用户名: 密码: 验证码:
氧化钒基纳米材料及器件研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化钒是重要的半导体材料,有着良好的光学、电学性能,有着巨大的潜在价值,可以应用在温度传感器、光电调节器、可充电锂离子电池、智能窗、非制冷红外探测器、气体传感器、掩模、快速光电开关、光存储器等方面。由于对于氧化钒体材料的研究已近较为成熟,对其纳米材料特性逐渐成为目前研究的热点。
     本文分别采用新的方法制备了氧化钒基的一维和二维纳米材料,并进行了详细的分析和理论解释,开发它们的自身特性制作了几种简单的纳米器件传感器。
     利用改进的化学气相沉积方法(MCVD)在硅基底上合成了超长单晶五氧化二钒纳米带,宽度为20-500nm,长度为厘米量级,长径比大于5个数量级。并对其生长条件、形貌、结晶性和生长机理等进行了研究。五氧化二钒纳米带的最优生长方向为[010]晶向。
     利用五氧化二钒纳米带制作了超快的光电开关。在一维金属氧化物纳米结构中,其具有对可见光超快的响应速度(最快响应时间约为100μs)和非常良好的可重复性与稳定性(包括长时间照射和温度稳定性)。证明了五氧化二钒纳米带光电开关具有超快响应速度是因为其导电机制为小极化子导电。对五氧化二钒纳米带光电开关器件进行的功能演示,表明了其器件的实用性。
     还探讨了其制作应力传感器和气敏传感器的可能性。五氧化二钒纳米带压阻效应明显,对外力较为敏感,重复性、稳定性较好,非常适合制作纳米应变传感器。证明其压阻的机理并不是因为相变导致。五氧化二钒纳米带对氨气和二氧化氮均有气敏特性,但是单根纳米带灵敏度较低。有待制作成阵列集成进行研究和采用其他气体试验研究。
     利用磁控溅射制备金属钒膜,并用激光直写进行氧化。得到了激光在金属钒膜上的氧化阈值是7mW cm~(-2)。用XPS分析了氧化钒薄膜的化学组分,初步建立了激光功率密度与氧化钒薄膜主要价态之间的关系,10mW cm~(-2)功率密度对应的以VO_2为主,20mW cm~(-2)功率密度对应的以V_2O_5为主。此外,不同的功率密度可以直写出不同颜色梯度和高度的氧化钒薄膜。
As important semiconductor material, Vanadium oxide (VOx) has a greatpotential value due to its good optical, electrical properties. It can be applied in thetemperature sensor, photoelectric regulator, rechargeable lithium-ion batteries, smartwindows, uncooled infrared detectors, gas sensors, mask, fast photoelectric switchesand optical memory. Over the past few year, Vanadium oxide bulk materials havebeen studied in depth. Vanadium oxide nanomaterials have gradually become a hottopic of current research.
     In this paper, new approaches were developed in the preparation of VOx-based,one-dimensional and two-dimensional materials. Detailed analysis and theoreticalinterpretation were then proposed. A few sample of nanosensors were made by theirown characteristics.
     Ultralong single crystalline vanadium pentoxide (V_2O_5) nanobelts weresynthesized on silicon substrates using the modified chemical vapor deposition(MCVD),which have width in20-500nm, length in centimeter magnitude, and theaspect ratio in more than five orders of magnitude. The growth conditions,morphology, crystallization and growth mechanism were studied. Vanadiumpentoxide nanobelts have optimal growth direction in [010] crystallization.
     A photoelectric switch with ultrafast response to visible light (<100μs), suitablephotosensitivity and excellent repeatability is proposed based on the ultralong singlecrystalline V_2O_5nanobelt. Its photoconductive mechanism can well be explained bysmall polaron hopping theory. Moreover, a switching test circuit, including a LEDlight, displays the practicality of the switch.
     The possibility of usage in strain sensors and gas sensors were also discussed.V_2O_5nanobelt has obvious piezoresistive effect. Due to its sensitiveness to externalforces, good repeatability and good stability, V_2O_5nanobelt is very suitable formaking nanostrain sensors. Phase transition is not the mechanism of its piezoresistiveeffect.
     A single V_2O_5nanobelt has a low sensitivity to ammonia and nitrogen dioxide asgas sensor. Array integration and other gas test need to be done for further research.
     Vanadium film was deposited by Magnetron sputtering. After that, it wasoxidized by laser direct writing (LDW). The oxidation threshold of the laser in the metal vanadium film is7mW cm~(-2). X-ray photoelectron spectroscopy (XPS) was usedto analyse the chemical composition of VOxthin films. The relationship between thelaser power density and the valence state of VOxthin films was established initially,where10mW cm~(-2)and20mW cm~(-2)power density correspond to main VO_2and V_2O_5,respectively. In addition, the power density has relationship with the gray-scale andheight of VOxthin films.
引文
[1]彭军,传感器与检测技术,西安:西安电子科技大学出版社,2003,263~265.
    [2]牛德芳,半导体传感器原理及其应用,大连:大连理工大学出版社,1993,175~176
    [3] Barsan N., Koziej D., Weimar U., Metal oxide-based gas sensor research: Howto?, Sensors and Actuators B,2007,121(1):18~35.
    [4]贾伯年,俞朴,宋爱国,传感器技术,南京:东南大学出版社,2007,7.
    [5]陈裕泉,葛文勋,现代传感器原理及应用,北京:科学出版社,2007,50~52.
    [6]陈长伦,刘锦淮,何建波,新型碳纳米气敏传感器的研究进展,微纳电子技术,2003(6):16~21
    [7]白春礼,中国纳米科技研究的现状及思考,物理,2002,31(2):65~70
    [8] Comini E, Metal oxide nano-crystals for gas sensing, Analytica ChimicaActa,2006,568(1-2):28~40
    [9]汤兆胜,SnO2薄膜气敏传感器的制备和研究,[博士学位论文],杭州:浙江大学,2001
    [10]詹自力,纳米In2O3气敏性能及其气敏机理研究,[博士学位论文],郑州:郑州大学,2004
    [11] LIJIMA S., Helical microtubules of graphitic carbon. Nature,1991,354(7):56~58
    [12]张红丹,邹小平,程进,等.碳纳米管制备及其生长机制研究.微纳电子技术,2007(7/8):60~62
    [13] Chunxu Pan, Yueli Liu, Feng Cao, Novel solid-cored carbon nanofiber grown onsteels substrates in ethanol flames, Journal of Materials Science,2005,40(5):1293~1295
    [14] Chunxu Pan, Qiaoliang Bao, Well-aligned carbon nanotubes from ethanol flame,Journal of Materials Science Letters,2002,21(24):1927~1929
    [15] Lijie Ci, Bingqing Wei, Ji Liang, Cailu Xu, Dehai Wu, Preparation of CarbonNanotubules by the Floating Catalyst Method, Journal of Materials ScienceLetters,1999,18(10):797~799
    [16] Choon-Ming Seah, Siang-Piao Chai, Abdul Rahman Mohamed, Synthesis ofaligned carbon nanotubes, Carbon,2011,49(14):4613~4635.
    [17]基于一维纳米材料的纳米传感器及其应用,[EB/OL].[2007-11-06].http://www. hfcas.ac.cn/jqyw/2005/2005-12/12.12a. html.
    [18] Jiarui Huang, Guangyi Li, Zhongying Huang, Xingjiu Huang, Jinhuai Liu.Temperature modulation and artificial neural network evaluation for improvingthe CO selectivity of SnO2gas sensor. Proceedings of the2005IEEEInternational Conference on Information Acquisition2005,6,120~123
    [19]黄行九,王连超,孙宇峰,孟凡利,刘锦淮.固相微萃取/二氧化锡气体传感器联用技术对果蔬中有机磷农药残留的快速检测,分析化学,2005,33(3):363~365
    [20]孟凡利,黄行九,孙宇峰,刘锦淮.基于SnO2气体传感器对CO的动态检测及原理分析,传感技术学报,2005,18(1):53~56
    [21] Xingjiu Huang, Fanli Meng, Yufeng Sun, Jinhuai Liu. Study of FactorsInfluencing Dynamic Measurements Using SnO2Gas Sensor, Sensors andMaterials,2005,17(1):29~38
    [22]孟凡利,黄行九,孙宇峰,刘锦淮.,基于SnO2传感器对液化石油气的动态检测,传感器技术,2005,24(2):68~69
    [23]浙江大学.基于纳米间隙的微型气体传感器:中国专利,200510050067.7.2006-02-01.
    [24]美首次完成太空纳米感应器试验[EB/OL].[2007-11-10]. http://www.wangchao. net. cn/bbsdetail940632. html.
    [25]可分析气体成份的电子鼻研制成功[EB/OL].[2007-11-10]. http://tech.qq.com/a/20060418/000025. html.
    [26]上海交通大学.基于一维纳米材料的微气体传感器的制造方法:中国专利,200510112214.9.2006-06-28.
    [27] Eric Stern, et al, Label-free biomarker detection from whole blood, NatureNanotechnology2010,5:138~142
    [28]佚名,美国研发新型传感器芯片,可加快药物的开发过程,科技与生活,2011,9:20
    [29] Xuefeng, Gao, Lei, Jiang, Biophysics: Water-repellent legs of water striders,Nature,2004,432:36
    [30] Taolei Sun, Lin Feng, Xuefeng Gao, and Lei Jiang, Bioinspired Surfaces withSpecial Wettability, Acc. Chem. Res.2005,38:644-652
    [31] Feng, L, et al, Super-hydrophobic surfaces: From natural to artificial. Adv. Mater.2002,14:1857~1860
    [32] X.J.Feng, L.Jiang, Design and Creation of Superwetting/Antiwetting Surfaces,Advanced Materials,2006,18(23):3063~3078
    [33] Jeong KH, Kim J, Lee LP. Biologically inspired artificial compound eyes.Science,2006,312(5773):557~61
    [34] Autumn K, Liang YA, Hsieh ST, et al. Adhesive force of a single gecko foot-hair.Nature,2000,405(6787):681~5
    [35] Geim AK, Dubonos SV, Grigorieva IV, et al. Microfabricated adhesivemimicking gecko foot-hair. Nat Mater,2003,2(7):461~3
    [36] Kinoshita S, Yoshioka S, Fujii Y, et al, Photophysics of structural color in themorpho butterflies. Forma,2002,17(2):103~21
    [37] Yoshioka S, Kinoshita S. Effect of macroscopic structure in iridescent color ofthe peacocks feathers. Forma,2002,17(2):169~81
    [38] Yoshida A, Motoyama M, Kosaku A, et al. Nanoprotuberance array in thetransparent wing of a hawkmoth, Cephonodeshylas. Zool Sci,1996,13(4):525~526
    [39] Kinoshita S, Yoshioka S. Structural colors in nature: the role of regularity andirregularity in the structure. ChemPhysChem,2005,6(8):1442~59
    [40] Newton MR, Morey KA, Zhang YH, et al. Anisotropic diffusion in face-centeredcubic opals. Nano Lett,2004,4(5):875~80
    [41]王育德,纳米微晶巨磁阻抗元器件—21世纪的传感器,汽车电器,2000(2):22~22.
    [42]美国纳米技术的发展历史及现状[EB/OL].[2007-11-10]. http://www.cshoo.com/cj/A rt icle/200709/34813.html.
    [43]刘冬青,郑文伟,程海峰等,二氧化钒薄膜制备及其热致变发射率特性研究,红外技术,2010,32(3):181~184
    [44]王胤博,二氧化钒智能窗玻璃,硅谷,2010,4:62
    [45]俞晓静,李毅,王海方等,二氧化钒纳米点阵红外光学特性研究,光子学报,2010,39(60):1120~1124
    [46]杜明军,吴志明,罗振飞等,直流磁控溅射法制备非晶态氧化钒薄膜光学特性研究,电子器件,2010,33(5):531~535
    [47]王利霞,何秀丽,高晓光,二氧化钒微测辐射热计的制备及工艺,功能材料与器件学报,2010,16(4):305~310
    [48]袁宁一,李金华,林成鲁,溶胶-凝胶VO2薄膜转换特性研究,物理学报,2002,51(4):852~856
    [49]陈长琦,方应翠,朱武等,二氧化钒相变分析及应用,真空,2001,6:9~13
    [50] Hyun-Tak Kim, Byung-Gyu Chae, Doo-Hyeb Youn, Raman study ofelectric-field induced first-order metal-insulator transition in VO2-based devices,Applied Physics Lertters,2005,86,42101
    [51] Y. J. Chang, C. H. Koo, J. S. Yang, et al. Phase coexistence in the metal insulatortransition of a VO2thin film, Thin Solide Films,2005,486(1-2):46~49
    [52]美法合作揭开二氧化钒多相之谜[EB/OL].[2010-11-26]. http://tech.sina.com.cn/d/2010-11-26/10194912469.shtml
    [53] Y.Cheng, T.L.Wong, K.M.Ho, N.Wang, The structure and growth mechanism ofVO2nanowires Journal of Crystal Growth,2009,311:1571~1575
    [54] Q. Su, C.K. Huang, Y.Wang, Y.C. Fan, B.A. Lu,W. Lan, Y.Y.Wang, X.Q. Liu,Formation of vanadium oxides with various morphologies by chemical vapordeposition, Journal of Alloys and Compounds,2009,475(1-2):518~523
    [55] Guiton, B. S., Gu, Q., Prieto, A. L., Gudiksen, M. S., Park, H.,Single-Crystalline Vanadium Dioxide Nanowires with Rectangular CrossSections, J. Am. Chem. Soc.2005,127(2):498~499
    [56] Y K Kim et al, Control of adsorption and alignment of V2O5nanowires viachemically functionalized patterns, Nanotechnology,2007,18(1):015304
    [57] Ying Wang, et al, Synthesis and Electrochemical Properties of VanadiumPentoxide Nanotube Arrays, J. Phys. Chem. B,2005,109(8):3085~3088
    [58] Yu-quan WANG, Zheng-cao LI, Zheng-jun ZHANG, Preparation of V2O5thin film and its optical characteristics, Front. Mater. Sci. China,2009,3(1):44~47
    [59] Matthew J. Dicken, Koray Aydin, Imogen M. Pryce, Luke A. Sweatlock,Elizabeth M. Boyd, Sameer Walavalkar, James Ma, and Harry A. Atwater,Frequency tunable near-infrared metamaterials, based on VO2phase transition,OPTICS EXPRESS,2009,17(20):18330~18339
    [60] J. M Tomczak and S. Biermann, Materials design using correlated oxides:Optical properties of vanadium dioxide, Europhys. Lett.,2009,86(3):37004
    [61] B.J.Kim, Y.W.Lee, B.G.Chae, S.J.Yun, S.Y.Oh, H.T.Kim, et al., Temperaturedependence of the first-order metal-insulator transition in VO2andprogrammable critical temperature sensor, Appl.Phys.Lett.,2007,90(2):023515~023515-3
    [62] C.Sella, M.Maaza, O.Nemraoui, J.Lafait, N.Renard, Y.Sampeur, Preparation,characterization and properties of sputtered electrochromic and thermochromicdeviceSurf.Coat.Tech.,1998,98:1477~1482
    [63] W.Li,J.R.Dahn,D.S.Wainwright, Lithium intercalation from aqueous solution,Science,1994,369:1115.
    [64] I.P.Parkin, D.M.Troy, Intelligent thermochromic windows, J.Chem.Educ.,2006,83:393~400.
    [65] R.Lopez, L.A.Boatner, T.E.Haynes, Enhanced hysteresis in the semiconductor-to-metal phase transition of VO2precipitates formed in SiO2by ion implantation,Appl.Phys.Lett.,2001,79(19):3161~3163
    [66]申泮文,车云霞,罗欲基,无机化学丛书-钛分族钒分族,北京,科学出版社,1998
    [67] S. Surnev, M. G. Ramsey, F. P. Netzer, Vanadium oxide surface studies,Progress in surface science,2003,73(117):16
    [68] Y. S. Yoon, J. S. Kim, S. H. Choi, Structural and electrochemical properties ofvanadium oxide thin films grown by d.c. and r.f. reactive sputtering at roomtemperature, Thin Solid Films2004,460:41~47
    [69]潘梦霄,曹兴忠,李养贤等,氧化钒薄膜微观结构的研究,物理学报,2004,53(6):1956~1960
    [70] C R Wang, K B Tang, Q Yang et al., Fabrication of BiTeI submicrometer hollowspheres, J. Mater. Chem.,2002,12(8):2426~2429
    [71] Z.Gui, R.Fan, W.Q.Mo, X.H.Chen, L.Yang, S.Y.Zhang, et al., Precursormorphology controlled formation of rutile Vo2nanorods and their self-assembledstructure, Chem.Mater.,2002,14(12):5053~5056.
    [72] Z.Gui, R.Fan, X.H.Chen, Y.C.Wu, A New Metastable Phase of Needle-likeNanocrystalline VO2'H2O and Phase Transformation, J.SolidStateChem.,2001,157:250~254
    [73] K.F.Zhang, X.Liu, Z.X.Su, H.L.Li, VO2(R) nanobelts resulting from theirreversible transformation of VO2(B) nanobelts, Mater.Lett.,2007,61:2644~2647
    [74] Xing hai Liu, Guang yong Xie, Chi Huang et al, A facile method for preparingVO2nanobelts, Materials Letters,2008,62(12-13):1878–1880
    [75] R.Lopez, T.E.Haynes, L.A.Boatner, L.C.Feldman, R.F.Haglund, Temperature-controlled surface plasmon resonance in VO2nanorods, Opt.Lett.,2002,27(15):1327~1329
    [76] Guiton, B. S., Gu, Q., Prieto, A. L., Gudiksen, M. S., Park, H., Single-Crystalline Vanadium Dioxide Nanowires with Rectangular Cross Sections, J.Am. Chem. Soc.2005,127(2):498~499
    [77] Y.Cheng, T.L.Wong, K.M.Ho, N.Wang, The structure and growth mechanism ofVO2nanowires Journal of Crystal Growth,2009,311:1571~1575
    [78] Kunio Okimura, Naotaka Kubo, Preparation of VO2Films with Metal-InsulatorTransition on Sapphire and Silicon Substrates by Inductively CoupledPlasma-Assisted Sputtering, Japanese Journal of Applied Physics,2005,44(36):L1150~L1153
    [79] Kunio Okimura, Naotaka Kubo, Growth of VO2films with metal-insulatortransition on silicon substrates in inductively coupled plasma-assisted sputtering,Thin Solid Films,2007,515(12):4992~4995
    [80] Yusuke Nihei, Yusuke Sasakawa, Kunio Okimura, Advantages of industivelycoupled plasma-assisted sputtering for preparation of stoichiometric VO2filmswith metal-insulator transition, Thin Solid Films,2008,516(11):3572~3576
    [81]袁宁一,李金华,林成鲁,氧化钒薄膜的制备方法及结构性能,江苏石油化工学院学报,2000,12(4):1~4
    [82]尹大川,许念坎,刘正堂等,VO2薄膜的主要制备工艺参数研究,功能材料,1997,29(1):52~55
    [83] R T Tajendra Kumar, B Karunagaran, D Mangalaraj, et al. Study of a pulsedlaser deposited vanadium oxide based microbolometer array, Smart Materialsand Structures,12(2003):188~192
    [84] D. H. Kim, H. S. Kwok, Pulsed laser deposition of VO2thin films, AppliedPhysics Letters,1994,65(25):3188~3190
    [85] J. Y. Chou, J. L. Lensch-Falk, E. R. Hemesath, and L. J. Lauhon,Vanadium oxidenanowire phase and orientation analyzed by Raman spectroscopy, J. Appl. Phys.,2009,105(3):034310~034310-6
    [86] B. Zhou and D. Y. He, Raman spectrum of vanadium pentoxide fromdensity-functional perturbation theory, J. Raman Spectrosc.,2008,39(10):1475~1481
    [87] C. V. Ramana, R. J. Smith, O. M. Hussain, M. Massot, and C. M. Julien, Surfaceanalysis of pulsed laser-deposited V2O5thin films and their lithium intercalatedproducts studied by Raman spectroscopy, Surf. Interface Anal.,2005,37(4):406~411
    [88] J. Galy, Vanadium pentoxide and vanadium oxide bronzes—Structural chemistryof single (S) and double (D) layer MxV2O5phases, J. Solid State Chem.,1992,100(2):229~245
    [89] Q. Su, C. K. Huang, Y. Wang, Y. C. Fan, B. A. Lu, W. Lan, Y. Y. Wang, and X.Q. Lu, Formation of vanadium oxides with various morphologies by chemicalvapor deposition,J. Alloy Comp.,2009,475:518~523
    [90] Q. Su, X. Q. Liu, H. L. Ma, Y. P. Guo, and Y. Y. Wang, Raman spectroscopiccharacterization of the microstructure of V2O5films, J. Solid State Electrochem.,2008,12(7-8):919~923
    [91] Natasha A. Chernova, Megan Roppolo,Anne C. Dillon and M. StanleyWhittinghamLayered vanadium and molybdenum oxides: batteries andelectrochromicsJ. Mater. Chem.,2009,19(17):2526~2552
    [92] M. Zhang, M. Yu. Efremov, F. Schiettekatte, E. A. Olson, A. T. Kwan, S.L. Lai,and T. Wisleder, Size-dependent melting point depression of nanostructures:Nanocalorimetric measurements, Phys. Rev. B.,2000,62(15):10548~10557
    [93] J. Livage, Synthesis of polyoxovanadates via ‘‘chimie douce’’, Coord. Chem.ReV.1998,178-180:999~1018
    [94] D. B. Le, S. Passerini, J. Guo, J. Ressler, B. B. Owens, and W. H. Smyrl, Highsurface area V2O5aerogel intercalation electrodes, J. Electrochem. Soc.,1996,143(7):2099~2104.
    [95] R. Ostermann, D. Li, Y. Yin, J. T.McCann, and Y. Xia, V2O5Nanorods on TiO2Nanofibers: A New Class of Hierarchical Nanostructures Enabled byElectrospinning and Calcination, Nano Lett.2006,6(6):1297~1302.
    [96] N. F. Mott, Introductory talk; Conduction in non-crystalline materials, J.Non-Cryst. Solids,1972,8-10:1~18.
    [97] G. T. Kim, J. Muster, V. Krstic, J. G. Park, Y. W. Park, S. Roth, M. Burghard,Field-effect transistor made of individual V2O5nanofibers, Appl. Phys. Lett.,2000,76(14):1875~1877
    [98] J. Livage, Vanadium pentoxide gels, Chem. Mater.,1991,3(4):578~59
    [99] N. V. Joshi, Photoconductivity: Art, Science, and Technology, Marcel Dekker,New York1990.
    [100]Hsu, L.C., Kuo, Y.P., Li, Y.Y., On-chip fabrication of an individual α-Fe2O3nanobridge and application of ultrawide wavelength visible-infraredphotodetector/optical switching. Appl. Phys.Lett.2009,94:133108:1~133108:3.
    [101]Feng, P., Xue, X.Y., Liu, Y.G., Wan, Q., Wang, T.H., Achieving fast oxygenresponse in individual β-Ga2O3nanowires by ultraviolet illumination. Appl.Phys. Lett.2006,89:112114:1~112114:3.
    [102]Li, Y.B., Valle, F.D., Simonnet, M., Yamada, I., Delaunay, J.J.High-performance UV detector made of ultra-long ZnO bridging nanowires.Nanotechnology,2009,20:045501:1~045501:5
    [103]Chen, Y.J., Zhu, C.L., Cao, M.S., Wang, T.H., Photoresponse of SnO2nanobeltsgrown in situ on interdigital electrodes. Nanotechnology2007,18:285502:1~285502:5
    [104]Liao, L., Yan, B., Hao, Y.F., Xing, G.Z., Liu, J.P., Zhao, B.C., Shen, Z.X., Wu,T., Wang, L., Thong, J.T.L., Li, C.M., Huang, W., Yu, T., P-type electrical,photoconductive, and anomalous ferromagnetic properties of Cu2O nanowires.Appl. Phys. Lett.2009,94:113106:1~113106:3.
    [105]Zhang, D., Li, C., Han, S., Liu, X., Tang, T., Jin, W., Zhou, C. Ultravioletphotodetection properties of indium oxide nanowires. Appl. Phys. A,2003,77:163~166
    [106]Xue, X.Y., Guo, T.L., Lin, Z.X., Wang, T.H., Individual core-shell structuredZnSnO3nanowires as photoconductors., Mater. Lett.,2008,62:1356~1358
    [107]J. Muster, G. T. Kim, and V. Krstic, Electrical transport through individualVanadium Pentoxide nanowires, Adv. Mater.,2000,12:420~424
    [108]T. M. Searle and B. Bowler, Optical study of the excited state of the V′centre inMgO, J. Phys. Chem. Solids.,1971,32:591~602
    [109]N. F. Mott and A. M. Stoneham, The lifetime of electrons, holes and excitonsbefore self-trapping, J. Phys. C: Solid State Phys.,1977,10:3391~3398
    [110]D. Berben, K. Buse, and S. Weverin, Lifetime of small polarons in iron-dopedlithium–niobate crystals, J. Appl. Phys.,2000,87:1034~1041
    [111]Y. Jiang, W. J. Zhang, J. S. Jie, X. M. Meng, X. Fan, and S. T. Lee,Photoresponse properties of CdSe single-nanoribbon photodetectors, Adv. Funct.Mater.,2007,17:1795~1800
    [112]N. Bloembergan, Laser–Material Interactions: Fundamental and Applications,New York: Benjamin,1994
    [113]黄昆,谢希德,半导体物理学,北京:科学出版社,1958
    [114]K.Seeger,半导体物理学(徐乐,钱建业译),北京:人民教育出版社,1980,19~123
    [115]Wang W L et al, Piezoresistivity of p-type heteroepitaxial diamond films onSi(100), Diam.Relat.Mater.,1998,7(2-5):528~532
    [116]Wang W L and Liao K J, Piezoresistive effect of diamond films produced by dcplasma CVD, Chinese Phys. Lett.,1994,11(9):589~592
    [117]P. J. Pauzauskie, D. Talaga, K. Seo, P. Yang, F. Lagugné-Labarthet, PolarizedRaman Confocal Microscopy of Single Gallium Nitride Nanowires, J. Am. Chem.Soc.2005,127(49):17146~17147
    [118]T. Livneh, J. Zhang, G. Cheng, M. Moskovits, Polarized Raman scatteringfrom singleGaN nanowires, Phys. Rev. B,2006,74(3):035320
    [119]Z. L. Wang, Oxide Nanobelts and Nanowires—Growth, Properties andApplications, J. Nanosci. Nanotechnol.,2008,8(1):27~55
    [120]U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan,V.Avrutin, S.-J. Cho, H. Morkoc, A comprehensive review of ZnO materials anddevices, J. Appl. Phys.,2005,98(4):041301
    [121]Lu Jianing, Hu Ming, Liang Jiran, Chen Tao, Tan Lei, Optical SwitchingProperties of VOx Thin Films Deposited on Si3N4Substrates Using Ion BeamSputtering, Proc. SPIE Int. Soc. Opt. Eng.,2009,7381:738118

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700