用户名: 密码: 验证码:
夏季西北冰洋三界面碳通量的估算与测定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
北冰洋碳循环是全球气候变化研究中的核心问题,海-气界面二氧化碳(CO_2)交换、真光层颗粒有机碳(POC)输出及有机碳沉积是北冰洋碳循环中的关键过程。定量估算和测定上述过程中碳元素的吸收、转移、埋藏速率在全球碳循环及全球气候变化研究中有重要意义。
     本研究利用海-气CO_2分压差法、(234)~Th-(238)~U不平衡法和210Pb定年法,分别研究夏季西北冰洋海-气界面CO_2交换通量、真光层POC输出通量和有机碳沉积通量等三个界面的碳通量。通过估算及测定它们的大小并分析它们之间的联系,评估北冰洋碳循环效率和碳汇效应,有助于加强认识北冰洋碳循环过程在全球气候变化背景下的现状和反馈作用。
     考察区域内,海-气CO_2分压差的变化范围为-256.3~10.7μatm,平均值为-92.9±60.6μatm,在海盆区主要受物理因素控制,而在陆架区和低纬海盆区受生物因素影响较明显。经海冰覆盖率校正后的平均风速海-气界面CO_2交换通量平均值为-7.0±6.7 mmol C/m~2/d。
     考察区域内上层水柱中(234)~Th与(238)~U的比活度比值平均值为0.86±0.34,陆架区出现明显的(234)~Th亏损,而在海盆冰缘区受融冰颗粒物释放作用影响出现(234)~Th过剩现象。真光层POC输出通量变化范围为1.8~79.2 mmol C/m~2/d,平均值为24.9±23.3 mmol C/m~2/d,且在夏季末期仍保持较高的POC输出通量。ThE比值为21 %,表明北冰洋陆架有着较高的生物泵运转效率。
     楚科奇海陆架北部的沉积速率为0.6 mm/a,表观沉积质量通量为0.72 kg/m~2/a,有机碳沉积通量为517 mmol C/m~2/a,表明考察区域有着很高的有机碳埋藏效率。
     综合三界面的碳通量,可知从大气进入楚科奇海陆架区表层海水中的CO_2基本全部通过生物泵作用被转化为颗粒有机碳并输送至深层水体,其中有29 %以有机碳的形式被永久封存于沉积物中,三界面碳通量之比为1:2:0.6。
     楚科奇海短期碳汇效应为10.0±3.4 T g C/a,中长期碳汇效应为11.6±9.0 T g C/a,最终碳汇净效应为3.4 T g C/a,分别约占全球海洋每年碳汇效应总量、海洋真光层输出POC总量和海洋有机碳沉积总量的0.5~0.7 %,0.3 %和2.1 %。
The carbon cycling in Arctic Ocean is one of the essential problems in global climate change research, the key processes of which include air-sea CO_2 exchange, particulate organic carbon export from euphotic zone and organic carbon sedimentation. Quantitative determination and estimation of the carbon absorbing, transferring and burial rate in the processes above have important significances.
     In this study, the air-sea CO_2 exchange fluxes were estimated from CO_2 partial pressure in the atmosphere and surface seawater, the euphotic zone POC export fluxes were derived with (234)~Th/238U disequilibrium in the upper water column and the organic carbon burial rate was measured from 210Pb specific activity vertical distribution in the sediment. By determining these parameters and analyze the relationship between them, evaluations of carbon cycling efficiency and carbon sink capacity of Arctic Ocean were made, to enhance the understanding of the status and feedback of Arctic Ocean under the background of global climate change.
     The air-sea difference of CO_2 partial pressure ranged from -256.3 to 10.7μatm, with an average of -92.9±60.6μatm, which was mainly controlled by physical factors in basin region while by biological pump in Chukchi shelf or southern Canada Basin. With the seaice coverage correction, air-sea CO_2 exchange fluxes showed variation from -24.8 to 1.0 mmol C/m~2/d, with an average of -7.0±6.7 mmol C/m~2/d.
     The average of specific activity ratios of (234)~Th and 238U was 0.86±0.34. (234)~Th deficit to 238U were widely found in the shelf area, but excess of (234)~Th were observed in frozen ice zone in Canada Basin due to the release of particles during the sea ice melting. The POC export fluxes from euphotic zone ranged from 1.8 to 79.2 mmol C/m~2/d (on average of 24.9±23.3 mmol C/m~2/d). High ThE ratio of 21 % was estimated, revealing an efficient biological pump in study region.
     The sedimentation rate in the north Chukchi Shelf was 0.6 mm/a, the apparent mass sediment accumulation rate was 0.72 kg/m~2/a, and the organic carbon burial rate was 517 mmol C/m~2/a.
     Basically all the CO_2 exchanged into surface ocean via air-sea interface was fixed and transferred to deeper water, of which 29 % was buried in the sediment permanently. The ratio of the carbon fluxes on the three interfaces was 1:2:0.6.
     The short term, mid-long term and ultimate carbon sink capacity of Chukchi Sea were 10.0±3.4 T g C, 11.6±9.0 T g C and 3.4 T g C/a, occupying 0.5±0.2~0.7±0.2 %, 0.3 % and 2.1 % of the total marine carbon sink capacity, the total marine export productivity and the total marine ultimate carbon sink capacity.
引文
陈建芳,张海生,金海燕,等.北极陆架沉积碳埋藏及其在全球碳循环中的作用.极地研究, 2004, 3: 193-201.
    陈立奇,赵进平,卞林根,等.影响北极地区迅速变化的一些关键过程研究.极地研究, 2003, 15(4): 283-302.
    陈立奇,高众勇,王伟强,等.白令海盆pCO2分布特征及其对北极碳汇的影响.中国科学(D辑), 2003, 33(8): 781-790.
    陈立奇,高众勇,杨绪林,等.极区和亚极区的上层海洋-低层大气研究.上层海洋与低层大气研究的前沿科学问题.北京:气象出版社, 2007: 76-82.
    陈立奇,杨绪林,张远辉,等.海洋-大气二氧化碳通量的观测技术.海洋技术, 2008, 27(4): 9-13.
    陈立奇.极区海洋碳池变化性和脆弱性及其探测工程技术.中国工程科学, 2009, 11(10): 79-85.
    陈敏,马嫱,邱雨生.西北冰洋颗粒有机碳的输出通量.待发表.
    高众勇,陈立奇, Cai W, et al.全球变化中的北极碳汇:现状与未来.地球科学进展, 2007, 22(8): 857-865.
    冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社, 1999: 273-274.
    刘子琳,陈建芳,张涛,等.楚科奇海及其海台区粒度分级叶绿素a与初级生产力.自然科学进展, 2007, 27: 4953-4962.
    鲁中明,戴民汉.海气CO2通量与涡动相关法应用研究进展.地球科学进展, 2006, 21(10): 1046-1057.
    王伟强,杨绪林,王宣宝,等.北冰洋考察区海-气CO2的分布特征和通量研究.中国科学, 2003, 33(2): 119-126.
    许苏清,陈立奇.利用卫星数据估算南大洋海-气CO2通量的展望.极地研究, 2007, 19(2): 151~157.
    杨伟锋,陈敏,刘广山,等.楚克奇海陆架区沉积物中核素的分布及其对沉积环境的示踪.自然科学进展, 2002, 12(5): 515-518.
    曾文义,程汉良,姚建华,等.海洋沉积物中210Po的测定及其在地质年代学上的应用.台湾海峡, 1983, 2: 30-36.
    Aono T, Yamada M, Kudo I, et al. Export fluxes of particulate organic carbon estimated from 234Th/238U disequilibrium during the Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study (SEEDS 2001). Progress In Oceanography, 2005, 64(2): 263-282.
    Bacon M P, Huh C A, Moore R M. Vertical profiles of some natural radionuclides over the Alpha Ridge, Arctic Ocean. Earth and Planetary Science Letters, 1989, 95: 15-22.
    Baskaran M and Naidu A S. 210Pb-derived chronology and the fluxes of 210Pb and 137Cs isotopes into continental shelf sediments, East Chukchi Sea, Alaskan Arctic. Geochimica et Cosmochimica Acta, 1995, 59(21): 4435-4448.
    Baskaran M, Swarzenski P M, Porcelli D. Role of colloidal material in the removal of 234Th in the Canada basin of the Arctic Ocean. Deep-Sea Research-Part I, 2003, 50: 1353-1373.
    Bates N R and Mathis J T. The Arctic Ocean marine carbon cycle: evaluation of air-sea CO2 exchanges, ocean acidification impacts and potential feedbacks. Biogeosciences, 2009, 6: 1-27.
    Bates N R, Moran S B, Hansell D A, et al. An increasing CO2 sink in the Arctic Ocean due to sea-ice loss. Geophys. Res. Lett., 2006, 33(23): L23609.
    Berger W H, Smetacek V S, Wefer G. Productivity of the ocean: present and past. Chichester: John Wiley & Sons, 1989: 471.
    Bender M L, Ho D T, Hendricks M B, et al. Atmospheric O2/N2 changes, 1993-2002: implications
    for the partitioning of fossil fuel CO2 sequestration. Glob. Biogeochem. Cycles, 2005, 19: GB4017.
    Benitez-Nelson C R, Buesseler K O, Rutgers van der Loeff M M, et al. Testing a new small-volume technique for determining 234Th in seawater. Journal of Radioanalytical and Nuclear Chemistry, 2001, 248: 795-799.
    Bhat S G, Krishnaswamy S, Rama Lal D, et al. 234Th/238U ratios in the ocean. Earth Planet Sci. Lett., 1969, 5: 483-491.
    Buesseler K O. Do upper-ocean sediment traps provide an accurate record of particle flux? Nature, 1991, 353: 420-423.
    Buesseler K O. The decoupling of production and particulate export in the surface ocean. Global Biogeochemical Cycles, 1998, 12: 297-310.
    Buesseler K O, Benitez-Nelson C R, Rutgers van der Loeff M M, et al. An intercomparison of small- and large- volume techniques for thorium-234 in seawater. Mar. Chem., 2001, 74: 15-28.
    Buesseler K O, Andrews J E, Pike S M, et al. Particle Export during the Southern Ocean Iron Experiment (SOFeX). Limnology and Oceanography, 2005, 50(1): 311-327.
    Buesseler K O, Lamborg C, Cai P, et al. Particle fluxes associated with mesoscale eddies in the Sargasso Sea. Deep Sea Research Part II, 2008, 55: 1426-1444.
    Berner R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance. American Journal of Science, 1982, 282: 451-473.
    Cai P, Dai M, Lv D, et al. An improvement in the small-volume technique for determining thorium-234 in seawater. Mar. Chem., 2006, 100: 282-288.
    Cai P, Chen W, Dai M, et al. A high-resolution study of particle export in the southern South China Sea based on 234Th:238U disequilibrium. J. Geophys. Res., 2008, 113: C04019.
    Cai P, Rutgers van der Loeff M, Stimac I, et al. Low export flux of particulate organic carbon in the central Arctic Ocean as revealed by 234Th:238U disequilibrium. J. Geophy. Res.-Oceans (in press).
    Chen L, Gao Z, Wanninkhof R, et al. Comparison of Air-Sea Fluxes of CO2 in the Southern Ocean and the Western Arctic Ocean (CFCSOA). Proceedings of International Symposium- Asian Collaboration in IPY 2007-2008, Tokyo, Japan, 2007: 41-44.
    Chen L and Gao Z. Spatial variability in the partial pressures of CO2 in the northern Bering and Chukchi seas. Deep Sea Research II, 2007, 54(23-26): 2619-2629.
    Chen L, Gao Z, Yang X, et al. Comparison of air-sea fluxes of CO2 in the Southern Ocean and the western Arctic Ocean. Acta Oceanologica Sinica, 2004, 23(4): 643~653.
    Chen M, Huang Y P, Guo L D, et al. Biological productivity and carbon cycling in the Arctic Ocean. Chinese Science Bulletin, 2002, 47(12): 1037-1040.
    Chen M, Huang Y P, Cai P H, et al. Particulate organic carbon export fluxes in the Canada Basin and Bering Sea as derived from 234Th/238U disequilibria. Arctic, 2003, 55: 32-44. Coale K H and Bruland K W. 234Th:238U disequilibria within the California Current. Limnol. Oceanogr., 1985, 30: 22-33.
    Cochran J K, Barnes C, Achman D, et al. Thorium-234/Uranium-238 disequilibria as an indicator of scavenging rates and particulate organic carbon fluxes in the Northeast Water Polynya, Greenland. Journal of Geophysical Research, 1995, 100: 4399-4410.
    Coppola L, Roy-Barman M, Wassmann P, et al. Calibration of sediment traps and particulate organic carbon export using 234Th in the Barents Sea. Marine Chemistry, 2002, 80: 11-26.
    English T S. Some biological oceanography observations in the central north Polar Sea, Drift Station Alpha, 1957~1958. Arctic Inst. of North America Scientific Report, 1961, 15: 1-80.
    EPICA. Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429: 23-28.
    Eppley R W and Peterson B J. Particulate organic matter flux and planktonic new production in the deep ocean. Nature, 1979, 283: 677-680.
    Fransson A, Chierici M, Anderson L G, et al. The importance of shelf processes for the modification of chemical constituents in the waters of the Eurasian Arctic Ocean: implication for carbon fluxes. Cont. Shelf Res., 2001, 21(3): 225-242.
    Forest A, Sampei M, Hattori H, et al. Particulate organic carbon fluxes on the slope of the Mackenzie Shelf (Beaufort Sea): Physical and biological forcing of shelf-basin exchanges, Journal of Marine Systems, 2007, 68(1-2): 39-54.
    Gloor M, Gruber N, Sarmiento J, et al. A first estimate of present and preindustrial air–sea CO2 flux patterns based on ocean interior carbon measurements and models. Geophys. Res. Lett. 2003, 30(1): 1010.
    Golderg E D and Koid M. Rates of sediment accumulation in the Indian Ocean//Geiss J, Golderg E D. Earth Sciences and Meteoritics. Amsterdam: North company, 1963: 90-102.
    Goldman J C, Dennet M R, Frew N M. Surfactant effects on air-sea gas exchange under turbulent conditions. Deep Sea Research, 1988, 35: 1953-1970.
    Gosselin M, Levasseur M, Wheeler P A, et al. New measurement of phytoplankton and ice algal production in the Arctic Ocean. Deep-Sea Research, 1997, 44(8): 1623-1644.
    Graversen R G, Mauritsen T, Tjernstr?m M, et al. Vertical structure of recent Arctic warming. Nature, 2008, 451: 53-59.
    Hameedi M. Aspects of water column primary productivity in the Chukchi Sea during summer. Marine Biology, 1978, 48(1): 37-46.
    Hedges J I and Keil R G. Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry, 1995, 49(2-3): 81-115.
    Hermanson M H. 210Pb and 137Cs chronology of sediments from small shallow Arctic lakes. Geochem. Cosmochem. Acta, 1990, 54:1443.
    Houghton R A, Davidson E A, Woodwell G M. Missing sinks, feedbacks, and understanding the role of terrestrial ecosystems in the global carbon balance. Global Biogeoch. Cycles, 1998(12): 25-34.
    Huh C A, Pisias N G, Kelley J M, et al. Natural radionuclides and plutonium in sediments from the western Arctic Ocean: sedimentation rates and pathways of radionuclides. Deep Sea Research Part II, 1997, 44(8): 1725-1743.
    Indermühle A, Monnin E, Stauffer B, et al. Atmospheric CO2 concentration from 60 to 20 kyr BP from the Taylor Dome ice core, Antarctica. Geophys. Res. Lett., 2000, 27(5): 735-738.
    IPCC. Technical Summary//IPCC. Climate Change 2007. Cambridge, UK: Cambridge University Press, 2007: 35-56.
    Jacobson A R, Mikaloff-Fletcher S E, Gruber N, et al. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 1. Methods and global-scale fluxes. Glob. Biogeochem. Cycles, 2007a, 21: GB1019.
    Jacobson A R, Mikaloff-Fletcher S E, Gruber N, et al. A joint atmosphere–ocean inversion for surface fluxes of carbon dioxide: 2. Regional results. Glob. Biogeochem. Cycles, 2007b, 21: GB1020.
    Kaltin S, Anderson L G, Olsson K, et al. Uptake of atmospheric carbon dioxide in the Barents Sea. J. Marine Syst., 2002, 38(1-2): 31-45.
    Kaltin S and Anderson L G. Uptake of atmospheric carbon dioxide in Arctic shelf seas: Evaluation of the relative importance of processes that influence pCO2 in water transported over the Bering-Chukchi Sea shelf. Mar. Chem., 2005, 94(1-4): 67-79.
    Keeling R F and Garcia H. The change in oceanic O2 inventory associated with recent global warming. Proc. US Natl. Acad. Sci., 2002, 99: 7848-7853.
    Le Quere C, Michael R R, Joseph G C, et al. Trends in the sources and sinks of carbon dioxide. Nature Geoscience, 2009, 2: 831-836.
    Liss P S and Merlivat L. Air-sea gas exchange rates: Introduction and synthesis//Role of Air-Sea Exchange in Geochemical Cycling. Buat-Menard P. Hingham: Mass., 1986: 113-129.
    Ma H, Zeng Z, He J, et al. Preliminary study on particulate organic carbon export fluxes in the Bering Sea. Chinese Journal of Polar Science, 2009, 20(1): 57-63.
    Martin J H, Knauer G A, Karl D M, et al. VERTEX: Carbon cycling in the Northeast Pacific. Deep-Sea Research, 1987, 34(22): 267-285.
    Mikaloff-Fletcher S E, Gruber N, Jacobson A R, et al. Inverse estimates of anthropogenic CO2 uptake, transport, and storage by the ocean. Glob. Biogeochem. Cycles, 2006, 20: GB2002.
    Moran S B, Ellis K M and Smith J N. 234Th/238U disequilibrium in the central Arctic Ocean: implications for particulate organic carbon export. Deep-sea Res. II, 1997, 44(8): 1593-1606.
    Moran S B and Smith J N. 234Th as a tracer of scavenging and particle export in the Beaufort Sea. Continental Shelf Research, 2000, 20: 153-167.
    Moran S B, Weinstein S E, Edmonds H N, et al. Does 234Th/238U Disequilibrium Provide an Accurate Record of the Export Flux of Particulate Organic Carbon from the Upper Ocean? Limnology and Oceanography, 2003, 48(3): 1018-1029.
    Moran S B, Kelly R P, Hagstrom K, et al. Seasonal changes in POC export flux in the Chukchi Sea and implications for water column-benthic coupling in Arctic shelves. Deep-sea Res. II, 2005, 52: 3427-3451.
    Murata A and Takizawa T. Summertime CO2 sinks in shelf and slope waters of the western Arctic Ocean. Cont. Shelf Res., 2003, 23(8): 753-776.
    Nakaoka S, Aiki A, Nakazawa T, et al. Temporal and spatial variations of oceanic pCO2 and air-sea CO2 flux in the Greenland Sea and the Barents Sea. Tellus, 2006, 58(2): 148-161. Nghiem S V, Rigor I G, Perovich D K. Rapid reduction of Arctic perennial sea ice. Geophys. Res. Lett., 2007(34): L19504.
    Nitishinsky M, Anderson L G, H?lemann J A. Inorganic carbon and nutrient fluxes on the Arctic Shelf. Cont. Shelf Res., 2007, 27(10-11): 1584-1599.
    Omar A M, Kaltin T S and Olsen A. Anthropogenic increase of oceanic pCO2 in the Barents Sea surface water. J. Geophys. Res., 2003, 108(C12): 3388.
    Patra P K, Maksyutov S, Ishizawa M, et al. Interannual and decadal changes in the sea-air CO2 flux from atmospheric CO2 inverse modeling. Glob. Biogeochem. Cycle, 2005, 19: GB4013.
    Peinert R, Bauerfeind E, Gradinger R, et al. Biogenic Particle Sources and Vertical Flux Patterns in the Seasonally Ice-Covered Greenland Sea//Schafer P, Ritzrau W, Schluter M, et al. The Northern North Atlantic: a changing environment. Berlin: Springer, 2001: 69-79.
    Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature, 1999, 399: 429-436.
    Quay P, Sommerup R, Westby T, et al. Changes in the 13C/12C of dissolved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob. Biogeochem. Cycles, 2003, 17(1): 1004.
    Rothrock D A, Percival D B, Wensnahan M. The decline in arctic sea-ice thickness: separating the spatial, annual, and interannual variability in a quarter century of submarine data. Journal of Geophysical Research-Oceans, 2008(113): C05003.
    Rutgers van der Loeff M M, Michel A, Key R M, et al. 228Ra as a tracer for shelf water in the Arctic Ocean. Deep-Sea Research II, 1995, 42: 1533-1553.
    Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2. Science, 2004, 305: 367-371.
    Sarmiento J L, Monfray P, Maier-Reimer E, et al. Sea–air CO2 fluxes and carbon transport: a comparison of three ocean general circulation models. Glob. Biogeochem. Cycles, 2000, 14: 1267-1281.
    Semiletov I P, Pipko I I, Repina I, et al. Carbonate chemistry dynamics and carbon dioxide fluxes across the atmosphere-ice-water interface in the Arctic Ocean. J. Marine Syst., 2007, 66(1-4): 204-226.
    Smith W O Jr. Primary productivity and new production in the Northeast Water Polynya (Greenland) during summer 1992. Journal of Geophysical Research, 1995, 100(C3): 4357-4370.
    Stanley R H R, Buesseler K O, Steven J, et al. A comparison of major and minor elemental fluxes collected in neutrally buoyant and surface-tethered sediment traps. Deep Sea Research Part I, 2004, 51(10): 1387-1395.
    Stein R and Fahl K. Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks. Geo-Marine Letters, 2000, 20: 27-36.
    Stein R and Macdonald R W. The organic carbon cycle in the Arctic Ocean. New York: Springer, 2004: 1-5.
    Stroeve J, Holland M M, Meier W, et al. Arctic sea ice decline: faster than forecast. Geophysical Research Letter, 2007(34): L09501.
    Takahashi T, Olafsson J, Goddard J G, et al. Seasonal variation of CO2 and nutrients in the high-latitude surface oceans: A comparative study. Global Biogeochemical Cycles, 1993, 7(4): 843-878.
    Takahashi T, Sutherland S C, Wanninkhof R, et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-sea Res. II, 2009, 56: 554-577.
    Tans P P, Fung I Y, and Takahashi T. Observational Constrains on the Global Atmospheric CO2 Budget. Science, 1990, 247: 1431-1438.
    Trimble S M and Baskaran M. The role of suspended particulate matter in 234Th scavenging and 234Th-derived export fluxes of POC in the Canada Basin of the Arctic Ocean. Mar. Chem., 2005, 96: 1-19.
    Wanninkhof R. Kinetic fractionation of the carbon isotopes 13C and 12C during transfer of CO2 from air to seawater. Tellus Series B, 1985, 37: 128-135.
    Wanninkhof R. Relationship between gas exchange and wind speed over the ocean. J. Geophys. Res., 1992, 97(C5): 7373-7381.
    Wanninkhof R and McGillis W R. A cubic relationship between air-sea CO2 exchange and wind speed. Geophysical Research Letters, 1999, 26(13): 1889-1892.
    Wheeler P A, Gosselin M, Sheer E, et al. Active cycling of organic carbon in the central Arctic Ocean. Nature, 1996, 380: 697-699.
    WMO (World Meteorology Organization). WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Using Global Observations through 2008. Geneva: WMO, 2009: 1-2.
    Yu W, Chen L, Cheng J, et al. 234Th-derived particulate organic carbon export fluxes in the western Arctic Ocean. Chinese Journal of Oceanology and Limnology (in press).
    Zernova V V, N?thig E M, Shevchenko V P. Vertical microalgae flux in the northern Laptev Sea (from the data collected by the yearlong sediment trap). Oceanology, 2000, 40(6): 801-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700