聚酰亚胺/纳米Al_2O_3三层复合薄膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,聚酰亚胺(PI)/无机纳米复合材料得到了广泛研究,SiO2、Al_2O_3、TiO2等纳米氧化物的加入在改善PI薄膜电性能、热稳定性的同时造成了PI薄膜力学性能的下降,这对制备综合性能良好的PI薄膜提出了新的要求。
     本文以均苯四甲酸二酐(PMDA)及4, 4′-二氨基二苯醚(ODA)为原料,N, N-二甲基乙酰胺(DMAc)为溶剂经逐步缩聚反应制备聚酰胺酸(PAA),采用机械共混法将经硅烷偶联剂改性的纳米Al_2O_3粉体,借助超声波以一定的方式加入到PAA中,经其在玻璃板上逐层涂膜及不同热亚胺化制备了一系列PI/纳米Al_2O_3三层复合薄膜。分析了各种单因素(一、二层成膜温度及时间和未掺杂层与单层掺杂层厚度比)对力学性能的影响,设计了三因素三水平的正交试验,并对其进行了分析,结果表明制备力学性能最佳的PI三层复合薄膜的工艺条件是:温度180℃,时间90min,厚度比2:1。根据该工艺制备了不同Al_2O_3含量及不同偶联剂种类的PI复合薄膜。
     采用扫描电子显微镜(SEM)及红外光谱(FT-IR)对PI薄膜的微观形貌及结构进行了表征。扫描电镜分析表明PI复合薄膜具有明显的三层结构,纳米Al_2O_3的含量和偶联剂的种类对三层结构和分散状态影响较大。
     测试了PI薄膜的紫外-可见光透过率、力学性能、热稳定性和电击穿场强。紫外-可见光光谱分析表明PI复合薄膜的透光性比掺杂薄膜提高了7.2%(波长为600nm),不同Al_2O_3含量及不同偶联剂种类的PI薄膜的透光性存在明显差异,其中使用硅烷偶联剂KH560的PI薄膜的透光性最好,并比未改性薄膜提高了8.8%(波长为600nm);热重分析表明PI复合薄膜的热分解温度(T10)分别比纯膜及掺杂薄膜提高了28.1℃和17.4℃,随着纳米Al_2O_3含量的增加薄膜热分解温度随之增加,偶联剂种类对其影响很小;力学性能分析表明PI复合薄膜的拉伸强度分别比纯PI膜及掺杂薄膜提高了8.4%和11.9%,断裂伸长率比掺杂薄膜提高了43.6%,但略高于纯膜。其中使用硅烷偶联剂KH550的PI复合薄膜的力学性能最好,拉伸强度和断裂伸长率分别为119.1MPa和19.1%,分别比未改性的PI复合薄膜提高了14.2%和78.5%;电击穿场强分析表明PI复合薄膜的击穿场强均高于纯膜及掺杂薄膜,偶联剂的种类对PI薄膜的击穿场强影响较小,随着掺杂量的增加,击穿场强先增加后减小,当纳米Al2O3含量为6 wt%时击穿场强最高,为284kV/mm。
In recent years, increasing attention had been paid to the polyimide/inorganic nanocomposite materials. It has been proved that the thermal and electrical properties of PI films can be improved, however, mechanical properties of PI films decreased by incorporation of fillers such as silica, alumina and titania into the pristine polyimide matrix. It put forward the requirements for preparation of PI films with good comprehensive properties.
     In this paper, a series of polyimide(PI)/nano-Al_2O_3 three-layer composite films were prepared with thermal imiditation after pure poly(amic acid) or Al_2O_3/poly(amic acid) solution was cast on glass plate step by step, poly(amic acid) were synthesized by step-polycondensation of 4, 4′-oxydianiline(ODA) and pyromellitic dianhydride(PMDA) in the solution of N, N-dimethylacetamide (DMAc), Al_2O_3/poly(amic acid) solution was prepared by the addition of the nano-Al_2O_3 which had been treated by coupling agent into the poly(amic acid) solution by ultrasonic wave through the ultrasonic-mechanical method. The influence of film forming temperature and time of the first and second layer and thickness ratio of pure layer and single hybrid layer on the mechanical properties of PI composite films was analyzed. On this basis, a scheme of orthogonal test, which included three factors and three levels, was used and analyzed. The result showed that the optimal preparation condition of PI composite film with good mechanical properties was conculuded as that film forming temperature 180℃, film forming time 90min, the thickness ratio of pure layer and hybrid layer 2:1.
     The micro-morphology and structure of PI films were studied by scanning electronic microscope(SEM) and fourier transform infrared spectrum(FT-IR). SEM analysis showed that there was clear three-layer structure in the PI composite films, and the silane coupling agents varieties and the nano-Al_2O_3 content had much effect on the dispersion of nano-Al_2O_3 particles in the PI composite films.
     The transmittance of UV-Vis, thermal stability, mechanical properties and electric breakdown strength of PI films were tested. UV-Vis transmittance analysis revealed that the transmittance of PI composite films was 7.2% higher than hybrid film at the wavelength of 600nm, and the silane coupling agents varieties and the nano-Al_2O_3 content had obvious effect on the transmittance of the PI composite films. In these four kinds of composite films, the transmittance of PI/nano-Al_2O_3 composite film with KH560 was the best, which was higher 8.8% than unmodified film at the wavelength of 600nm. TGA analysis showed that the decomposition temperature of PI composite film was 28.1℃higher than pure PI film and 17.4℃higher than hybrid film at 10% weight loss respectively. The decomposition temperature of PI composite films increased with increase of nano-Al_2O_3 content, but the silane coupling agents varieties had less effect on the thermal stability of PI composite films. The tensile strength of PI composite film was 8.4% higher than pure PI film and 11.9% higher than hybrid film respectively, the elongation at break of PI composite film was 43.6% higher than hybrid film, but was slightly higher than pure PI film. The mechanical properties of PI/nano-Al_2O_3 composite film with KH550 were the best. The tensile strength and elongation at break of PI composite film were 119.1Mpa and 19.1%, which were 14.2% and 78.5% higher than unmodified PI composite film respectively. PI composite films had improved electric breakdown strength in comparison with pure PI film and hybrid film. The silane coupling agents varieties had less effect on the electric breakdown strength of PI composite films. When the nano-Al_2O_3 content was low, electric breakdown strength of PI composite films rised with increase of nano-Al_2O_3 content. However, further increase in the nano-Al_2O_3 content lead to a gradual decrease in the electric breakdown strength. The electric breakdown strength of PI composite films with nano-Al_2O_3 content 6wt% was 284kV/mm, which was the best in the PI composite films with different nano-Al_2O_3 content.
引文
[1]孙自淑,江天,马家举,等.聚酰亚胺的改性及应用进展[J].化工科技, 2005, 13(5): 54-58.
    [2] ZHANG A, MARK J E. Polyimide-Ceramic Hybrid Composites by the Sol-Gel Route[J]. Chemistry of Materials, 2001, (13): 3320-3330.
    [3]徐庆玉,范和平,井强山,等.聚酰亚胺纳米杂化材料的制备、构和性能[J].功能高分子学报, 2002, 15(2): 207-218.
    [4]贺飞峰.聚酰亚胺的发展动向、机遇和对策[J].上海化工, 2004, (8): 28-31.
    [5]李福成.聚合物/无机纳米复合材料的最新研究概况[C]. 2004年材料研讨会,北京, 2004: 9-11.
    [6]崔永丽,张仲华,江利,等.聚酰亚胺的性能及应用[J].塑料科技, 2005, 3(167): 50-55.
    [7]邹盛欧.聚酰亚胺发展动向[J].化工新型材料, 2000, (3): 3-7.
    [8] MULVIHILL M L, DOUGHERTY J P. Polyimide-Silica Microcomposite Films[J]. Materials Science, 1992, 27: 3297-3299.
    [9] MASCIA L, KIOUL A. Polyimide-Silica Hybrid Materials by Sol-Gel Processing[J]. Materials Science, 1994, 13(9): 641-643.
    [10] ZHU M L, YIN J. Polyimide/Montomorillonite Nanocomposites Based on Thermally Stable, Rigid-Rod Aromatic Amine Modifiers[J]. Polymer, 2003, 44: 1391-1399.
    [11] MICHALE A, PHILIPE D. Polymer-Layered Silicate Nanocomposites: Preparation, Properties and Use of A New Class of Material[J]. Materials Science and Engineering, 2000, 28: 61-63.
    [12]尚修勇,朱子康,印杰,等.可溶性PI/SiO2纳米复合材料中SiO2微相结构变化的研究[J].高分子材料科学与工程, 2001, 17(3): 68-71.
    [13]曹峰,朱子康,印杰.新型光敏聚酰亚胺/二氧化硅杂化材料的制备与性能研究[J].功能高分子学报, 2001, (3): 326-330.
    [14] HUANG Y, GU Y. New Polyimide-Silica Organic-Inorganic Hybrids[J]. Journal of Applied Polymer Science, 2002, 88: 2210-2214.
    [15] HUANG Y, QIN J Q, GU Y. Polyimide-Silica Hybrid Films Made From Polyamic Acids Containing Phenolic Hydroxyl Groups[J]. Journal of AppliedPolymer Science, 2004, 93: 1198-1202.
    [16] YU Y H, YEH J M, LIOU S J, et al. Organo-Soluble Polyimide(TBAPP-OPDA)/Clay Nanocomposite Materials with Advanced Anticorrosive Properties Prepared from Solution Dispersion Technique[J]. Acta Materials, 2004, 52: 475-486.
    [17]严东生.纳米塑料[M].北京:中国轻工业出版社, 2002: 32-34.
    [18]顾宁,付德刚,张海黔.纳米技术与应用[M].北京:人民邮电出版社, 2002: 16-18.
    [19]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002: 32-35.
    [20]张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001: 140-144.
    [21]李爱元,徐国财.纳米粉体表面改性技术及应用[J].化工新型材料, 2002, 30(10): 25-28.
    [22]高濂,孙静,刘阳桥.纳米粉体的分散及表面改性[M].北京:化学工业出版社材料科学与工程出版中心, 2003: 144-149; 172.
    [23]薛书凯,姜昱.聚酰亚胺/无机纳米杂化材料的研究[J].化工新型材料, 2006, 34 (5): 5-7.
    [24]李福成,訾静.聚酰亚胺(PI)/无机纳米复合材料的制备、结构与性能[J].纤维复合材料, 2005, 9(3): 6-10.
    [25]朱维平,王兴仁,戴干策.纳米塑料研究进展[J].现代塑料加工应用, 2002, 14(4): 50-52.
    [26] YANO K, USUKI A, OKADA A. Synthesis and Properties of Polyimide-Clay Hybrid[J ]. Polymer Science, Polymer Chemistry, 1997, 35: 2289-2294.
    [27] HSIUE G, CHEN J K, KIU Y L. Synthesis and Characterization of Nanocomposite of Polyimide-Silica Hybrid Film Nonaqueous Sol-Gel Process[J]. Journal of Applied Polymer Science, 2000, 76(11): 1606-1618.
    [28] TYAN H L, LIU Y C, WEI K H. Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay[J]. Chemistry of Materials, 1999, (11): 1942-1947.
    [29] ABDALLA M O, DEAN D, CAMPBELL S. Viscoelastic and Mechanical Properties of Thermoset PMR-Type Polyimide-Clay Nanocomposites[J]. Polymer, 2002, (43): 5887-5893.
    [30] WANG H W, DONG R X. Improvements on the Synthesis and Properties ofFluorinated Polyimide-Clay Nanocomposites by Using Double-swelling Agents[J]. Materials Chemistry and Physics, 2005, (94): 42-51.
    [31]周春华,张书香.纳米技术在聚合物改性方面的研究进展[J].工程塑料应用, 2002, 30(12): 60-62.
    [32] KANDARY S A, ALI A A M, ZHANG A. Morphology and Thermo-Mechanical Properties of Compatibilized Polyimide-Silica Nanocomposites[J]. Journal of Applied Polymer Science, 2005, 98: 2521-2531.
    [33] BERSHTEIN V A, EGOROVA L M, YAKUSHEV P N, et al. Mocular Dynamic in Nanostructured Polyimide-Silica Hybrid Materials and Their Stability[J]. Journal of Polymer Science: Part B: Polymer Physics, 2002, 40: 1056-1069.
    [34] MA P C, NIE W, YANG Z H, et al. Preparation and Characterization of Polyimide/Al2O3 Hybrid Films by Sol-Gel Process[J]. Journal of Applied Polymer Science, 2008, 108: 705-712.
    [35] CAI H, YAN F Y, XUE Q J, et al. Investigation of Tribological Properties of Al2O3-Polyimide Nanocomposites[J]. Polymer Testing, 2003, 22: 875-882.
    [36]樊友兵,李鸿岩,周升.聚酰亚胺/纳米二氧化钛复合物的合成与性能研究[J].绝缘材料, 2004, 3: 22-25.
    [37] CHANG P C, WANG W T. The Synthesis and Characterization Study of BAO-ODPA Polyimide/TiO2 Nanohybrid Films[J]. Polymer, 2003, 44(8): 2249-2254.
    [38] CHON H, GONSALVES K E. Synthesis and Properties of An Aluminum Nitride/Polyimide Nanocomposite Prepared by A Nonaqueous Suspension Process[J]. Materials Resin, 2002, (12): 1274-1286.
    [39] SINGH B P, SINGH D, MATHUR R B, et al. Influence of Surface Modified MWCNTs on the Mechanical, Electrical and Thermal Properties of Polyimide Nanocomposites [J]. Nanoscale Research Letters, 2008, 3(11): 444-453.
    [40] LI H Y, LIU G, LIU B, et al. Dielectric Properties of Polyimide/Al2O3 Hybrids Synthesized by in-situ Polymerization[J]. Materials Letters, 2007, 61: 1507-1511.
    [41]李鸿岩,施杰,姜其斌,等.纳米粒子对聚酰亚胺薄膜电晕老化形态的影响[J].绝缘材料, 2007 , 40(5): 42-44.
    [42] WU J T, YANG S Y, GAO S Q, et al. Preparation, Morphology and Propertiesof Nano-Sized Al2O3/Polyimide Hybrid Films[J]. Ploymer, 2005, 41(1): 73-81.
    [43]赵斌,饶保林.溶胶-凝胶法制备聚酰亚胺/纳米Al2O3复合材料的研究[J].化工新型材料, 2006, 34(1): 37-39.
    [44]范勇,安军伟,周宏,等.纳米氧化铝杂化PI薄膜的制备与性能研究[J].绝缘材料, 2007, 40(2): 1-4.
    [45]杨红军,殷景华,雷清泉.聚酰亚胺纳米复合材料结构和性能的分子模拟[J].哈尔滨理工大学学报, 2006, 11(2): 30-34.
    [46] YIN J H, YANG H J, MEI J S. Molecular Simulation of Binding Energy of PI/α-Al2O3 and PI/SiO2 Surface[J]. Polymeric Materials Science and Engineering, 2006, 22(5): 41-44.
    [47]刘卫东,朱宝库.聚酰亚胺/二氧化硅杂化膜和复合膜的制备与结构研究[J].山东师范大学学报:自然科学版, 2007, 22(3): 65-68.
    [48] LIU W D, ZHU B K, ZHANG J, et al. Preparation and Dielectric Properties of Polyimde/Silica Nanocomposite Films Prepared from Sol-Gel and Blengding Process[J]. Polymer for Advanced Technologies, 2007, 18: 522-528.
    [49]王忠,张营堂,付蕾,等.聚酰亚胺复合材料的热学性能研究[J].化工新型材料, 2007, 35(1): 52-54.
    [50]张春红,张志谦,曹海琳,等.聚酰亚胺/纳米SiO2杂化膜的制备和表征[J].材料科学与工艺, 2006, 14(6): 642-645.
    [51]马兰杰,杨志强,党智敏.聚酰亚胺/介孔二氧化硅复合薄膜的介电性能研究[J].绝缘材料, 2008, 41(2): 60-63.
    [52] QIN J Q, ZHAO H, ZHU R Q, et al. Effect of Chemical Interaction on Morphology and Mechanical Properties of CPI-OH/SiO2 Hybrid Films with Coupling Agent[J]. Journal of Applied Polymer Science, 2007, 104: 3530-3538.
    [53] QIN J Q, ZHAO H, LIU X Y, et al. Double Phase Separation in Polyimide/Silica Hybrid Films by Sol-Gel Methord[J]. Polymer, 2007, 48: 3379-3383.
    [54] REHMAN H U, SCHMIDT H, ZHANG A. Synthesis and Characterization of Polyimide-Silica Hybrids: Effect of Matrix Polarity on the Mechanical and Thermal Properties[J]. Journal of Macromolecular Science-Pure and Applied Chemistry, 2006, 43: 703-717.
    [55] PELLEGRINO M, MARINO A, MARINO L. Microstructural Features,Diffusion and Molecular Relaxations in Polyimide/Silica Hybrids[J]. Polymer, 2006, 47: 6172-6186.
    [56]唐婷婷,周五清,戴礼兴.聚酰亚胺的改性研究进展[J].合成技术及应用, 2006, 21(3): 26-28.
    [57]李鸿岩,郭磊,刘斌,等.聚酰亚胺/纳米氧化钛复合薄膜的介电性能研究[J].绝缘材料, 2005, 6: 30-33.
    [58] CHANG C M, CHANG C L, CHANG C C. Synthesis and Optical Properties of Soluble Polyimide/Titania Hybrid Thin Films[J]. Macromolecular Materials and Engineering, 2006, 291: 1521-1528.
    [59]肖磊,周建华,王静,等.纳米颗粒改性PMMA光波导薄膜的研究[J].光电子技术与信息, 2005, 1: 26-28.
    [60]徐瑞银,宋存义. TiO2/SiO2光催化剂制备及对偶氮染降解的研究[J].能源环境保护, 2004, 6: 15-19.
    [61] CHON H, GONSALVES K E. Synthesis and Properties of An Aluminum Nitride/Polyimide: Nanocomposite Prepared by A Nonaqueous Suspension Process[J]. Materials Resin, 2002, 12: 1274-1286.
    [62] JIANG X W, BIN Y Z, MATSUO M. Electrical and Mechanical Properties of Polyimide-Carbon Nanotubes Composites Fabricated by in Situ Polymerization[J]. Polymer, 2005, (46): 7418-7424.
    [63] OHTANI O, GOTO Y. Synthesis of Self-Standing Mesostructured Phenylene-Silica-Polyimide Hybrid Films[J]. Materials Letters, 2006, (60): 177-179.
    [64] LEE Y J, HUANG J M. Low-Dielectric, Nanoporous Polyimide Films Prepared from PEO-POSS Nanoparticles[J]. Polymer, 2005, (46): 10056-10065.
    [65] THOMPSON C M, HERRING H M, THOMAS S. Preparation and Characterization of Metal Oxide/Polyimide Nanocomposites[J]. Composites Science and Technology, 2003, (63): 1591-1598.
    [66]刘卫东,朱宝库,谢曙辉,等.聚酰亚胺/钛酸钡复合膜介电性能及其影响因素的研究(Ⅱ)[J].功能材料, 2008, 39(2): 264-268.
    [67]王铎.纳米三氧化二铁改性聚酰亚胺的研究[J].工程塑料应用, 2008, 36(8): 20-23.
    [68]陈伟.聚合物基纳米复合材料的研究应用和发展趋势[J].大同职业技术学院学报, 2006, 20(4): 67-69.
    [69]秦家强,顾宜.聚酰亚胺/无机粒子复合材料制备过程中的形态控制[J].材料导报, 2005, 19(9): 41-44.
    [70]李焱,于俊荣,刘兆峰.聚酰胺酸的合成及其酰亚胺化研究[J].合成纤维, 2006, 4: 6-9.
    [71] LIU L Z, WANG W, LEI Q Q. Study on Polyimide/Nano-SiO2 Corona-Resistance Composite Film[J]. IEEJ Transactions on Fundamentals and Materials, 2006, 126(11): 1144-1147.
    [72] ZHA J W, SONG H T, DANG Z M, et al. Mechanism Analysis of Improved Corona-Resistant Characteristic in Polyimide/TiO2 Nanohybrid Films[J]. Applied Physics Letters, 2008, 93(19): 192911-192912.
    [73]刘芳.聚酰亚胺预聚体热亚胺化研究[D].南京:南京工业大学(硕士学位论文), 2004: 46-50.
    [74]谢光贤.聚酰胺酸薄膜亚胺化工艺研究[J].绝缘材料通讯, 1997, (6): 9-13.
    [75]刘润山,郭铁东,赵文秀.芳香聚酰亚胺化学若干问题[J].高分子材料科学与工程, 1994, 2(2): 1-8.
    [76] GUO W F. Study and Characterization of the Hysteresis Behavior of Polyimide Membranes in the Thermal Cycle Process of Pervaporation Separation[J]. Journal of Membrane Science, 2005, 253: 13-22.
    [77] SHANG X Y, ZHU Z K, YIN J. Compatibility of Souble Polyimide/Silica Hybrids Induced by A Coupling Agent[J]. Chemistry of Materials, 2002, 14: 71-77.
    [78]刘立柱.聚酰亚胺/SiO2-Al2O3纳米杂化的制备、表征与性能[D].哈尔滨:哈尔滨理工大学(博士学位论文), 2006: 51-53; 43-44; 88.
    [79]章坚.聚酰亚胺/二氧化硅复合材料的制备与介电性能研究[D].杭州:浙江大学(博士学位论文), 2005: 73-74.
    [80]徐一琨,詹茂盛.纳米二氧化硅目标杂化聚酰亚胺复合材料膜的制备与性能表征[J].航空材料学报, 2003, 23(2): 33-39.
    [81]陈树江,程继健.用Sol-gel法合成莫来石超细粉机理及过程的研究[J].硅酸盐通报, 1995, 3: 41-46.
    [82] LI Y Q, PAN Q Y, LI M, et al. Preparation and Mechanical Properties of Novel Polyimide/T-silica Hybrid Films[J]. Composites Science and Technology, 2007, 67: 54-60.
    [83]李传峰,钟顺和.溶胶凝胶法合成聚酰亚胺二氧化钛杂化膜[J].高分子学报, 2002, 6(3): 326-330.
    [84]乔玉林,张世堂,巴德玛,等.纳米Al2O3/聚酰亚胺耐高温应急粘结堵漏材料的研究[J].装甲兵工程学院学报, 2006, 20(4): 78-82.
    [85] ZHANG Y H, LI Y, LI S Y, et al. Synthesis and Cryogenic Properties of Polyimide-Silica Hybrid Films by Sol-Gel Process[J]. Polymer, 2005, 46: 8373-8378.
    [86]李鸿岩,郭磊,刘斌,等.聚酰亚胺/纳米Al2O3复合薄膜的介电性能[J].中国电机工程学报, 2006, 26(20): 166-170.
    [87]曹晓珑,徐曼,刘春涛.纳米添加剂对聚合物击穿性能的影响[J].电工技术学报, 2006, 21(2): 8-12.
    [88]胡海兵,李鸿岩,刘斌.纳米填料对聚合物介电性能的影响[J].绝缘材料, 2006, 39 (5): 36-39.
    [89] ZHANG M Y, YANG C, FAN Y, et al. Synthesis and Characterization of Corona Resistant Nanocluster-Trapped Polyimide/Silica Composites[C]. Institute of Electrical and Electronics Engineers the 7th International Conference on Properties and Applications of Dielectric Materials, Nagoya, Japan, 2003: 753-756.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700