氧气等离子体改性对PBO纤维表面及PBO/PPESK复合材料界面的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚对苯撑苯并二噁唑(PBO)纤维增强含二氮杂萘酮联苯结构的聚芳醚砜酮(PPESK)树脂基复合材料(PBO/PPESK)具有优异的力学性能和耐热性能,同时还具有较好的吸波隐身功能,预期可作为火箭、导弹、无人机等的外层结构材料和内部承力机构材料,在航空航天和国防军工等领域具有很好的推广应用前景。但是,PBO/PPESK复合材料存在界面粘结性能差的问题。界面是复合材料的“心脏”,是连接增强体与树脂基体的纽带和桥梁,对复合材料的性能起到至关重要的作用,界面粘结性能的好坏直接影响复合材料的力学性能、耐热性能甚至复合材料的使用寿命,良好的界面粘结是提高复合材料质量的关键。PBO纤维由于分子链结晶取向度高,表面光滑,表面化学活性低,缺少极性基团,使得其与树脂基体很难形成良好的浸润和有效的化学键合,导致PBO/PPESK复合材料的界面结合强度较低。基于此,有必要对PBO纤维进行表面改性,以提高PBO纤维的浸润性能及其与PPESK树脂基体间的界面粘接性能,进而有效地提高PBO/PPESK复合材料的综合性能。
     本文利用射频感性耦合氧气等离子体对PBO纤维进行了表面处理,分别采用X射线光电子能谱(XPS)、扫描电子显微镜(SEM)、原子力显微镜(AFM)及动态接触角分析(DCA)系统研究了氧气等离子体处理时间、放电气压、放电功率等工艺参数对PBO纤维的表面化学成分、表面形貌、表面粗糙度及表面自由能的影响。研究结果表明:氧气等离子体处理能够在PBO纤维表面引入O-C=O基等极性基团,使纤维表面极性基团的含量增加,等离子体对纤维表面具有明显的刻蚀作用,经等离子体处理后PBO纤维的表面粗糙度增加,表面自由能增大,纤维的浸润性能得到明显改善。利用氧气等离子体对PBO纤维进行表面处理时应选择合适的等离子体处理工艺参数。
     利用溶液预浸湿法缠绕成型和高温模压工艺制备连续PBO纤维增强PPESK树脂基复合材料,并采用氧气等离子体对PBO/PPESK复合材料进行了界面改性研究。通过层间剪切强度(ILSS)及吸水率测试表征了氧气等离子体处理时间、放电气压、放电功率等工艺参数对PBO/PPESK复合材料界面粘结性能的影响,采用SEM对复合材料的断面形貌进行了分析。研究结果表明:氧气等离子体处理能够使PBO/PPESK复合材料的ILSS增大,吸水率降低,复合材料的界面粘结性能得到明显改善。在载荷的作用下,PBO/PPESK复合材料的破坏模式由未处理的界面脱粘破坏转变为氧气等离子体处理后树脂基体的破坏。利用氧气等离子体对PBO/PPESK复合材料进行界面改性时应该选择适宜的等离子体处理条件,等离子体处理时间过长、放电气压偏低、放电功率过大都可能对PBO纤维的本体性能造成损伤,导致PBO/PPESK复合材料界面粘结性能下降。氧气等离子体处理能够提高PBO/PPESK复合材料的界面粘结性能主要是基于PBO纤维与PPESK树脂基体间的化学键合作用和机械嵌合作用的协同效应,纤维与树脂基体间的化学键合作用对复合材料界面粘结性能的贡献大于机械嵌合作用。当氧气等离子体处理时间为15min、放电气压为30Pa、放电功率为200W时,PBO/PPESK复合材料的界面粘结性能最好。
     采用DCA、XPS及AFM对氧气等离子体处理的时效性进行了研究,结果表明:经氧气等离子体处理后的PBO纤维在空气中放置一段时间后,纤维表面的活性粒子与活性基团之间发生了一系列的重排或者后反应,反应的结果是PBO纤维表面自由能降低,表面极性基团的含量减少,纤维表面粗糙度先增大后减小。ILSS及吸水率测试表明氧气等离子体处理的时效性会使PBO/PPESK复合材料的界面粘结性能下降。PBO纤维表面及PBO/PPESK复合材料界面的时效行为发生在PBO纤维经等离子体处理后的头几天内,随着时效时间延长,纤维表面及复合材料的界面状态逐渐趋于稳定,时效行为不再显著。
     进一步利用氧气等离子体接枝环氧树脂对PBO/PPESK复合材料进行了界面改性研究。通过正交试验确定了氧气等离子体接枝环氧树脂改性的最佳工艺条件为:氧气等离子体放电功率为50W、处理时间为10min、放电气压为30Pa、接枝剂(环氧树脂/丙酮接枝液)浓度为3%。ILSS、吸水率、SEM及热失重(TGA)研究结果表明:氧气等离子体接枝环氧树脂改性能够在显著提高PBO/PPESK复合材料界面粘结性能的同时使复合材料保持优异的耐热性能,接枝改性后的复合材料不容易发生剪切破坏。FT-IR及DCA结果显示,环氧树脂在PBO纤维表面发生了接枝聚合反应,环氧基团的接枝反应程度达到60.8%,氧气等离子体接枝环氧树脂改性能够使PBO纤维的表面自由能增加,纤维的浸润性能得到改善。
Due to the exceptionally high specific strength and modulus, excellent thermal and oxidative stability, good wave-absorbing and stealthy performance, poly(p-phenylene benzobisoxazole) (PBO) fiber reinforced poly(phthalazinone ether sulfone ketone) (PPESK) composites provide great potential applications as outer-structural and inner-carrier materials in aeronautical and astronautical applications, national defense and military applications. However, the interfacial adhesion of PBO/PPESK composite is poor. Interface is the key structure of composites, it plays important roles in linking reinforcements and the matrix, which influences the mechanical properties, heat-resistance and even life-spans of the composites significantly. Good fiber-matrix interfacial adhesion results in high quality of the composites. The interfacial adhesion of PBO fiber reinforced composites is poor because of the relatively smooth and chemically inactive fiber surfaces which prevent efficient chemical and physical bonding in the interface. Therefore, surface modification of PBO fibers is of great importance in the field of composites application.
     PBO fibers were surface-modified by inductively coupled oxygen plasma treatment in this paper. The effects of oxygen plasma treatment time, discharge pressure and plasma power on surface chemical composition, surface morphologies, surface roughness and surface free energy of PBO fibers were investigated by X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and dynamic contact angle analysis (DCA), respectively. The results indicated the oxygen plasma treatment introduced some polar groups (such as O-C=O) to PBO fiber surfaces, enhanced surface roughness and changed surface morphologies of PBO fibers by plasma etching and oxidative reactions. Surface wettability of PBO fibers was significantly improved by increasing surface free energy of the fibers via oxygen plasma treatment. Plasma treatment conditions should be appropriate during surface modification of PBO fibers by oxygen plasma.
     The effects of oxygen plasma treatment time, discharge pressure and plasma power on interfacial adhesion of PBO/PPESK composite were characterized by interlaminar shear strength (ILSS) and water absorption measurements. Fractured surface morphologies of the composites were still observed by SEM. The results showed that the ILSS of PBO/PPESK composite increased while the water absorption degraded after oxygen plasma treatment, the interfacial adhesion of the composite was significantly improved consequently. The primary failure mode of PBO/PPESK composite shifted from interface failure to matrix fracture after oxygen plasma treatment. Plasma treatment conditions should be appropriate during interface modification of PBO/PPESK composite by oxygen plasma treatment. Too long plasma treatment time, too low discharge pressure and too high plasma power would damage the inherent-performance of PBO fibers, which then led to the degradation of interfacial adhesion of PBO/PPESK composite. The interfacial adhesion of PBO/PPESK composite was improved by oxygen plasma treatment due to the chemical linkage and mechanical bonding between PBO fibers and PPESK matrices, and the chemical linkage effect do more contribution than the mechanical bonding on improving the interfacial adhesion of PBO/PPESK composite. The interfacial adhesion of PBO/PPESK composites reached to plateau when the plasma treatment time is 15min, the discharge pressure is 30Pa and the plasma power is 200W.
     Aging behaviors of oxygen plasma treatment were investigated by DCA, XPS and AFM analysis. The results suggested that when the oxygen-plasma-treated PBO fibers were exposed in air for some days, the active particles and polar groups in fiber surfaces would took some reorientation and post-reactions, which results in a degradation of surface free energy of PBO fibers and a reduction of polar groups in the fiber surfaces. Surface roughness of the fibers increased firstly and then decreased. The ILSS and water absorption measurements indicated that the interfacial adhesion of PBO/PPESK composite degraded because of the aging behaviors of oxygen plasma treatment. Aging behaviors of PBO fibers and PBO/PPESK composites appeared in the first several days after oxygen plasma treatment, minor aging effects were observed with the duration of the aging time because the surface and interface states became stable with aging time increasing.
     Oxygen-plasma-grafting-epoxy treatment was further used modifying the interfacial adhesion of PBO/PPESK composites. Optimal treatment condition was obtained by orthogonal experiments, which can be stated as: the plasma power is 50W, the plasma treatment time is 10min, the discharge pressure is 30Pa and the concentration of grafting solution (Epoxy/Acetone solution) is 3%. The ILSS, water absorption, SEM and thermogravimetry analysis (TGA) results showed that the oxygen-plasma-grafting-epoxy treatment improved the interfacial adhesion of PBO/PPESK composites significantly but without influencing heat-resistance properties of the composites. The composites were hard to destroy by interface shear load after interface modification. FT-IR and DCA analysis indicated the epoxy groups polymerized in PBO fiber surfaces, and the reaction extent reached to 60.8%. Surface free energy of PBO fibers increased after the treatment, surface wettability of the fibers was improved consequently.
引文
[1]Hearle J W S.高性能纤维[M].北京:中国纺织出版社,2004.
    [2]西鹏,高晶,李文刚.高技术纤维[M].北京:化学工业出版社,2004.
    [3]Wolfe J F,Loo B H,Arnold F E,et al.Synthesis and thermal properties of para-aromatic polymers with 2,6-benzobisthiazole units in the main chain[J].Macromolecules,1981,14(4):915-920.
    [4]So Y H.Rigid-rod polymers with enhanced lateral interactions[J].Progress in Polymer Science,2000,25:137-157.
    [5]Bourbigot S,Flambard X.Heat resistance and flammability of high performance fibres:A review[J].Fire and Materials,2002,26:155-168.
    [6]Holmes G A,Rice K,Snyder C R.Review Ballistic fibers:A review of the thermal,ultraviolet and hydrolytic stability of the benzoxazole ring structure[J].Journal of Material Science,2006,41:4105-4116.
    [7]Katia T M,Silvia V R,Juan I P,et al.Surface characterization of PBO fibers[J].Macromolecules,2003,36:8662-8672.
    [8]金宁人,黄银华,王学杰.超级纤维PBO的性能应用及研究进展[J].浙江工业大学学报,2003,31(1):82-87.
    [9]李金焕,黄玉东,许辉等.PBO纤维的合成纺制微相结构与性能研究进展[J].高分子材料科学与工程,2003,19(6):46-50.
    [10]Afshari M,Sikkema D J,Lee K,et al.High performance fibers based on rigid and flexible polymers [J].Polymer Reviews,2008,48:230-274.
    [11]Hu X D,Jenkins S E,Min B G,et al.Rigid-rod polymers:synthesis,processing,simulation,structure,and properties[J].Macromolecular Materials and Engineering,2003,288:823-843.
    [12]江建明,李光,金俊弘.超高性能PBO纤维的最新研究进展[J].合成纤维,2008,1:5-9.
    [13]朱慧君,金俊弘,李光等.PBO聚合物及其纤维的研究进展[J].高分子科学与工程,2008,24(8):18-22
    [14]王飞,黄英,苏武.PBO纤维的合成及表面改性研究进展[J].材料开发与应用,2009,24(2):81-86.
    [15]崔天放,张欣,翟玉春等.PBO纤维的合成及改性研究进展[J].材料导报,2006,20(8):38-40.
    [16]李霞.MWNTs/PBO复合纤维的合成及PBO聚合机制研究[D].哈尔滨:哈尔滨工业大学应用化学系,2006.
    [17]Cohen Y,Adams W W.Crystal-solvate phases of poly(p-phenylene benzobisoxazole)[J].Polymer,1996,37(13):2767-2774.
    [18]Bourbigot S,Flambard X,Bertrand R L.Characterisation of poly(p-phenylenebenzobisoxazole) fibres by solid state NMR[J].European Polymer Journal,2002,38:1645-1651.
    [19]Takahashi Y.Neutron structure analysis and structural disorder of poly(p-phenylene benzobisoxazole)[J].Macromolecules,1999,32:4010-4014.
    [20]Tomlin D W,Fratini A V,Hunsaker M,et al.The role of hydrogen bonding in rigid-rod polymers:the crystal structure of a polybenzobisimidazole model compound[J].Polymer,2000,41:9003-9010.
    [21]Krause S J,Haddock T B,Vezie D L.Morphology and properties of rigid-rod poly(p-phenylenebenzobisoxzole)(PBO) and stiff-chain poly(2,5(6)-benzoxazole)(ABPBO) fibres [J].Polymer,1988,29(8):1354-1362.
    [22]Chae H G,Kumar S.Rigid-rod polymeric fibers[J].Journal of Applied Polymer Science,2006,100:791-802.
    [23]Kitagawa T,Murase H,Yabuki K.Morphological study on poly-p-phenylenebenzobisoxazole(PBO)fiber[J].Journal of Polymer Science Part B,1998,36:39-48.
    [24]Kitagawa T,Yabuki K,Young R J.An investigation into the relationship between processing,structure and properties for high-modulus PBO fibres.Part 1.Raman band shifts and broadening in tension and compression[J].Polymer,2001,42:2101-2112.
    [25]Kitagawa T,Yabuki K,Young R J.An investigation into the relationship between processing,structure,and properties for high-modulus PBO fibers.Ⅱ.Hysteresis of stress-induced Raman band shifts and peak broadening,and skin-core structure[J].Journal of Macromolccular Science,Part B,2002,41(I):61-76.
    [26]Kitagawa T,Tashiro K,Yabuki K.Stress distribution in poly-p-phenylenebenzobisoxazole(PBO)fiber estimated from vibrational spectroscopic measurement under tension.Ⅱ.Analysis of inhomogeneous stress distribution in PBO fiber[J].Journal of Polymer Science Part B,2002,40:1281-1287.
    [27]Kitagawa T,Ishitobi M,Yabuki K.An analysis of deformation process on poly-p-phcnylenebenzobisoxazole fiber and a structural study of the new high-modulus type PBO HM+ fiber[J].Journal of Polymer Science Part B,2000,38:1605-161 I.
    [28]Kitagawa T,Yabuld K.A relationship between the stress distribution and the peak profile broadening of meridional X-ray diffraction from poly-p-phenylenebenzobisoxazole(PBO) fiber[J].Journal of Polymer Science Part B,2000,38:2937-2942.
    [29]Kitagawa T,Yabuki K.An analysis of capillary water behavior in poly-p-phenylenebenzobisoxazole fiber[J].Journal of Applied Polymer Science,2001,80:1030-1036.
    [30]马春杰,宁荣昌.PBO纤维的研究进展[J].高科技纤维与应用,2004,29(3):46-51.
    [31]Chin J,Forster A,Clerici C,et al.Temperature and humidity aging of poly(p-phenylene-2,6-benzobisoxazole) fibers:Chemical and physical characterization[J].Polymer Degradation and Stability,2007,92:1234-1246.
    [32]魏广恒,李晶.PBO纤维及其表面处理技术[J].化纤与纺织技术,2006,1:29-33.
    [33]王斌,金志浩,丘哲明等.PBO纤维的基本性能实验研究[J].西安交通大学学报,2001,35:1189-1192.
    [34]Kuroki T,Tanaka Y,Hokudoh T,et al.Heat resistance properties of poly(p-phenylene-2,6-benzobisoxazole) fiber[J].Journal of Applied Polymer Science,1997,65:1031-1036.
    [35]黄玉东.PBO超级纤维研究进展及其表面处理[J].高科技纤维与应用,2001,26(1):11-16.
    [36]Martinez K T,Rodil S V,Paredes J I,et al.Thermal decomposition of poly(p-phenylene benzobisoxazole)fibres monitoring the chemical and nanostructural changes by Raman spectroscopy and scanning probe microscopy[J].Polymer Degradation and Stability,2004,86:263-268.
    [37]Walsh P J,Hu X B,Cunniff P,et al.Environmental effects on poly-p-phenylenebenzobisoxazole fibers.I.Mechanisms of degradation[J].Journal of Applied Polymer Science,2006,102:3517-3525.
    [38]Walsh P J,Hu X B,Cunniff P,et al.Environmental effects on poly-p-phenylenebenzobisoxazole fibers.Ⅱ.Attempts at stabilization[J].Journal of Applied Polymer Science,2006,102:3819-3829.
    [39]Bourbigot S,Flambard X,Poutch F.Study of the thermal degradation of high performance fibres-application to polybenzazole and p-aramid fibres[J].Polymer Degradation and Stability,2001,74:283-290.
    [40]Huang Y K,Frings P H,Hermes E.Mechanical properties of Zylon/epoxy composite[J].Composites Part B,2002,33:109-115.
    [41]Chau C C,Blackson J,Im J.Kink bands and shear deformation in polybenzobisoxazole fibres[J].Polymer,1995,36:2511-2516.
    [42]谭家茂,贾丽霞.PBO与T700纤维及其复合材料的性能研究[J].纤维复合材料,2004,4:3-5.
    [43]Kotera M,Nishino T,Nakamae K.Temperature dependence of the stress transfer for thermal resistance polymer composites by X-ray diffraction[J].Composite Interfaces,2002,9:309-318.
    [44]黄发荣,周燕等.先进树脂基复合材料[M].北京:化学工业出版社,2008.
    [45]斯奎,宁荣昌.PBO纤维耐热性研究及进展[J].材料导报,2006,20(1):73-76.
    [46]徐晓辉,刘小云,傅倩等.聚对亚苯基苯并二噁唑(PBO)纤维的环境老化及防老化研究进展[J].高科技纤维与应用,2008,33(1):31-37.
    [47]James A,Newell D D,Edie L.Kinetics of carbonization and graphitization of PBO fiber[J].Journal of Applied Polymer Science,1996,60(6):825-832.
    [48]傅倩,王凤德,刘小云等.PBO纤维界面粘结性能的改善[J].宇航材料工艺,2008,1:15-18.
    [49]马春杰,宁荣昌,李琳等.用Weibull方法评价化学介质对PBO纤维统计强度的影响[J].复合材料学报,2005,22:16-20.
    [50]Liu D D,Hu J,Zhao Y M,et al.Surface modification of PBO fibers by argon plasma and argon plasma combined with coupling agents[J].Journal of Applied Polymer Science,2006,102:1428-1435.
    [51]张英东,王宜,胡健等.PBO纤维表面改性技术研究进展[J].合成纤维工业,2004,27:37-39.
    [52]黄友河,詹怀宇,周雪松等.PBO纤维化学法表面改性的研究[J].中国造纸学报,2005,20:23-26.
    [53]李金焕,黄玉东,史瑞信.CNTs/PBO复合材料的合成及性能[J].复合材料学报,2004,21(5):62-67.
    [54]刘新东,丘哲明,王斌等.PBO纤维表面分析与表面偶联剂处理[J].固体火箭技术,2002,25:70-73.
    [55]李瑞华,黄玉东,龙军等.PBO纤维表面空气冷等离子体改性[J].复合材料学报,2003,20:102-107.
    [56]Kobashi K,Chen Z Y,Lomeda J,et al.Copolymer of single-walled carbon nanotubes and poly(p-phenylene benzobisoxazole)[J].Chemistry of Materials,2007,19(2):291-300.
    [57]Wu G M.Oxygen plasma treatment of high performance fibers for composites[J].Materials Chemistry and Physics,2004,85:81-87.
    [58]Luo S J,Vanooij W J.Surface modification of textile fibers for improvement of adhesion to polymeric matrices:a review[J].Journal of Adhesion Science and Technology,2002,16(13):1715-1735.
    [59]张春华,栾世林,王世威等.辐照改性PBO纤维/环氧树脂界面性能[J].纤维复合材料,2003,4:3-5.
    [60]Yalvac S,Jakubowski J J,So Y H,et al.Improved interracial adhesion via chemical coupling of cis-polybenzobisoxazole fibre-polymer systems[J].Polymer,1996,37:4657-4659.
    [61]Kumar S,Dang T D,Arnold F E,et al.Synthesis,structure,and properties of PBO-SWNT composites [J].Macromolecules,2002,35:9039-9043.
    [62]Luo K Q,Jin J H,Yang S L,et al.Improvement of sttrface wetting properties of poly(p-phenylene benzoxazole) by incorporation of ionic groups[J].Materials Science and Engineering B,2006,132:59-63.
    [63]Zhang T,Hu D Y,Jin J H,et al.Improvement of surface wettability and interracial adhesion ability of poly(p-phenylene benzobisoxazole)(PBO) fiber by incorporation of 2,5-dihydroxyterephthalic acid (DHTA)[J].European Polymer Journal,2009,45:302-307.
    [64]Zhu H J,Jin J H,Li G,et al.Preparation and improved mechanical properties of nano-TiO_2 filled poly (p-phenylene benzobisoxazole) fiber[J].Polymers Advanced Technologies,2009,20:351-354.
    [65]Zhou C J,Wang S F,Zhang Y,et al.In situ preparation and continuous fiber spinning of poly(p-phenylene benzobisoxazole) composites with oligo-hydroxyamide-functionalized multi-walled carbon nanotubes[J].Polymer,2008,49:2520-2530.
    [66]Wu G M,Shyng Y T.Surface modification and interfacial adhesion of rigid rod PBO fibre by methanesulfonic acid treatment[J].Composites Part A,2004,35:1291-1300.
    [67]Wu G M,Hung C H,You J H,et al.Surface modification of reinforcement fibers for composites by acid treatments[J]..Journal of Polymer Research,2004,11:31-36.
    [68]Wu G M,Shyng Y T.Effects of basic chemical surface treatment on PBO and PBO fiber reinforced epoxy composites[J].Journal of Polymer Research,2005,12:93-102.
    [69]乔咏梅,陈立新,吴大云等.PBO纤维表面改性方法的研究[J].玻璃钢/复合材料,2006,6:20-24.
    [70]周雪松,刘丹丹,罗果等.提高PBO纤维/环氧树脂复合材料界面结合的研究[J].化学研究与应用,2005,5:607-610.
    [71]罗果,王宜,胡健等.多聚磷酸改性PBO纤维的研究[J].合成纤维工业,27(6):28-30.
    [72]王斌,金志浩,邱哲明等.偶联剂对PBO纤维/树脂界面粘结性能的影响[J].西安交通大学学报,2002,36(9):975-978.
    [73]刘丹丹,王宜,胡健等.PBO纤维表面等离子改性及界面性能[J].华南理工大学学报(自然科学版),2006,34:10-14.
    [74]刘雪峰,隋守军,谢建新.Cu/n-TiO_2/PBO复合纤维的制备[J].复合材料学报,2008,25(1):28-34.
    [75]Zhang C H,Huang Y D,Zhao Y D.Surface analysis of γ-ray irradiation modified PBO fiber[J].Materials Chemistry and Physics,2005,92:245-250.
    [76]石佩玉,邢文濑.以电子束照射聚苯并恶唑纤维表面性质之研究[J].华冈纺织期刊,1999,9(2):128-134.
    [77]M(a|¨)der E,Melcher S,Liu J W,et al.Adhesion of PBO fiber in epoxy composites[J].Journal of Materials Science,2007,42:8047-8052.
    [78]So C L,Young R J.Interfacial failure in poly(p-phenylene benzobisoxazole)(PBO)/epoxy single fibre pull-out specimens[J].Composites Part A,2001,32:445-455.
    [79]王斌,金志浩,邱哲明等.电晕处理对高性能PBO纤维的表面性能及其界面粘结性能的影响[J].复合材料学报,2003,20(4):101-106.
    [80]王百亚,杨建奎,方东红.PBO纤维及其复合材料工艺性能研究[J].宇航材料工艺,2004,5:15-20.
    [81]王百亚,任鹏刚,杨建奎.PBO纤维复合材料探索研究[J].固体火箭技术,2001,24(4):66-71.
    [82]刘雪峰,栾燕燕,谢建新.一种PBO纤维的超声化学表面改性方法:中国,CN101235590[P].2008,08,06.
    [83]许絪.生物酶在腈纶纤维表面改性中的应用研究[D].上海:东华大学,2003.
    [84]Wang J L,Liang G Z,Zhao W,et al.Enzymatic surface modification of PBO fibres[J].Surface and Coatings Technology,2007,201:4800-4804.
    [85]力伯曼,里登伯格.等离子体放电原理与材料处理[M].北京:科学出版社,2007.
    [86]赵华侨.等离子体化学与工艺[M].合肥:中国科学技术大学出版社,1993.
    [87]许根慧,姜恩永,盛京等.等离子体技术与应用[M].北京:化学工业出版社,2006.
    [88]Morent R,Geyter N D,Verschuren J,et al.Non-thermal plasma treatment of textiles[J].Surface and Coatings Technology,2008,202:3427-3449.
    [89]Kang H M,Kim N I,Yoon T H.Plasma etching and plasma polymerization coating of carbon fibers.Part 1.Interfacial adhesion study[J].Journal of Adhesion Science and Technology,2002,16:1809-1823.
    [90]Kim N I,Kang H M,Hong Y T,et al.Plasma etching and plasma polymerization coating of carbon fibers.Part 2.Characterization of plasma polymer coated carbon fibers[J].Journal of Adhesion Science and Technology,2002,16:1825-1838.
    [91]Li R Z,Ye L,Mai Y W.Application of plasma technologies in fiber-reinforced polymer composites:a review of recent developments[J].Composites Part A,1997,28A:73-86.
    [92]Brown J R,Mathys Z.Plasma surface modification of advanced organic fibres Part V Effects on the mechanical properties of aramid/phenolic composites[J].Journal of Materials Science,1997,32:2599-2604.
    [93]Cheng C,Zhang L Y,Zhan R J.Surface modification of polymer fiber by the new atmospheric pressure cold plasma jet[J].Surface and Coatings Technology,2006,200:6659-6665.
    [94]刘艳春.腈纶等离子体抗静电处理[D].上海:东华大学,2005.
    [95]Tang L G,Kardos J L.A review of methods for improving the interracial adhesion between carbon fiber and polymer matrix[J].Polymer composites,1997,18(1):100-113.
    [96]Watanabe H,Funukawa M,Takata T,et al.Surface improvements of aramid fibers by physical treatments[J].Macromolecular Symposia,2000,159:131-141.
    [97]Elidian C R,Giovana Z G,Nilson C C.Investigations on the stability of plasma modified silicone surfaces[J].Plasmas and Polymers,2004,9(1):35-48.
    [98]Occhiello E,Morra M,Cinquina P,et al.Hydrophobic recovery of oxygen-plasma-treated polystyrene [J].Polymer,1992,33(14):3007-3015.
    [99]Morra M,Occhiello E,Marola R,et al.On the aging of plasma-treated polydimethylsiloxanc surfaces [J].Journal of Colloid and Interface Science,1990,137(1):11-24.
    [100]任煜,邱夷平.低温等离子体对高聚物材料表面改性处理时效性的研究进展[J].材料导报,2007,21(1):56-59.
    [101]任煜.常压等离子体对高性能纤维改性处理的时效性研究[D].上海:东华大学,2008.
    [102]Wu G M,Chang C H.Modifications of rigid rod poly(1,4-phenylene-cis-benzobisoxazole) fibers by gas plasma treatments[J].Vacuum,2007,81(10):1159-1163.
    [103]Nakamura T,Matsuoka T,Sakaguchi K.Study on interfacial strength properties between PBO fiber modified by oxygen plasma treatment and epoxy resin[J].Journal of the Society of Materials Science,2006,55(1):83-88.
    [104]Park J M,Kim D S,Kim S R.Improvement of interracial adhesion and nondestructive damage evaluation for plasma-treated PBO and Kevlar fibers/epoxy composites using micromechanical techniques and surface wettability[J].Journal of Colloid and Interface Science,2003,264:431-445.
    [105]周雪松,刘丹丹,王宜等.氩气低温等离子体处理对PBO纤维的表面改性[J].高分子材料科学与工程,2005,21(2):185-188.
    [106]岳淼,张晨,杜中杰.低温等离子体对PBO纤维表面的改性[J].合成纤维工业,2008,31(6):41-42.
    [107]岳淼.常温常压射频等离子体对PBO纤维的表面处理[D].北京:北京化工大学,2008.
    [108]张弛.等离子体接枝对超高分子量聚乙烯纤维表面性能的影响[D].重庆:重庆大学数理学院,2006.
    [109]Sugihara H,Jones F R.Promoting the adhesion of high-performance polymer fibers using functional plasma polymer coatings[J].Polymer Composites,2009,30:318-327.
    [110]李瑞华,曹海琳,黄玉东等.PBO纤维表面等离子体接枝改性研究[J].材料科学与工艺,2003,11:396-398.
    [111]王汝敏,郑水蓉,郑亚萍.聚合物基复合材料及工艺[M].北京:科学出版社,2004.
    [112]何伟.新型杂萘联苯结构聚芳醚砜(酮)及其共混物结构与性能研究[D].大连:大连理工大学,2006.
    [113]杨福生,赵延斌,吴靖.国外热塑性树脂基复合材料现状及发展趋势[J].吉林化工学院学报,2001,18(3):74-78.
    [114]徐涛清.热塑性树脂基复合材料的发展及纤维缠绕成型工艺[J].宇航材料工艺,1993,4:19-23.
    [115]Meng Y Z,Hay A S,Jian X G,et al.Synthesis of novel poly(phthalazinone ether sulfone ketone)s and improvement of their melt flow properties[J].Journal of Applied Polymer Science,1997,66:1425-1432.
    [116]蹇锡高,孟跃忠,郑海滨等.含二氮杂萘结构的聚醚砜及制备法:中国,93109180.2[P].1996,09.11.
    [117]蹇锡高,孟跃忠,郑海滨等.含二氮杂萘结构的聚醚酮及制备法:中国,93109179.9[P].2000,03.08.
    [118]蹇锡高,陈平,廖功雄等.含二氮杂荼酮结构新型聚芳醚系列高性能聚合物的合成与性能[J].高分子学报,2003,4:469-475.
    [119]郑亮.连续纤维增强杂萘联苯聚芳醚树脂基复合材料的研究.大连:大连理工大学,2009.
    [120]Meng Y Z,Tjong S C,Hay A S.Morphology,rhealogical and thermal properties of the melt blends of poly(phthalazinone ether ketone sulfone) with liquid crystalline copolyesters[J].Polymer,1998,39:1845-1850.
    [121]胡福增,郑安呐,张群安.聚合物及其复合材料的表界面[M].北京:中国轻工业出版社,2001.
    [122]Pisanova E,Zhandarov S,M(a|¨)der E.How can adhesion be determined from micromechanical tests[J].Composites Part A,2001,32:425-434.
    [123]Lopattananon N,Kettle A P,Tripathi D,et al.Interface molecular engineering of carbon-fiber composites[J].Composites Part A,1999,30:49-57.
    [124]白树林,陈建康,王建祥.共混/填充高分子复合材料界面力学行为实验研究进展[J].力学进展,2006,36(4):507-516。
    [125]赵若飞,周晓东,戴干策.纤维增强聚合物基复合材料界面残余热应力研究进展[J].纤维复合材料,2000,2:20-24.
    [126]丁振峰,霍伟刚,王友年.射频电感性耦合等离子体调谐基片自偏压特性[J].核聚变与等离子体物理,2004,24(3):197-202.
    [127]Lu C,Chen P,Yu Q,et al.Interracial adhesion of plasma-treated carbon fiber/poly(phthalazinone ether sulfone ketone) composite[J].Journal of Applied Polymer Science,2007,106:1733-1741.
    [128]Owens D K,Wendt R C.Estimation of the surface free energy of polymers[J].Journal of Applied Polymer Science,1969,13:1741-1747.
    [129]孙明.连续纤维增强聚芳醚砜酮(PPESK)基复合材料的工艺和性能研究[D].大连:大连理工大学,2004.
    [130]孙明,陈平,刘扬等.连续纤维增强聚芳醚砜酮复合材料的性能[J].纤维复合材料,2004,1:3-6.
    [131]布里格斯D.聚合物表面分析[M].北京:化学工业出版社,2001.
    [132]Weitzsacker C L,Xie M,Drzal L T.Using XPS to investigate fiber/matrix chemical interactions in carbon fiber reinforced composites[J].Surface and Interface Analysis,1997,25:53-63.
    [133]Lange P J,Akker P G,M(a|¨)der E,et al.Controlled interfacial adhesion of Twaron aramid fibers in composites by the finish formulation[J].Composites Science and Technology,2007,67:2027-2035.
    [134]Oyama H T,Wightman J P.Surface characterization of PVP-sized and oxygen plasma-treated carbon fibers[J].Surface and Interface Analysis,1998,26:39-55.
    [135]Zukiene K,Jankauskaite V,Petraifiene S.AFM lateral force imagining of modified polychloroprene:A study based on roughness analysis[J].Applied Surface Science,2006,253:966-973.
    [136]Vilas A M,Martin M L G,Broncano L L,et al.Experimental analysis of the influence of surface topography on the adhesion force as measured by an AFM[J].Journal of Adhesion Science and Technology,2002,16:1737-1747.
    [137]Wang Y,Hahn T H.AFM characterization of the interfacial properties of carbon fiber reinforced polymer composites subjected to hygrothermal treatments[J].Composites Science and Technology,2007,67:92-101.
    [138]毛明.射频感应耦合等离子体源的动力学模拟及实验诊断[D].大连:大连理工大学,2007.
    [139]黄玉东.聚合物表面与界面技术[M].北京:化学工业出版社,2003.
    [140]Rout J,Misra M,Tripathy S S,et al.The influence of fibre treatment on the performance of coir-polyester composites[J].Composites Science and Technology,2001,61:1303-1310.
    [141]Tsenoglou C J,Pavlidou S,Papaspyrides C D.Evaluation of interracial relaxation due to water absorption in fiber-polymer composites[J].Composites Science and Technology,2006,66:2855-2864.
    [142]Morent R,Geyter N D,Leys C,et al.Study of the ageing behaviour of polymer films treated with a dielectric barrier discharge in air,helium and argon at medium pressure[J].Surface and Coatings Technology,2007,201:7847-7854.
    [143]Inagald N,Narushim K,Tuchida N,et al.Surface characterization of plasma-modified poly(ethylene terephthalate) film surfaces[J].Journal of Polymer Science Part B,2004,42:3727-3740.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700