杂萘联苯型聚芳醚耐高温绝缘漆和涂料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作系国家“863”(项目编号2003AA33G030)资助项目和军工配套项目的部分内容。在前期工作的基础上,用聚醚砜酮(PPESK)、聚醚腈酮(PPENK)等不同结构的聚芳醚树脂制备了耐高温绝缘漆和涂料,对影响其性能的诸多因素进行了系统的研究,重点考察了结构和性能的关系,为其生产应用提供一定的理论指导。
     本论文工作内容如下:
     优化了PPESK绝缘漆的配方和工艺。在测定了聚合物溶解度参数的基础上,依据溶剂化原则、极性相似原则和溶解度参数相近的原则,综合考虑了成本、毒性、沸点等因素,确定了混合溶剂的组成和配比。选择KH-560、KH-550、KH-590三种有机硅烷偶联剂,考察其加入对漆膜性能的影响,结果表明KH-560的引入不但有利于提高漆膜的附着力,还可以降低漆膜的吸水率;聚合物分子量的提高会使分子间的作用力以及聚合物和金属之间的吸引力增强,探讨了聚合物特性粘度对漆膜的机械性能的影响,当特性粘度达到0.50dL/g时,漆膜的附着力、柔韧性和冲击强度分别达到1级、1mm和50cm,漆膜性能优异;研究了聚合物特性粘度和溶液浓度与涂-4粘度的关系,结果表明随着聚合物特性粘度和溶液浓度的提高,漆的涂-4粘度值增加。
     研究了结构对绝缘漆膜性能的影响,当PPESK的砜酮比高于8/2(摩尔比)时,漆膜具有优异的机械性能。以二氯苯腈替代二氯砜合成PPENK,以其为主要成膜物制备的绝缘漆具有优异的性能,腈基的引入有利于提高漆膜的附着力。同时研究结果还表明聚合物链中极性砜基、羰基、腈基和醚键的含量的变化对漆膜的性能有很大的影响。
     优化了漆包线的制备工艺。适当提高烘炉温度,降低收线速度有利于提高漆包线的厚度、击穿电压以及漆膜的连续性和均匀性。在对绝缘漆研究的基础上,进一步深入考察了聚合物链结构对漆包线性能的影响,结果表明漆包线的柔韧性和附着性与聚合物链段中醚键、羰基以及腈基的含量密切相关。测试结果表明由于扭曲非共平面二氮杂萘酮结构的引入,杂萘联苯型聚芳醚漆包线的机械性能、电性能和热性能远优于220级聚酰亚胺漆包线国家标准,其中PPENK漆包线的热冲击温度高达470℃,是目前耐热等级最高的有机类漆包线品种,能够满足军工产品的要求。
     对PPESK防腐涂料的配方和制备工艺进行了系统的研究。考察了分散工艺对涂料储存时间的影响,发现主要成分为不饱和羧酸与聚硅氧烷共聚物的BYK-P104S型润湿分散剂的引入有利于颜料的分散;当研磨时间为3h,研磨转数为2000r/min时,所研磨的颜料粒径适中,涂料的储存稳定性最好;用适量的KH-560偶联剂对颜料进行预处理,
This work was financially supported by the national high technology and development program (No.2003AA33G030) and the national army corps program.This work focused on preparing a novel high temperature resistant insulating lacquer and coatings on the basis of poly(phthalazinone ether sulfone ketone) (PPESK) and poly(phthalazinone ether nitrile ketone) (PPENK), which were deeply exploited by our laboratory. Thus, a variety of effects on properties of poly(phthalazinone ether)s insulating lacquer and coatings were deeply investigated, expecially the ralationship of structure and property, which could be an instruction for the future application.The lacquer's prescription and procedure were optimized. The optimum solvent component was confirmed in accordance with PPESK's solubility parameter, solvent boiling point and poison. Three kinds of couplants, KH-560, KH-550, KH-590, were selected to detect their effects on the properties of lacquer film, with the result of KH-560 which could enhance the film's adhesion to metal and decrease its water absorption. Another crucial factor was polymer's high weight molecule which could be detected through polymer's intrinsic viscosity and solution's flowing viscosity. The results indicated that the lacquer's mechanical properties were excellent, which showed one grade adhesion to metal, 1mm flexibility and 50cm impact resistance,, when the intrinsic viscosity was more than 0.50 dL/g. T-4 viscosity, used to describe flowing viscosity, increased with the increasing of intrinsic viscosity and concentration of solution.The structure of polymer main chain also had impact on the properties of resulting lacquer film. The result showed that the most excellent mechnical properties of film can be obtained when the ratio of sulfone and ketone of PPESK was more than 8 to 2. The PPENK lacquer embodied the more perfect mechancial properties by virtue of introducing -CN group improving the film's adhesion.The research also demonstrated that the contain of sulfone, ketone, nitrile and ether group in the polymer chain affacted the properties of the resulting film.The high temperature resistant enamel wires were manufactured with the conventional wire coating process, and the affected factors were discussed. It was proved that if the enamel machine's baker temperature increased suitably, it can improve the breakdown voltage. If the enamel machine's drawing speed decreased suitably, it can improve the wire's continuity.
    Compared to the properties of PPESK and PPENK and PPENKK wire, the PPENK wire's properties were excellent. According to the conventional PI enamel round copper wire standard, the properties of Poly(phthalazinone ether )s wires, which exhibit good thermal, electrical and chemical properties, were superior to those of PI. The PPENK wire which showed the thermal shock of 470℃ has the best heat resistant property up to now.The effects of PPESK anti-corrosion coating's prescription and fabricating procedure of coating on properties were deeply investigated, too. The effects of dispersant and dispersing process on storing time were discussed. The results showed that BYK-P104S as a dispersant can markedly improve the dispersing properties of the black carbon. The congest paint storing time could be found when dispersing time and rotating speed were 3 hour and 2000r/min, respectively. The anti-heating and anti-corrosion properties of PPESK coatings were tested. The results showed that the PPESK coatings could be used at 250℃, and endure 15% hydrochloric acid and 30% sodium hydroxide solution's corrosion for more than sixty days.BYK-370 was the excellent additive for the PPESK anti-adhesive coating's dispersing. CGUF-006 polytetrafluoroethylene was the best stuffing for anti-adhesive coating. The combination of molybdenum disulfide (M0S2) and graphite was observed to best coating's luster.phthalazinone(DHPZ) and 4,4'-dihydroxy diphenylsulphone(BPS) were selected as monomers to synthesize novel PPESK resin. The intrinsic viscosity of resin and heat resistance of coating decreased with the increasing of BPS percent.Whereas the wire can be used above high glass transition temperature(Tg) for a long time, the crosslinking behaviors of PPENK and PPESK coatings were investigated with Flourier transformed infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), initially. The results indicated that the nature of the curing reaction is complex. When the PPENK coating was heated at 290℃ and 330℃, respectively, two weak absorption peaks centered about 1780 cm~(-1) and 1730cm~(-1) appeared and grew in intensity with the increasing of crosslinking temperature and time. Thermogravimetric analysis (TGA) was performed to do further research. Thermal degradation temperature increased with the increasing of heating time and temperature. The PPESK coating had the samely changes. The catalyst of p-toluenesulfonate acid contributed to the crosslinking of PPENK and PPESK coatings.
引文
[1] 涂料工艺编辑组.涂料工艺(下册).北京.化学工业出版社,1997,601-602.
    [2] M. C. Ratra , S. N. Moorching, B. Hemalatha et al. Sumangala, P. K. Poovamma. Combined stress ageing of magnet wire enamels. Proceedings of the 3rd International conference on properties and Applications of Dielectric materials, Tokyo, 1991: 707-710.
    [3] M. Winkeler. Magnet wire enamels-which one? Electrical Insulation Magazine, 1991, 7(4): 61-64.
    [4] K. Ueda. Progress of magnet wire technology in Japan. Electrical Insulation Magazine, 1989, 5(3): 18-26.
    [5] 楼南寿.耐热漆包线漆.绝缘材料通讯.1999,1:23-26.
    [6] K. Suzuki, S. Sato. Electric insulating polyester compositions and electric cables using them. Japan pat. 2001214059, 2001.
    [7] 陈坤元.对苯二甲酸(PTA)直接酯化法制造聚酯漆包线漆和改性聚酯漆包线漆.绝缘材料通讯,1997,4:7-11.
    [8] S. Sato. Electrically insulating resin compositions and enamel wire thereform. Japan pat. 2001202824,2001.
    [9] U. Akira. Resin compositions for electric insulation and enameled wires therefrom. Japan pat. 2003151353, 2003.
    [10] S. Sato. Electrically insulating resin compositions and abrasion-and heat-resistant enameled wires using them. Japan pat. 2003346558, 2003.
    [11] R. Obika, Y. Tatematsq, M. Mesaki et al. Development of magnet wire having excellent windability. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, Japan, 1999: 479-483.
    [12] Y. Tatematsu, M. Mesaki, A. Higashiura et al. Development of self-lubricating magnet wires for alternative refrigerant. Electrical Electronics Insulation Conference. 1995: 427-430.
    [13] National Electrical Manufacturers Association (NEMA) MW 1000-1997: 238-241.
    [14] L. J. Payette. Solderable wire enamel. Electrical Insulation Magazine, 1990, 6(5): 8-12.
    [15] S. Sugyama, S. Amano, A. Ono. Electrically insulating polyurethane coating on wires. Japan pat. 05157714, 1995.
    [16] Peterson, A. Marvin. Partially imidized polyamide-acid polymers, aqueous coatings compositions, coated wire and method, and partially imided intermediate. US pat.4073788, 1978.
    [17] Lee, L.Yue-Guey. Polyamide-imide resin composions and electrial conductors insulated there with. US pat. 4459383, 1984.
    [18] H. Matsura, I. Kamioka, K. Iwata. Scratch-resistant flexible polyamide-polyimide electrical insulators. Japan pat. 06020526, 1994.
    [19] O. Toshikazu, N. Yatsuya, Seiichi. Heat-resistant polymer compositions, their coatings, and abrasionresistant enamel wires coated therewith. Japan pat. 2002047414, 2002.
    [20] H. Doshita, M. koyano, A. Goto et al. Insulating coating for electric wires. Japan pat. 07037438,1995.
    [21] Y. Mukoyama, T. Sakata, Y. Osada. Polyamide-imide resin composition. US pat. 4530975, 1985.
    [22] O. Toshikazu. Heat-resistant polyamide-imide compositions, coating with good substrate adhesion, and flexible enameled wires therefrom. Japan pat. 2004143258, 2004.
    [23] H. Doshita, M. Koyano, M. Tai et al. Self- lubricating insulated electric wires and manufacture thereof. Japan pat. 05101713, 1993.
    [24] S. Oda, T. Akimoto. Manufacture of varnishes for electrical insulation. Japan pat. 05250918, 1993.
    [25] A. Higashiura, F. Sano, N. Shoji et al. Evaluation of newly developed heat resistant bondable magnet wire. Electrical Electronics Insulation Conference. Japan, 1989: 169-172.
    [26] 虞鑫海,200级电气绝缘材料.重庆工业高等专科学校学报,2001,16(4):6-9.
    [27] K. D. Bultermeier, J. E. Bodette. A new high temperature magnet wire with excellent chemical stability. Electrical Electronics Insulation Conference, Japan, 1991: 125-128.
    [28] 杨志青.复合涂层漆包线发展概况.电线电缆,1997,4:13-20.
    [29] J. Z. Edmund. 1989 Report on dual coated magnet wire-a comparison of class H polyesterimide compared to class H polyester. Electrical Electronics Insulation Conference, USA, 1989: 158-160.
    [30] D. Myers, D. O'Hara. Bondable magnet wire-cost justfication. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference. USA, 2003: 571-574.
    [31] F. Infanger. Technical considerations in selecting bondable wires. Procedings ICWA, 1990.
    [32] J. E. Hake, Self-bonding magnet wire for motor applications. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, USA, 1999: 387-391.
    [33] D. Gotko. Bondable wire for motor manufacturing. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, 2003: 575-578.
    [34] S. S. Hollis, P. J. Lionel. Self-bonding magnet wire. US pat. 4420536.
    [35] R. Nagel, G. Boelzman, L. Blue. Baking enamel containing thermoplastic polyamide. Japan pat. 2000212507, 2000.
    [36] K. Hideyuki, M. Shigeharu, S. Eiji. Heat distrortion-resistant self-fusible enamel wire, and litz wire therefrom. Japan pat. 11224535, 2001.
    [37] K. Hideyuki, M. Shigeharu, S. Eiji. Heat disformation-resistant self-bonding enameled wires, and heat deformation-resistant litz wires. Japan pat. 11219621, 2001.
    [38] S. Scott D. Bondable polyamide. US pat.4505978,1986.
    [39] N. R. Swain, R. Nagel. New high temperature self-bonding magnet wire. Electrical Insulation Conference and Electrical Manufacturing & Coil Winding Conference, USA, 1999: 475-478.
    [40] I. Ishikawa, K. Hanaoka, K. Nakano et al. New self-lubricating self-bonding magnet wire for hermetic motor. Proceedings of the 18th EEIC, 1987:215-222.
    [41] S. Shioya, F. Sano, M. Mesaki et al. Development of magnet wires having excellent windability and insertability. Proceedings of the 18th EEIC, 1987:231-233.
    [42] M. Suzuki, H. Doshita, M. Koyano et al. Development and application of new self-bonding magnet wires with self-lubricating properties. Electrical Electronics Insulation Conference and Electrical Manufacturing & Coil Winding Conference, USA, 1993: 179-184.
    [43] K. Hanaoka, I. Ishikawa. Insulated electric wires with lubricious surface. Japan pat.05298932, 1993.
    [44] L. A. Francois. Titanium chelate modified nylon magnet wire insulation coating. US pat. 4550055, 1985.
    [45] L. A. Francois. Aromatic titanate modified nylon magnet wire insulation coating. US pat. 4568607, 1986.
    [46] H. J. Joseph. Urethane modified nylon magnet wire enamel. US pat. 4725458, 1988.
    [47] G. Boockrnann, R. Fichtner. Nonpolluting solid lubrication of enamelled wires. Electrical Electronics Insulation Conference and Electrical Manufacturing & Coil Winding Conference. 1993: 165-171.
    [48] S. S. Hollis, C. V. Richard. Power insertable polyamide-imide coated magnet wire. US pat.4390590,1983.
    [49] S. S. Hollis, C. V. Richard. Power insertable polyamide-imide coated magnet wire. US pat. 4406055,1983.
    [50] S. S. Hollis, C. V. Richard. Power insertable nylon coated magnet wire. US pat. 4410592,1983.
    [51] A. Uchiyama, Y. Honda, Y. Osada, T.Okada. Starage-stable polyester coating for electric insulators. Japan pat. 04206311,1992.
    [52] Y. Honda, A. Uchama, J. Osada et al. Self-lubricating electrically insulating coatings and wires therewith. Japan pat. 05166413,1993.
    [53] Y. Honda. Resin coating compositions for electric insulators and magnet wires. Japan pat. 05325642, 1993.
    [54] I. Kamioka, T. Shishino, A. Hayashi. Manufacture of insulated electric wires. Japan pat. 06012933,1994.
    [55] M. Kanemitsu, S. Morooka, K. Ina, et al. Self-lubricating electrically insulated wires. Japan pat. 05298933,1993.
    [56] S. Takahashi, T. Yamazawa, S. Chiyahata. Electrically insulated, abrasion-resistant wires with low friction. Japan pat. 03057107,1991.
    [57] H. Deshita, M. Koyano, M. Tai et al. Self-lubricatting insulated electric wires and manufacture thereof. Japan pat. 05101713,1993.
    [58] Y. Ito, M. Suzuki, M. Wake. Polyamide-polyester-polyimides for insulation of wires for motors. Japan pat. 03102709,1991.
    [59] M. Hirata, H. Kato, S. Kitami et al. Electrically insulated wire having resistance to refringerant and wet heat. Japan pat. 04022006,1992.
    [60] M. Hirata, H. Kato, S. Kitami et al. Insulated electric wires. Japan pat. 04171610,1992.
    [61] M. Hirata, H. Kato, S. Kitami et al. Electrically insulating electric wires with polyurethane-epoxy resin coatings. Japan pat. 04012405,1992.
    [62] Steven Darling. International winding wire standards-progress towards harmonization. Electrical Electronics Insulation Conference, Japan, 1989: 56-61.
    [63] Y. Shibata, H. Tatsumi, M. Suzuki et al. Development of new self-lubricating magnet wires and their application to production of medium of size motors, electrical Electronics Insulation Conference, Japan, 1991:119-124.
    [64] K. Asano, K. Suzuki, A. Mitsuoka et al. Insulating coatings and insulated wires. Japan pat. 05339523, 1993.
    [65] K. Suzuki, O. Juichi, O. Eiji et al. Heat-resistant polyester-polyimides for use wire insulation. Japan pat. 07102063, 1995.
    [66] M. Seki, M. Sato, H. O. Tsukioka. Self-bondable insulated wires comprising three coatings insulading a phenoxy resin outer layed. US pat.4129678,1978.
    [67] A. Uchama, K. Suzuki. Imide-containing polyester-based compositions and electrically insulating electric wires using them. Japan pat. 05331367, 1993.
    [68] K. Furuta, T. Hayashi. Aromatic Polysulfone Resin and uses thereof. US pat. 2,003,224,222, 2003.
    [69] S. Weinberg, G. W. Cupta, E.I. Hibri et al. Insulated magnet wire using polysulfone/polyphenyl sulfone blend and its preparation and applications. WO pat.2004000941, 2003.
    [70] K. D. Bultemeier, J. E. Bodette. A new high temperature magnet wire with excellent chemical stability. Electrical Electronics Insulation Conference. Japan, 1991:125-128.
    [71] A. Matsuda. Watertight sealing strectures for electric wires usable at high temperature. Japan pat. 2004355897, 2004.
    [72] Y. Matsuura, U. Yuki, I. Iwata et al. Insulated wire. US pat. 5393612, 1995.
    [73] M. Masakazu, G. Hedeki. Hybrid Composites of polyamide-imide and silica applied to wire insulation. Electrical Insulation Conference and Electrical Manufacturing & coil Winding conference, USA, 2001: 1-4.
    [74] K. Hamabuchi, S. Oda. Heat-resistant electrically insulating wires. Japan pat. 05151824, 1993.
    [75] T. Ishii. Moisture-resistant silicone compositions and heat-resistant electrically insulated wires. Japan pat. 05239359, 1993.
    [76] Y. Hashimoto, K. Nagao, M. Kamei. Heat-and water-resistant cured resins as electrical insulators on wires. Japan pat. 05209030, 1993.
    [77] F. Pohlmann, R. Busch. Investigations of magnet wire enamels and impregnants especially for inverter-fed motors. Electrical insulation and dielectric phenomena conference. 2000: 587-591.
    [78] J. J. Keane, D. R. Panze. Corona-resistant wire enamel compositions and conducts insulated therewith. US pat. 4493873, 1985.
    [79] 楼南寿.耐热漆包线漆.绝缘材料通讯,1999,1:23-26.
    [80] 张泽山.D080高速聚酯漆包线漆的研制.绝缘材料通讯,1995,1:4-8.
    [81] 马超.可焊性漆包线.电机技术,1994,3:40.
    [82] 缪敬昌,周建春.1766聚酰胺酰亚胺(PAl)漆包线漆常见问题的原因及对策.绝缘材料通讯,1998,3:4-7.
    [83] 刘文钦,张清祺.自润滑聚酰胺酰亚胺漆包线漆.绝缘材料通讯,2000,4:8-10.
    [84] 黄利明.变频电机用耐电晕漆包线漆的研制.绝缘材料,2001,5:18-19.
    [85] 李平生,刘振海,曲宪志.新型聚芳醚砜(PES-C)树脂及其漆包线的初试.绝缘材料通讯,1991,137(1):37-38.
    [86] 魏晓波,宋义恩,高振霞等.聚醚砜防腐蚀涂料.涂料工业,1993,135(4):10-12.
    [87] R. Nadshima, N. Kikuchi, J. Osada. Heat- and water-resistant poly(ether sulfone) compositions for coatings. Japan pat. 05194854, 1993.
    [88] M. Yoshikawa, T. Maeda. Water- resistant electrically insulating PEEK coatings. Japan pat. 05135625,1993.
    [89] M. D. Herd, L. R. Kallenbach. Production of phenylene sulfide-arylene sulfide/sulfone block copolymers. US pat.5147719, 1992.
    [90] 王百庚,张金彪,白路娜等.芳氰端基聚苯并二嗪-耐温耐水耐油耐介质腐蚀的特种绝缘材料.绝缘材料通讯,1983,5:43-48.
    [91] 战凤昌,李悦良.专用涂料.北京:化学工业出版社,1988,106.
    [92] 谢文峰,管颖超,马连弟等.改性聚四氟乙烯不粘涂料的研制.精细化工,2001,8:493-495.
    [93] 卢迪斯,罗国钦,林既森.PTFE防粘涂料用的粘结成分.涂料工业,2002,10:43-44.
    [94] B. Jean-Pierre, M. Fontaine, C. Gardaz. Fluorocarbon resin antiadhesive coating with improved scratch resistance. WO pat. 2000054896, 2000.
    [95] B. Brannstein, I. Pokorny, M. Beranova. Coating with antiadhesive and good dielectric and abrasive properties. Czech. Pat. 170309, 1977.
    [96] S. Sakinaga. Metal plates having two-coat two- bake heat-resistant coating layers for cookingutensils. Japan pat. 2001335963, 2001.
    [97] 何敏婷.偶联剂在涂料及复合材料中的应用.现代涂料与涂装.2000,2:32-34.
    [98] 乌云其其格.偶联剂对玻璃纤维增强塑料的界面作用.玻璃钢/复合材料,2000,4:12-15.
    [99] 武志民.润湿分散剂的分类特性与应用.涂料工业.2003,33(8):1.
    [100] 贾润礼,王苏.消泡剂的消泡性能测试方法-泡沫降位法.现代涂料与涂装.1997,1:14.
    [101] G.Hobisch, I. Kriessmann, W. Staritzbichler et al.水性涂料用流平剂.涂料工业,2002,216(6):34-36.
    [102] 徐国强.涂料的抗流挂性及其测定方法.涂料工业.1997,158(3):43.
    [103] X. G. Jian, Y. Dai, L. Zheng et al. Application of Poly(phthalazinone ether sulfone ketone)s to Gas Membrane Separation. J. Appl. Polym. Sci., 1999, 71 (14): 2385-2390
    [104] 大连理工大学.军工配套研制项目(教军配93-08号)09二代驱动机构线圈灌封用的杂萘联苯聚醚砜酮(PPESK)浸渍漆.科技成果鉴定证书鉴字[教NIP96]第020号,1996,8.
    [105] 蹇锡高,王瑞玲,朱秀玲等.新型可溶性聚芳酰胺及其共聚物的合成与性能研究.高分子学报,2001,5:576-579.
    [106] 朱秀玲,卢冶,李建丰等.含杂萘类三联苯结构聚芳酰胺酰亚胺合成与性能.大连理工大学学报,2002,42(7):424-427.
    [107] 王锦艳,肖树德,蹇锡高等.含3,5-二甲基二氮杂萘酮联苯结构聚醚酰亚胺的合成与性能.高等学校化学学报,2003,24(3):555-558.
    [108] 陈连周,蹇锡高,高峡等.新型聚芳酮腈的合成及表征.河北工业大学学报.1999,28(5):22-25.
    [109] 涂料工艺编辑组.涂料工艺(下册).北京:化学工业出版社,1997.
    [110] Y. Z. Meng, A. S. Hay, X. G. Jian et al. Sythesis of novel poly (phthalazinone ether sulfone ketone)s and improvement of their melt flow properties. Journal applied polymer science, 1997, 66 (8): 1425-1432.
    [111] 李琦.新型可溶型聚芳醚腈(酮)的合成研究:(硕士学位论文).大连:大连理工大学,2002.
    [112] 涂料工艺编辑组.涂料工艺(上册).北京:化学工业出版社,1997,61-110.
    [113] J.H. Greaves. Paint technology manuals;part two;solvents, oils, resins and dries. Chapman& Hall, London, 1961.
    [114] J. Hidebrand, R. Scott. The solubility of non-electrolytes. Third edition. New York: Reinhold publishing Corp, 1949.
    [115] 武利民,李丹,游波.现代涂料配方设计.北京:化学工业出版社,1989,69-87.
    [116] 钱逢麟,竺玉书.涂料助剂—品种和性能手册.北京:化学工业出版社,1990.555-557.
    [117] 黄汉生.硅烷偶联剂在涂料中的应用.上海涂料.1997,2:45-50.
    [118] 刘国杰,耿耀宗.涂料应用科学与工艺学.北京中国轻工业出版社.1994,402.
    [119] 张连来,顾宜,江路霞等.特种工程塑料—聚芳醚腈.中国塑料,1995,9(3):11-18.
    [120] 李红山,漆包线黑斑原因分析及对策.嘉应大学学报(自然科学).1998,6:44-47.
    [121] 张志昌,漆包线的现状及其发展动向.电线电缆,1999,2:2-8.
    [122] 王雪秋,吴缀图,赵慈义等.H级无溶剂浸渍绝缘漆制备研究.华东理工大学学报,1999,4:386-389.
    [123] 楼南寿,我国绕组线用绝缘漆展望.绝缘材料,2001,1:34-37.
    [124] 凌春华,楼南寿.阻燃性漆包线漆.绝缘材料通讯2001,4:7-9.
    [125] 扬志青,国外复合涂层漆包线发展概况.电线电缆,1997,4:13-20.
    [126] 边静,李光俊.功能性涂料的新进展.涂料工业.1991,124(4):8-12.
    [127] 王锡春,姜英涛.涂装技术(第一册).北京:化学工业出版社,1988.
    [128] 徐小洪,王泳厚,姜英涛.涂装技术(第三册).北京:化学工业出版社,1988.
    [129] 战风昌.专用涂料.北京:化学工业出版社.1988.
    [130] 陈正平.涂料用助剂.现代涂料与涂装.2001,2:49-50.
    [131] Peter Quednau.涂装涂料.1982,347:46-47.
    [132] 钱逢麟,竺玉书.涂料助剂—品种和性能手册.北京:化学工业出版社,1990.
    [133] 何敏婷.偶联剂在涂料及复合材料中的应用.现代涂料与涂装,2000,2:32-34.
    [134] 娄西中.耐热涂料用颜料的选择.应用化工,2000,29(4):7-9.
    [135] 刘莉,李仕华.气相法白炭黑在涂料中的应用.涂料工业.2003,33(8):18-20.
    [136] 钱逢麟,竺玉书.涂料助剂.北京:化学工业出版社.1999.
    [137] 王明聪,尹轶飞,安杉等.超微细二氧化硅的生产及应用.有机硅材料及应用,1997,5:11-12.
    [138] 谢文峰,管颖超,马连弟等.改性聚四氟乙烯不粘涂料的研制.精细化工,2001,8:493-495.
    [139] P. Chevallier, M. Castonguay, S. Turgeon. Ammonia RF-plasma on PTFE surface: chemical characterization of the species created on the surface by vapor- phase chemical derivatization. J. Phys. Chem. B, 2001, 105(50): 12490-12497.
    [140] 杜君俐.现代涂料与涂装.润滑耐磨涂料的进展(Ⅰ),2000,6:14-16.
    [141] 杜君俐.现代涂料与涂装.润滑耐磨涂料的进展(Ⅱ),2001,1:15-17.
    [142] 杨军,刘艳.聚四氟乙烯不粘涂层的研究.纸和造纸.2004,6:49-52.
    [143] 金斌.钛白粉在溶剂型涂料中分散性的研究.原材料.2004,5:33-34.
    [144] J. J. Xu, A.R. Knerr, K. D. Bultemeier et al. Curing of magnet wire coatings monitored by real-time FTIR. Electrical Manufacturing & Coil Winding Conference, Japan, 1997: 233-237.
    [145] K. W. Lienert. Investigation of the curing reaction mechanism of polyester and polyesterimide wire enamels. Electrical Electronics Insulation Conference, Japan, 1995: 233-237.
    [146] J. J. Xu. FTIR analysis of polyester enamel cure. Electrical Electronics Insulation Conference, USA, 1995: 263-265.
    [147] V. Trezvov, A. Arsenyev, N. Saratovskava. The use of FTIR spectroscopy for determination of the optimal regime of enamelling process with polyesterimide enamels. Electrical Insulation Conference, USA, 1997: 229-230.
    [148] C. Araki, T. Taguchi. Thermal degradation of polyesterimide magnet wire. Electrical Insulation and Dielectric Phenomena Conference, Japan, 1993: 526-531.
    [149] T. M. Keller. Phthalnitrile-based high temperature resin. Journal of Polymer Science: Part A. 1988, 26: 3199-3212.
    [150] S. Matsuo. Synthesis and properties of Poly(arylene ether phenyl-s-triazine)s. Journal of Polymer Science: Part A. 1994, 32: 2093-2098.
    [151] 崔广智.三芳基均三氮杂苯环高温聚合物研究*[ZnCl_2·Ce(SO_4)_5·NH_4]的催化三聚反应.材料开发与应用,1997,12(1):7-11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700