂烟气循环流化床脱硫工程评述,电力环境保护,2003,19(1):22-24,50
    37. Smith, Douglas J, Germany emphasizes power plant pollution control, Power Engineering(Barrington, Illinois) 1993, 97(12): 30-32.
    38. Ravi K, et al, SO2 scrubbing technologies: A review, Environmental Progress, 2001, 20(4):219-227
    39.L.S.范,气液固流态化工程,中国石化出版社(1993)
    40.谭天恩等,传质-反应过程,浙江大学出版社(1990)
    41.旋流板除雾器,化学工程,1972,No.4/5:79-84,78.
    42.旋流板塔的试验和设计,化学工程,1975,No.3:13.
    43.旋流板技术及其应用,化学工程,1978,No.2:21-34.
    44.旋流板在气固分离中的应用,化学工程,1976,No.6:15.
    45.旋流板设备设计参考资料,化学机械,1978,No.4:31-45,53.
    46. S. Uchida, K. Koide and M. Shindo, Chem. Engng. Sci, 30, 644 (1975)
    47.孔华,石灰石湿法烟气脱硫技术的试验和理论研究,浙江大学博士论文,(2001)
    48. Zhang Yuanjing, Kiil, S(?)ren; Johnsson, Jan E. Experimental investigation of a pilot-scale jet bubbling reactor for wet flue gas desulphurization. Chemical Engineering Science. 2003, 58(20):4695-4703
    49. Grimm C., Abrams J.Z. and Leffmann W. W.. The colstrip flue gas cleaning system. Chem. Eng. Pro. 1978, 2: 50-57.
    50. Rochelle G. T. and King. C. J.Alternatives for stack gas desulfurization by throwaway scrubbing. Chem. Eng. Pro. 1978, 2: 58-70.
    51. Slack. A. V. Lime-limestone scrubbing: design considerations. Chem. Eng. Pro. 1978, 2: 71-75.
    52. David Colley, Nancy Gates and Sterling Gray. Alliance allays FGD retrofit concerns. Power, 1997, 9/10: 55-58.
    53. Jason Makansi. Translate FGD process gains into component design. Power, 1992, 5: 25-28,83.
    54. Henzel D. S., et al, Handbook of FGD Scrubbing with Limestone, Noyes Data Corp., New Jersery, U.S.A., 1982.
    55.陈亚非,锅炉尾部烟气脱硫试验及理论研究,浙江大学博士学位论文,1999.
    56.叶春珍、高翔、骆仲泱、孔华、倪明江、岑可法,无溢流筛板塔烟气脱硫的试验研究,动力工程,1999,19(6):494-497.
    57.王祖武、李绍箕、胡将军、尹兆森、王聪玲,1万m~3/h三相流化床烟气脱硫中间试验初步研究,环境工程,1994,12(6):20-24.
    58.吴忠标、谭天恩、潘学良,旋流板塔内石灰湿法烟气脱硫的试验研究,环境科学学报,1995,15(3):336-341.
    59.吴慧英、黄晟,悬浮水幕式除尘脱硫器的研究,环境工程,1999,17(2):33-36.
    60.李玉平、谭天恩、景国红,无机盐对SO2-H2O-CaCO3气液固三相反应系统pH值的影响,环境污染与防治,1997,Vol.19,No.5,1.
    61. Olausson S. Wallin M. and Bjerle I. A model for the absorption of sulfur dioxide into a limestone slurry. The Chemical Engineering Journal, 1993(51):99-108
    62. Uchida, S; and Wen, C.Y. Rate of gas absorption into a slurry accompanied by instantaneous reaction. Chem. Eng. Sci. 1977, 32,1277-1281.
    63. Rochelle G. T. and King C. J.. The effect of additives on mass transfer in CaCO_3or CaO slurry scrubbing of SO_2 from waste gases. Ind. Eng. Chem.Fundam. 1977, 16, 67-75.
    64. Ramachandran, P. A.; Sharma M. M. Absorption with the fast reaction in a slurry containing sparingly soluble fine particles. Chem. Eng. Sci. 1969, 24,1681-1686.
    65. Roesgen T, Totaro R.Two-dimensional on-line particle imaging velocimetry. Exp.Fluids, 19(1995): 188
    66.万玮,液柱式湿法烟气脱硫系统中液柱喷射性能的研究.[硕士学位论文],北京:清华大学热能工程系,2003
    67.石惠娴,王勤辉,骆仲泱等,PIV应用于气固多相流动的研究现状[J],动力工程,2002,22(1):1589-1593
    68. Measuring particl size distribution and total number in the activation chamber of desuIfurization system by PIV
    69. Adrian R J. Multi-Point Optical Measurement of Simultaneous Vectors in Unsteady Flow-a Review.Int.J.Heat&Fluid Flow. 1986, (7): 127-145
    70. Adrian R J. Particle Imagine Techniques for Experimental Fluid Mechanics.Ann Rev Fluid Mech, 1991, (23): 261-304
    71.马广云,申功炘,PIV测速技术试验参数研究.空气动力学学报,1995,13(3):276-282
    72. Dimotakis P E, Debussy F D, Koochesfahani M M. Particle streak velocity field measurements in a two-dimensional mixing layer. Physics of Fluids, 1981, 24: 995-999
    73. Khalighi B. Study of the intake swirl process in an engine using flow visualization and particle tracking velocimetry.ASME-FED, 1989, 85: 37-47
    74. Simpkins P G, Dudderar T D. Laser speckle measurement of transient Benard convection. J Fluid Mech, 1978, 89:665-671
    75. Kawahashi, M, Yamamoto K. Speckle method using beam scanning techniques. In: Kobayashi T, Yamamoto F eds.Proceedings of The International Workshop on PIV'95-Fukui. Fukui: VSJ, 1995, 155-158
    76. Adrian R J. Particle-imaging techniques for experimental fluid mechanics. Annual Review of Fluid Mechanics, 1991, 23:261-304
    77. Gui L C, Merzkirch W. A method of tracking ensembles of particle images. Experiments in. Fluids, 1996, 21 : 465-468
    78. Kaga A, Inoue Y, Yamaguchi K. Pattern tracking algorithms for airflow measurement through digital image processing of visualized images. J of Visualization Society of Japan, 1994, 14: 38-45 (in Japanese)
    79. Willert C E and Gharibm M. Digital particle image Velocimetry. Experiments in Fluids, 1991, 10: 181-193
    80. Uemura T, Yamamoto F, Koukawa M. High-speed algorithm for particle tracking velocimetry using binary. J of Visualization Society of Japan, 1990, 10: 196-202 (in Japanese)
    81. Yamamoto F, Wada A, Iguchi M, Ishikawa M. Visualization and image processing of torque converter internal flow. J of Flow Visualization and Image Processing, 1996a, 3: 51-64
    82. Yamamoto F, Wada A, Iguchi M, Ishikawa M. Discussion of the cross-correlation methods for PIV. J of Flow Visualization and Image Processing, 1996b, 3, 65-78
    83. Song X, Yamamoto F, Murai Y, Iguchi M. Cross-correlation algorithm for PIV by Delaunay tessellation. In: Kobayashi T, Yamamoto F, eds. Proceedings of The Second International Workshop on PIV'97-Fukui, Fukui: VSJ, 1997. 109-115
    84. Okamoto K. Three-dimensional particle tracking algorithms: velocity vector histogram and spring model. In: Kobayashi T, Yamamoto F, eds. Proceedings of The International Workshop on PIV'95-Fukui, Fhkui: VSJ, 1995.21-32
    85. Ishikawa M, Yamamoto F, Murai Y, Iguchi M, Wada A. A novel PIV algorithm using velocity gradient tensor. In: Kobayashi T, Yamamoto F, eds. Proceedings of The Second International Workshop on PIV'97-Fukui, Fukui: VSJ, 1997.51-56
    86. Baek S J, Lee S J. A new two-frame particle tracking algorithm using match probability. Experiments in Fluids, 1996, 22: 23-32
    87. Nishino N, Kasagi N and Hirata M. Three-dimensional particle tracking velocimetry based on automated digital image processing. J of Fluids Engineering, ASME, 1989, 111:384-391
    88. Malik N A, Dracos Th, Papantoniou D A. Particle tracking velocimetry in three-dimensional flows. Part Ⅱ: Particle tracking. Experiments in Fluids, 1993, 15: 279-294
    89.盛森芝、徐月亭,日新月异的现代流动测量技术[M],北京:北京大学出版社,2000
    90.谢东,刘泽华等.热线热膜风速计特点及其应用[J],暖通空调,2002,(6):118-119
    91.谢东,王汉青,粒子图像速度场仪的特点及其应用,南华大学学报(理工版),2003,17(3):63
    92. Quenot G M, Pakleza J, Kowalewski T A. Particle image velocimetry with optical flow. Experiments in Fluids, 1998, 25: 177-189
    93.许联锋,陈刚,李建中,邵建斌.粒子图像测速技术研究进展,力学进展,2003,33(4):533
    94.范洁川,近代流动显示技术,国防工业出版社,2002,125-126
    95. Lu Yong, Wang Fenglin, Wang Shimin. Measurement of Concentration of Sorbent Particles and Water Droplets in Hydration Desulfurization Reactor with PIV. Journal of Southeast University(English Edition), 19(1): 83
    96.卢平,章名耀,陆勇,利用PIV测量水煤膏雾化粒径的试验研究,东南大学学报,33(4):447
    97.卢平,水煤膏输送特性和喷雾特性及其直接数值模拟的研究[D],南京.东南大学动力工程系,2002
    98. Agarwal, R. S. and Rochelle, G. T. Chemistry of limestone slurry scrubbing. Presented at the 1993 SO_2 Control Symposium, Boston, MA.
    99. Harries R. R. Processing modeling for wet limestone FGD. Inst. Chem. Eng. Symp. Set, 1993, 131-167
    100. Gerbec, M; Stergarsek, A.; Kocjancic, R. Simulation model of wet flue gas desulfurization plant. Comput. Chem. Eng. 1995,19, Suppl., S283.
    101. Charlotte Brogren and Han T. Karlsson. Modeling the absorption of SO_2 in a spray scrubber using the penetration theory. Chem. Eng. Sci. 1997, 52, 3085-3099.
    102. Soren, Kiil; Michael L. Michelsen and Kim Dam-Johansen. Experimental investigation and modeling of a wet flue gas desulfurization pilot plant. Ind. Eng. Chem. Res. 1998, 37, 2792-2806.
    103. Dudek S. A; Rogers J. A; Gohara W. E. Computational fluid dynamics(CFD) model for predicting two-phase flow in a flue-gas-desulfurization wet scrubber. Presented to: EPRI-EPA Comboned Utility Air Pollutant Control Symposium August 16-20, 1999, Atlanta, Georgia, USA
    104.赵琴,Fluent软件的技术特点及其在暖通空调领域的应用,计算机应用.2003(23):424-425
    105.陶文铨,数值传热学(第2版),西安:西安交通大学出版社,2001:335
    106. Hinze. J. O. Turbulence. McGraw-Hill Publishing Co., New York, 1975.
    107. Launder. B.E. and Spalding. D. B. Lectures in Mathematical Models of Turbulence[M]. Academic Press, London, England, 1972.
    108. O'Rourke. P. J. Collective Drop Effects on Vaporizing Liquid Sprays. PhD thesis, Princeton University, Princeton, New Jersey, 1981.
    109. Taylor G. I. The Shape and Acceleration of a Drop in a High Speed Air Stream. Technical report, In the Scientific Papers of G. I. Taylor, ed., G. K. Batchelor, 1963.
    110. O'Rourke P. J. and Amsden A. A. The TAB Method for Numerical Calculation of Spray Droplet Breakup. SAE Technical Paper 872089, SAE, 1987.
    111. White F. Viscous Fluid Flow. New York: McGraw-Hill, 1974: 472
    112. Danckwerts. P. V. Gas-Liquid Reactions. New York: McGraw-Hill, 1970
    113. Kiil S. Michelsen M. L. Johansen K.D. et al. Experimenal investigation and modeling of a wet flue gas desulfurization pilot plant. Ind. Eng. Chem. Res. 1998, 37(7): 2792-2806
    114. Brogren C. and Karlsson H. T. Modeling the absorption of SO_2 in a spray scrubber using the penetration theory, Chem. Eng. Sci. 1997, 52(18):3085-3099
    115. Gerbec M. Stergarsek A. et al. Simulation model of wet flue gas desulfurization plant. Computers Chem. Engng. 1995,19:283-286
    116. Amokrane H. Saboni A. Cuussade B. et al. Expermentatial study and parameterization of gas absorption by water drops. AICHE J. 1994 40(12): 1950-1960
    117. Whitman W. G. Preliminary experimental confirmation of the two-film theory of gas absorption. Chem. Metall. Eng., 1923(29):146-148
    118. Bjele I. Rochelle G. T. and Sverdrup H. Limestone dissolution from in acid lakes, Vattern, 1992, 38(2): 156-163
    119. Bjele I. and Rochelle G. T. Limestone dissolution from a plane surface, Chem. Eng. Sci. 1984(38): 183-185
    120. Chan P. K. and Rochelle G. T. Limestone dissolution: effects of pH, CO2, and buffers modeled by mass transfer, ACS Symp. Ser. 1982(188): 75-97
    121. Wallin M. and Rochelle G. T. The use of the penetration model for the dissolution of limestone in the CO_2-water system, Chem. Eng. Commun. 1990(90): 91-111
    122. Gage C. L. Limestone dissolution in modeling of slurry scrubbing for flue gas desulfurization, Ph. D. Thesis, The University of Texas at Austin, 1989

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700