新型杂萘联苯结构聚芳醚砜(酮)及其共混物结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型含二氮杂萘酮联苯结构聚芳醚砜酮是本课题组近年来开发成功的一类高性能工程塑料,是目前耐热等级最高的可溶性聚芳醚新品种,性能价格比优异,具有很好的应用前景。但在加工生产及应用中该类纯树脂材料显示出一些不足之处,比如熔体粘度高导致热成型加工困难,材料脆性较大等,极大地限制其推广应用,因而需要进行改性。据此,本论文采用熔融共混及溶液共混方式对含二氮杂萘联苯结构聚芳醚类树脂进行改性,系统研究了改性材料的结构和性能关系,以期为将来工业化生产和应用提供理论依据。
     采用逐步聚合方法制备了新型特种工程塑料含二氮杂萘酮结构的聚芳醚砜酮PPESK(S/K=50/50)、聚芳醚砜(PPES)及聚芳醚酮酮(PPEKK)。利用热失重(TGA)分析仪,氮气氛围中,多重加热扫描速率下的不定温法对PPESK(50/50)、PPES及PPEKK进行热分解动力学研究。根据Satava法得出,聚合物PPESK(50/50)分解反应机理为随机成核和随后生长,反应级数n=1;而聚合物PPES的热分解反应机理为相界面反应模式,反应级数n=2;PPEKK的热分解机理为三维扩散(3D);同时采用经典动力学方程Friedman、Kissinger-Akahira-Sunose(KAS)及Ozawa计算了热分解动力学参数(Ea,lnz)。重点考察不同升温速率、酮/砜比对PPESK(50/50)、PPES及PPEKK的热稳定性影响,并且根据得到的动力学参数推测其在高温使用条件下的使用寿命及对热分解反应过程中“动力学补偿效应”(KCE)进行分析。
     采用动态热机械分析仪(DMTA)对新型含二氮杂萘酮结构聚芳醚砜(酮)及与聚四氟乙烯(PTFE)共混物,进行动态热机械性能表征。研究结果表明:新型含二氮杂萘酮结构聚芳醚砜酮PPESK的热稳定性能良好,在较高温度范围内储能模量保持在相对较高值,能较好的作为结构件使用。新型含二氮杂萘酮结构聚芳醚砜酮PPESK(S/K=80/20)的耐热性比新型含二氮杂萘酮结构聚芳醚砜酮PPESK(S/K=20/80)好,这是由于前者的砜基/酮基的比例比后者高,而砜基的键能比酮基的键能较高所致。另外,随着扫描频率的提高,PPESK的α松弛峰移向高温。PPESK(20/80)中共混加入10%PTFE可提高其玻璃化温度,但当含量大于10%后,共混体系的玻璃化温度(T_g)并不随着PTFE含量的增加而继续提高。同时采用Arrhenius方程计算PPESK(20/80)及其共混物α转变时分子运动活化能。
     利用动态热机械仪(DMTA)及热失重仪(TGA)对采用熔融挤出方法制备的新型含二氮杂萘酮联苯结构聚芳醚砜酮PPESK(80/20)与聚醚砜(PES)共混物进行研究。动态热机械性能表明,加入PES对PPESK(80/20)的热稳定性有较大影响。另外,动态机械性能表明,在所研究的组分范围内共混物只有一个玻璃化转变温度,并随着PPESK(80/20)含量增加而升高,表明两组分完全相容。采用热失重仪测试PPESK(80/20)/PES共混物的热失重来分析
Poly(ether sulfone ketone) containing phthalazinone moieties, a series of novel high performance polymer developed by our teamwork, have much better thermal resistance and solubility than similar high performance polymers. For better properties, the polymers have a strong competitive capability in international market. However, the pure resin shows some shortcomings in processing and application. For example, the melt viscosity is too high to process and the brittleness is unbeneficial to commercialization. Therefore, blending PPESK with other high performance polymers was adopted to improve their properties. In this paper, structures and properties of their blends were studied systematically, which was foundations in their industrialization and application.The kinetics of thermal degradation of poly (phthalazinone ether sulfone) (PPES)、 poly (phthalazinone ether sulfone ketone) PPESK(50/50) and poly(phthalazinone ether ketone ketone) in nitrogen were studied at several heating rates by thermogravimetry analysis (TGA). According to Satava method, the thermal degradation mechanism of PPESK(50/50) is randomly nucleating and nucleus growth, and order of reaction n=l. The thermal degradation mechanism of PPES, however, is phase boundary controlled reaction and order of reaction n=2 and the three dimensions dispersion for PPEKK. The kinetic parameters, including the reaction active energy and the frequency factor of degradation reaction for PPES、 PPESK(50/50) and PPEKK were analyzed by isoconversional Friedman, Kissinger-Akahira-Sunose(KAS) and Ozawa methods. The aim of this paper was to study on the effect of heating rates and ratio of ketone/sulfone on the thermal degradation and the life estimation. On basis of the kinetic parameters, the lifetime for high temperature has been calculated and the 'Kinetic Compensation Effects'(KCE) in the thermal degradation process was analyzed.In the present work, blends of poly (phthalazinone ether sulfone ketone) (PPESK) /poly(tetrafluoroethylene) (PTFE) with various weight ratios were prepared by solution mixing. The dynamic mechanical properties including the storage modulus(E'), loss modulus(E") and loss tangent were studied over a wide range of temperature and frequencies and compared for PPESK and its blends. The results show that novel PPESK possesses high storage modulus within a high temperature range and show good thermal stability. The peaks representing the loss modulus and
    tan d of blends shifted to higher temperatures with increasing scanning frequency. The thermal stability of polymer is increased with increasing the proportion of sulfone linkages in the backbone. And the Arrhenius relationship has been used to calculate the activation energy of the glass transition of PPESK and its blends.The mechanical and thermal properties of poly(phthalazinone ether suflone ketoneXPPESK)/poly(aryl ether sulfone)(PES) blends prepared by melt-mixing were investigated by dynamic mechanical thermal analysis(DMTA) and thermogravimetric analysis(TGA). The dynamic mechanical thermal analysis results show that the incorporated PES has a large influence on the heat stability of PPESK. The DMTA results display that the blends with a single glass transition temperature, which increases with increasing PPESK content, indicates that PPESK and PES are completely miscible over the studied composition range. The thermodegradative behavior of blends was used to analyze their thermal stability. The Friedman technique was used to determine the kinetic parameters i.e the apparent activation energy and order of reaction of the degradation process. On the basis of the kinetic data derived from Friedman's approach, the lifetime estimates for pure PPESK, pure PES, and the blends generated from the weight loss of 5% were constructed.Miscibility and thermal properties of PPESK/ polyarylate (PAR) have been investigated using differential scanning calorimetry (DSC), DMTA, scanning electron microscope(SEM) and TGA. These blends show a single and composition-dependent glass transition temperature over the entire composition range by DSC method. However, it showed that these blends are partially miscible by DMTA. Thermodegradative behaviour of blends was studied by dynamic thermogravity in order to analyze their thermal stability. The Friedman method was used to determine the kinetic parameters-the apparent activation energy (Ea). The results indicate that the presence of one component influences the thermal stability of the other. Temperature for 5% weight loss, and Ea for blends show a negative deviation from the linear behaviour, which signifies a lowering of thermal stability compared to homopolymers.Artificial neural network (ANN) was applied to forecast the properties of composites based on PPESK. Samples data of TK reinforced composites were applied to train the ANN by neural network tool of MATLAB 6.5. Back-propagation (BP) neural network was established and the optimum parameters of ANN were chosen. The properties of composites based on PPESK were forcasted by the trained ANN. The results show that the train ANN can exactly forecast the properties of composites. ANN based on MATLAB 6.5 also offers an efficient and credible method for analyzing the effect of components.
引文
[1] 吴忠文.特种工程塑料聚醚砜、聚醚醚酮树脂国内外研究、开发、生产现状,化工新型材料,2002,30(6):15-18.
    [2] 徐昌运.国外工称塑料现状与发展趋势.化工新型材料,1999,27(11):3-12.
    [3] 蹇锡高,廖功雄,王锦艳.含二氮杂萘酮结构聚芳醚酮和聚芳醚砜研究进展.中国塑料,2002,16(4):11-15.
    [4] 崔小明.特种工程塑料——聚醚醚酮.上海塑料,2005,131(3):34-39.
    [5] 李英俊,林得厚,吴忠文.新型耐高温热塑性工程塑料.工程塑料应用,1982,(4):1-7.
    [6] 张连来,顾宜,江璐霞.特种工程塑料-聚芳醚腈.中国塑料,1995,9(3):11-18.
    [7] 余自力,梁雯,陈永荣.聚苯硫醚砜.材料导报,1993,(2):55-60.
    [8] 武齐贤,陈永荣.聚苯硫醚的结构改性.高分子材料科学与工程,1994,10(1):1-5.
    [9] 赵孝彬,杜磊,张小平等.聚合物共混物的相容性及相分离,高分子通报,2001,(4):75-78.
    [10] Vtracki L A. Polymer Alloys and Blends. Thermodynamics and Rheology. New York: Hanser Publishers, 1990: Chapter Ⅰ.
    [11] 蔡碧华.聚合物共混改性原理.成都科技大学塑料工程系,1993:14.
    [12] 徐定宇.聚合物形态与加工.中国石化出版社.1992:74.
    [13] Jeong Seok Oh, Jeong Gyu Jang, Young Chan Bae. Physical properties of polymer blends and their theoretical consideration. Polymer, 1997, 38(15): 3761-3766.
    [14] 耿孝正,张沛.塑料混合及设备.北京:中国轻工业出版社,1991:25.
    [15] Joseph A Grande. Modem Plastics International 1998, 28(11): 68-73.
    [16] 邹盛欧.日本工程塑料供需动向.化工新材料,1998,26(12):8-9.
    [17] 陈永荣,于自力,周祚万等.化工百科全书.北京:化学工业出版社,1994,742-760.
    [18] 金国珍.工程塑料.北京:化工工业出版社,2001:555-557.
    [19] 侯灿淑,李继红,伍齐贤.PPS/PA-66共混物热行为研究.高分子材料科学与工程,1996,12(6):110-113.
    [20] 李继红,侯灿淑,汪映寒.PPS/PA-66共混体系的加工条件和性能研究.高分子材料科学与工程,1996,12(3):134-136.
    [21] 侯灿淑,李继红,伍齐贤.PPS/PA-66共混物结构与性能的研究.高分子材料科学与工程,1998,14(1):75-77.
    [22] Byoung Chul Kim, Tae Won Son, Soon Man Hong et al. A study on the ternary blends of poly(phenylene sulfide), polysulfone, and liquid-crystaline poly(ether imide). Polym. Prepr., 1993, 34(2): 823-824.
    [23] B. S. Hsiao, B. B. Sauer. Crystallization effect on miscibility and morphology of poly(aryl ether ether ketone) and poly(ether imide) blends. Annu. Tech. Conf.-Soc. Plast. Eng., 1992, 50th: 578-581.
    [24] J. Scobb, Jr. J.. Poly(phenylene sufide)/poly(ether imide) blends via reactive extrusion: morphology and rheology, Annu. Tech. Conf.-Soc. Plast. Eng., 1992, 50th: 605-608.
    [25] T. G. Gopakumar, S. Ponrathnam, A. Lele et al. In situ compatibilization of poly(phenylene sulfide)/wholly aromatic thermotropic liquid crystalline polymer blends by reactive extrusion: morphology, thermal and mechanical properties. Polymer, 1999, 40(2), 357-364.
    [26] T. G. Gopakumar, S. Ponrathnam, C. R. Rajan et al. Poly(phenyl sulfide)/thermotropic liquid crystalline polymer blends: a comparative study of thermal properties, phase behavior and morphology of blends generated by different techniques. Polymer, 1998, 30(11): 2221-2226.
    [27] G. Gabellini, M. B. de Moraes, R. E. S. Bretas. Poly(p-phenylene sulfide)/liquid crystalline polymer blends. I. Miscibility and morphologic studies. J. Appl. Polym. Sci.,1996, 60(1):21-27.
    [28] A. Valenza, F. P. La Mantia, L. I. Minkova et al. Magagnini. Rheological behavior and thermal stability of poly(phenylene sulfide)/Vectra-B950 blends. J. Appl. Polym. Sci.,1994,52(11): 1653-1663.
    [29] 吴培熙,张留城.聚合物共混改性.北京:中国轻工业出版社,1998,338-341.
    [30] 邹盛欧.特种工程塑料开发近况.化工新型材料,1996(12):6-13.
    [31] 伍齐贤,严永刚,陈永荣.聚苯硫醚共混改性,高分子材料科学与工程,1992,(6):1-5.
    [32] 范广宇,刘克静.PES-C/PPS共混物结构与性能研究.高分子材料科学与工程,1992,8(2):104-107.
    [33] 阮汝祥,杨振忠,张丽梅.聚醚砜-聚苯硫醚共混物的制备及性能.吉林大学自然科学学报,1997,(2):91-94.
    [34] 杨宇明,李滨耀,张英俊等.酚侧基聚芳醚砜/聚苯硫醚共混物的形态与力学性能.应用化学,1995.12(2):84-87.
    [35] M. F. Cheung, A. Golovoy, H. Van Oene. Polysulphone and poly(phenylene sulfide) blends: 1. Thermal characterization and phase morphology. Polyer, 1990, 31(12): 2299-2306.
    [36] M. F. Cheung, A. Golovoy, H. Van Oene. Polysulphone and poly(phenylene sulfide) blends: 2. Thermal characterization and phase morphology. Polyer, 1990, 1990, 31(12): 2307-2310.
    [37] V. M. Nadkami, J. P. Jog. Thermal and crystallization behavior of alloys of polyphenylene sulfide and high density polyethylene, J. Appl. Polym. Sci., 1986, 32(7): 5817-5828.
    [38] 麦堪成,章明秋,曾汉民等.热塑性树脂聚苯硫醚的结晶行为.高分子材料科学与工程,1993,9(6):59-64.
    [39] YumingYang, Alberto D. Amore, Yingwei Di et al. Effect of physical aging on phenolphthalein polyether sulfone/poly(phenylene sulfide) blend. I. Mechanical properties. J. Appl. Polym. Sci.,1996, 59(7): 1159-1166.
    [40] Yuming Yang, Binyao Li, Lisong Dong. Enhanced glass fiber-reinforced phenolphthalein poly(ether ketone) composites by blending poly(phenylene sulfide). J. Appl. Polym. Sci.,1996, 59(3): 531-535.
    [41] Kim B C.Polym.Eng.Sci.1996, 36(4): 574.
    [42] John Wiley and Sons Inc. Encyclopedia of polymer science and engineering, Second edition, Vol. 13. 1985.
    [43] J.E. Harris, L.M. Robeson. Miscible blends of poly(aryl ether ketones) and polyether imides. J. Appl. Polym. Sci.,1988, 3(7):1877-1891.
    [44] B.S. Huang, E.M. Woo. Blends of a novel high-temperature poly(oxy-1, 4'-diphylenyleneoxy-1,4-phenylenecarbonyl-1,4-phenylene) with poly(ether imide):structure, interaction, and miscibility. Colliod Polym. Sci.,2000, 278(5):392-398.
    [45] G. Crevecoeur, G. Groeninckx. Binary blends of poly(ether ether ketones) and poly(ether imide). Miscibility, crystallization and semicrystalline morphology. Macromolecules, 1991, 24(5): 1190-1195.
    [46] H. L. Chen, R.S. Poeter. Phase and crystallization behavior of solution-blended poly(ether ether ketones) and poly(ether imide) blends. Polym. Eng. Sci., 1992, 32(24):1870-1875.
    [47] Steven D. Hudson, Don D. Davis, Andrew J. Lovinger. Semicrystalline morphology of poly(aryl ether ether ketone)/poly(ether imide) blends. Macromolecules, 1992, 25(6): 1759-1765.
    [48] B.S. Hsiao, B.B. Sauer. Glass transition, crystallization, and morphology relationships in miscible poly(aryl ether ketones) and poly(ether imide) blends. J. Polym. Sci., Part B, 1993, 31(8): 901-915.
    [49] H.L. Chen, R.S. Porter. Melting behavior of poly(ether ether ketone) in its blends with poly(ether imide). J. Polym. Sci., Part B, 1993,31(12):1845-1850.
    [50] J.E. Harris, J.M. Robeson. Isomorphic behavior of poly (aryl ether ketone) blends. J.Polym. Sci., Part B, 1987, 25(2): 311-323.
    [51] R.J. Karcha, R.S. Porter. Miscible blends of modified poly(aryl ether ketone) with aromatic polyimides. J. Polym. Sci., Part B, 1993, 31(7): 821-830.
    [52] 王伟,孙振华,张平等.聚醚酰亚胺/酚酞型聚醚醚酮共混体系相容性的稀溶液粘度法研究.高分子学报,1992,(6):748-751.
    [53] G. Guerrica Echevarria, J.I. Eguiazabal, J. Nazabal. Interracial tension as a parameter to characteriza the miscibility level of polymer blends. Polymer testing, 2000, 19: 849-856.
    [54] M.J. Jenkins. Ralaxation behavior in blends of PEEK and PEI. Polymer, 2000, 14(18):6803-6812.
    [55] R.Androsch, H.J. Radusch, F. Zahradnik et al. Comparative study of the crystallization of poly(aryl ether ketone) in binary blends, with poly(ether sulfone) and poly(ether imide). Polymer, 1997, 38(2):397-404.
    [56] K. Liang, G. Banhegyi, F. Karasz, W.J. Mcknight. Thermal, dielectric, and mechanical relaxation in poly(benzimidazole)/poly(ether imide) blends. J. Polym. Sci., Part B, 1991, 29(6): 649-657.
    [57] H.L., Chen, J.C., Hwang, R.C. Wang. A new binary system exhibiting simultaneous crystallization and spinodal decomposition: poly (ethylene-2,6-naphthalenedicarboxylate)/poly(ether imide) blend. Polymer, 1998, 39(24):6067-6072.
    [58] S. Bicakci, M. Cakmak. Phase behavior of ternary blends of poly(ethylene naphthalate), poly(ether imide) and poly(ether ether ketone), Polymer, 1998, 39(17);4001-4010.
    [59] S. Bastida, J.I. Eguiazabal, J. Nazabal. Phase behavior morphology and properties of poly (ether imide)/polyarylate blends. Polymer, 1996, 37(12): 2317-2322.
    [60] Hanchi, J. Eiss. Synergistic friction and wear of ternary blends of polyether ether ketone, polyetherimide and a thermoplastic liquid crystalline at elevated temperature, Tribol. Trans., 1997, 40(1): 102-110.
    [61] S. Bicakci, M. Cakmak. Uniaxial deformation behavior of ternary blends of poly(ethylene naphthalate), poly(ether imide), and poly(ether ether ketone) films, Polymer,1998,39(22): 5405-5420.
    [62] Munstedt H, Zeiner H. Polyaryletherketone. Kunststoffe, 1989, 79: 993-996.
    [63] Lucke A. Polyaryletherketone. Kunststoffe, 1990,, 80: 1154-1158.
    [64] 蹇锡高,孟跃忠,郑海滨,Hay A.S..含二氮杂萘酮结构的聚醚酮及制备法,中国专利:CN931091799.1993-07-26.
    [65] 蹇锡高,孟跃忠,郑海滨,Hay A.S..含二氮杂萘酮结构的聚醚砜及制备法,中国专利:CN931091802.1993-07-26.
    [66] N. Berard, A.S. Hay, Polymers from Hydroxyphenylphthalazinones. Polymer Preprint (Am. Chem. Soc., Div. Polym. Chem.), 1993, 34(1): 148-149.
    [67] 高红昌,方晓雯,张涛等.1,2-二氢-4-(4一羟基苯基)(2H)二氮杂萘-1-酮的NMR谱研究.波谱学杂志.2001.18(4):343-349.
    [68] Berard N., A. S. Hay. Polymers from Hydroxyphenylphthalazinones. Polym. Prep., 1993, 34 (1): 148-149.
    [69] Y. Z. Meng, A. S Hay, X. G. Jian et al. Synthesis and Properties of Poly (aryl ether sulfone)s Containing the Phthalazinone Moiety. J. Appl. Polym. Sci., 1998, 68(1): 137-143.
    [70] 孟跃中,蹇锡高,卫海涛.核磁法测定新型聚醚砜和聚醚酮的分子量,高分子材料科学与工程,1995,11(3):65-68.
    [71] Y. Ding, A. Hlil, A. S Hay. Novel Poly(arylene thioether)s Containing the 1,2-Dihydroxy-4-phenyl (2H) phthalazinone Moiety. Polym. Prep., 1997, 38 (2): 187-188.
    [72] 李秀华,孟跃中,蹇锡高等.含二氮杂萘酮结构的新型共聚醚酮的合成及性能.高分子材料科学与工程,1998,14(4):37-39.
    [73] 刘彦军,蹇锡高,张军等.含二氮杂萘酮聚醚砜酮酮的流变行为.工程塑料应用,1998,26(5):19-21.
    [74] Y. J. Liu, X. G. Jian. Synthesis & Characterization of Poly(aryl ether ketone) from Bis-1,4-(4-Chlorobenzoyl) Benzene. Chin. Chem. Lett., 1998, 9 (3): 255-256.
    [75] 刘彦军,蹇锡高,刘圣军等.含二氮杂萘酮结构聚醚酮酮的合成与表征 高分子学报,1999,(1):37-41.
    [76] Y. J. Liu, X. G. Jian, S. J. Liu. Synthesis and properties of novel poly(phthalazinone ether ketone ketone). J. Appl. Polym. Sci., 2001, 82(4): 823-826.
    [77] 陈连周,蹇锡高,高峡等.氯代二氮杂萘联苯型聚醚酮的合成及性能.应用化学,1999,16(3):106-108.
    [78] L. Z. Chen, X. G. Jian, X. Gao et al. Synthesis and Characterization of Poly(aryl ether ketone) from 4-(3-phenyl-4-hydroxy phenyl) Phthalazinone. Chin. J. Polym. Sci., 1999, 17 (5): 491-493.
    [79] L. Z. Chen, X. G. Jian, X. Gao et al. Synthesis and Characterization of Poly(aryl ether ketone) Containing Biphenyl Phthalazinone Moiety. Chin. J. Polym. Sci., 1999, 17 (5): 495-497.
    [80] 陈连周,蹇锡高,郭晓园.邻甲基二氮杂萘联苯型聚醚酮的合成及表征.塑料工业,1999,27(2):31-32.
    [81] L. Z. Chen, X. G. Jian, X. L. Zhu. Polymers from Dimethyl Substituted Hydroxyphenyl Phthalazinone. Polym. J., 1999, 31 (4): 393-395.
    [82] 尚蕾,蹇锡高,兰建武等.含二氮杂萘酮结构耐热胶粘剂的研究.粘接,2002,23(3):1-3.
    [83] 兰建武,蹇锡高,王国庆等.聚芳醚砜酮纤维的热性能.2003,26(2),24-26.
    [84] 王桂梅,蹇锡高,廖功雄等.玻纤增强PPESK复合材料及其性能研究.中国塑料,2004,18(2),40-43.
    [85] 廖功雄,蹇锡高,王锦艳,含二氮杂萘酮结构聚芳醚酮和聚芳醚砜研究进展.中国塑料,2002, 16(4), 11-15.
    [86] Y. Gao, G. P. Robertson, M.D. Guiver, et. al. Suffonation of Poly(phthalazinones) with Fuming Suffuric Acid Mixtures for Proton Exchange Membrane Materials. Polymer, J. Membrane Sci. 2003, 227, 39-50.
    [87] X. G. Jian, Y. Dai, L. Zeng et al. Application of Poly(phthalazinone ether sulfone ketone)s to Gas Membrane Separation. J. Appl. Polym. Sci. 1999, 71, 2385-2390.
    [88] 蹇锡高,张守海,戴英,含二氮杂萘酮结构聚芳酰胺超滤膜的研制.膜科学与技术,2001,21(1),11-14.
    [89] X. G. Jian, Y. Dai, G. H. He et al. Preparation of UF and NF Poly (phthalazinone ether sulfone ketone) Membranes for High Temperature Application. J. Menbr Sci, 1999, 161 (1): 185-19.
    [90]] 戴英,朱秀玲,蹇锡高.新型聚醚砜酮超滤膜的制备及性能研究.大连理工大学学报,1999,39(4):509-511.
    [91] Y. Dai, X. G. Jian, X. M. Liu et al. Synthesis and Characterization of Sulfonated Poly (phthalazinone ether sulfone ketone) for Ultrafiltration and Nanafiltration Membranes. J. Appl. Polym. Sci., 2001, 79 (9): 1685-1692.
    [92] 蹇锡高,张守海,戴英.新型磺化聚醚砜酮复合纳滤膜.膜科学与技术,2001,21(1),11-14.
    [93] Y. Dai, X. G. Jian, S. H. Zhang et al. Thermostable ultrafiltration and nanofiltration membranes from sulfonated poly(phthalazinone ether sulfone ketone). J. Membr. Sci., 2001, 188 (2): 195-203.
    [94] Y. Z. Meng, A. S. Hay, X. G. Jian et al. Sythesis of Novel Poly (phthalazinone ether sulfone ketone)s and Improvement of Their Melt Flow Properties. J. Appl. Polym. Sci., 1997, 66 (8): 1425-1432.
    [95] 张军,蹇锡高,朱秀玲等.PPESK/PPS共混合金的研究.大连理工大学学报,1999,39(3):405-409.
    [96] 张军,刘彦军,蹇锡高.PPESK/PPS共混物流变性能的研究.中国塑料,1998,12(6):54-57.
    [97]] 彭静,蹇锡高,刘少琼.PPESK树脂基复合材料的摩擦磨损性能.材料研究学报,2001,15(2):244-248.
    [98] 刘少琼,张军,蹇锡高.聚醚砜酮树脂基摩擦材料的性能研究.工程塑料应用,2000,28(2):6-8.
    [99] 廖功雄,蹇锡高,靳奇峰等.PPESK/PEI共混物的相容性及拉伸性能.高分子学报,2002,(3):394-397.
    [100] 廖功雄,蹇锡高,郭晓园等.PPESK/PA66共混物流变性能研究.材料科学与工艺,2001,第9卷增刊:117-119.
    [101] 廖功雄.含二氮杂萘酮结构聚醚酮和聚醚砜的改性研究:(博士学位论文).大连:大连理工大学,2002.
    [102] Gongxiong Liao, Xigao Jian, Jianyan Wan. Phase behavior, thermal stability and rheological properties of PPEK/PC blends. Journal materials science and technology, 2002, 18(6): 561-563.
    [103] 廖功雄,蹇锡高,郭晓园.PPEKK/PPS共混物流变性能研究.中国塑料,2001,15(7)18-22.
    [104] 廖功雄,蹇锡高,郭晓园等.HQ-PPEK/PC共混物的相容性与流变性能,应用化学,2001,18(11):930-932.
    [105] Minjie QU, Xiaogao JIAN, Wei HE et al. Performance of potassium titanate whisker reinforced PPESK composites. Journal of Materials Science and Technology. 2004, 20(4): 445-447.
    [106] 曲敏杰,蹇锡高,刁晓峰等.钛酸钾晶须填充新型PPESK的性能及形态研究.材料科学与工艺. 2004,12(6):565-568.
    [107] 曲敏杰,蹇锡高,何伟等.PPESK/ABS/TK复合材料流变性能的研究.材料科学与工艺.2004,12(2):160-162.
    [108] 曲敏杰,蹇锡高,李建丰等.PPESK/PS共混物流变性能的研究.中国塑料.2002,16(5):34-36.
    [109] 曲敏杰,蹇锡高,郭晓圆等.钛酸钾晶须填充新型PPEK的性能研究.中国塑料.2002,16(6):27-30.
    [110] 曲敏杰,蹇锡高,兰建武等.PPESK/ABS共混物流变性能的研究.工程塑料应用.2003,31(6):22-24
    [111] Minjie Q U, X. G. JIAN. Performance of potassium titanate whisker reinforced poly(phthalazinone ether ketone sulfone). IUPAC World Polymer Congress, 2002, 39th international symposium on macromolecules, 2002, beijing, part 2: 644.
    [112] 王桂梅,廖功雄,蹇锡高等.聚砜低聚物改性PPES流变性能的研究,工程塑料应用,2004,32(2):21-23.
    [113] 王桂梅,蹇锡高,廖功雄等.玻纤增强PPESK复合材料及其性能研究,中国塑料,2004,18(2):40-43.
    [114] 王桂梅,廖功雄,蹇锡高等.注塑级含二氮杂萘酮联苯结构的聚醚酮/聚四氟乙烯共混物的性能研究,现代化工,2004,24(4)35-38.
    [115] Munstedt H, Zeiner H. Polyaryletherketone. Kunststoffe, 1989, 79: 993-996.
    [116] Lucke A. Polyaryletherketone. Kunststoffe, 1990, 80: 1154-1158.
    [117] 蹇锡高,孟跃忠,郑海滨,Hay A.S.含二氮杂萘酮结构的聚醚酮及制备法,中国专利:CN931091799.1993-07-26.
    [118] 蹇锡高,孟跃忠,郑海滨,Hay A.S..含二氮杂萘酮结构的聚醚砜及制备法,中国专利:CN931091802.1993-07-26.
    [119] 朱桂茹,王同华,张守海等.聚醚砜酮炭膜炭化过程中炭结构形成,大连理工大学学报,2004,44(1):57-59.
    [120] 杨争,余自力,谢美菊.几种热塑性特种工程塑料的热分析研究.化学研究与应用,2002,14(3):363-365.
    [121] Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C 1964, 6(1): 183-195.
    [122] Vyazovkin S. A unified approach to kinetic professing of nonisothermal dana. Int J Chem Kinet 1996, 28(2): 95-101.
    [123] Ozawa T. A new method of analyzing thermogravimetric data. Bull. Chem. Sci. Japan., 1965, 38(11): 1881-1886.
    [124] Lorenzo Abate, Ignazio Blanco, Alice Orestano et al. Evaluation of the influence of various(ether, ketone and sulfone) groups on the apparent activation energy valus of polymer degradation, Polymer degradation and stability, 2003, (80): 333-338.
    [125] Van Krevelen DW. Properties of polymers. Amsterdam: Elsiever;1990.
    [126] Satava V. Mechanism and kinetics from non-isothermal TG traces, Thermochim. Acta, 1971, 2(5): 423-428.
    [127] Agrawal R K. On the compensation effect. J Them Anal 1986, 31: 73.
    [128] 胡荣祖,史启祯.热分析动力学.北京,科学出版社,2001,p56.
    [129] Xin-Gui Li, Mei-Rong Huang. Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolymester. Polym Degrad Stab, 1999, 64(1): 81-90.
    [130] Paul DR, Newman S, Polymer blends Ⅰ and Ⅱ. NY, Academic Press, 1977, p1.
    [131] 廖功雄,蹇锡高,靳奇峰等.PPEKK/PEI共混物的相容性及拉伸性能,高分子学报,2002,(3),394-397.
    [132] 曲敏杰,蹇锡高,郭晓园等.钛酸钾晶须填充新型PPEK的性能研究.中国塑料,2002,16(6),27-30.
    [133] Gongxiong LIAO, Xigao JIAN, Jinyan WANG. Phase behavior, thermal stability and rheological properties of PPEK/PC blends. J. Mater. Sci. Technol, 2002, 18(6), 561-563.
    [134] PENG Jing, JIAN Xigao, LIU Saoqiong et al. Chinese Journal of Materials Research, 2001, 15(2), 244.
    [135] 黄丽,孙正滨.PTFE复合材料力学与摩擦性能的研究.复合材料学报,2000,17(4),54-57.
    [136] Briscoe B J. The friction and wear of PTFE-PEEK composites: an initial appraisal of the optimum composition. Wear, 1986, 108: 357-374.
    [137] Briscoe B J. Boundary lubrication of polymers in model fluids. Tribology Inter, 1984, 17(1): 129-137.
    [138] Briscoe B J. The failure of PEEK in high speed contacts. Wear, 1993, 162: 407-417.
    [139] StuartB. H, Briscoe B J. Scratch hardness studies of PEEK.Polymer, 1996, 37(17): 3819-3824.
    [140] Hanchi J, Eiss N S. Preliminary study of the elevated temperature tribological behavior of PEEK-based in site composites under unlubricated sliding conditions. Tribol Trans, 1995, 38(3): 305-310.
    [141] Hanchi J, Eiss N S. Tribological behavior of PEEK, a thermotropic liquid crystalline polymer and in suit composites based on their blends under dry sliding conditions at elevated temperatures. Wear, 1996, 200: 105-121.
    [142] Hanchi J, Eiss N S. Synergistic friction and wear of ternary blends of PEEK, PEI and a TLCP at elevated temperatures. Tribology Trans, 1997, 40(1): 102-110.
    [143] 丛陪红,李同生等.温度对聚酰亚胺摩擦磨损性能影响,摩擦学学报,1997,17(3):220-226.
    [144] Zhang Zhaozhu, Shen Weichang, Liu Weimin. Tribological properties of polytetrafluoroethylene-based composite in different lubricant media, Wear, 1996, 196: 164-170.
    [145] Zhang Zhaozhu, Xue Qunji, Liu Weimin. Friction and wear properties of metal powder filled PTFE composites under oil lubricated conditions. Wear, 1997, 210: 151-156.
    [146] 朱桂茹,王同华,张守海等.聚醚砜酮炭膜炭化过程中炭结构形成,大连理工大学学报,2004,44(1),57-59.
    [147] Wetton RE, Marsh RDL, Van-De-Velde JG. Thermochirn. Acta, 1991, 175(1): 1-11.
    [148] Vilas JL, Laza JM, Garay MT et al. Unsaturated polyester resins cure: Kinetic, rheologic, and mechanical dynamical analysis. Ⅱ. The glass transition in the mechanical dynamical spectrum of polyester networks, J Polym Sci Part B: Polymer Physics, 2001, 39(1): 146-152.
    [149] M. J. Jenkins, Relaxation behaviour in blends of PEEK and PEI, Polymer, 2000, 41(18): 6803-6812.
    [150] 过梅丽.高聚物与复合材料的动态力学热分析.第一版 北京 化学工业出版社 2002) P31.
    [151] 过梅丽.高聚物与复合材料的动态力学热分析.(第一版 北京 化学工业出版社 2002) P166.
    [152] Sangmook Lee, Soon Man Hong, Yongsok Seo. Characterization and processing of blends poly(ether imide) with thermotropic liquid crystalline polymer. Polymer, 1994, 35 (3): 519-531.
    [153] Bhanu Nandan, L. D Kandpal, G. N Mathnr. Glass transition behaviour of poly (ether ether ketone)/poly(aryl ether sulphone) blends: dynamic mechanical and dielectric relaxation studies. Polymer, 2003, 44: 1267-1279.
    [154] M. L. Lee, Y. Li, Y. P. Feng et al. Study of frequency dependence modulus of bulk amorphous alloys around the glass transition by dynamic mechanical analysis. Intermetallics, 2002, 10 (11): 1061-1064.
    [155] 金国珍.工程塑料,北京:化工工业出版社,2001:416.
    [156] 杨争,余自力,谢美菊.几种热塑性特种工程塑料的热分析研究,化学研究与应用,2002,14(3):363-365.
    [157] Nadia A., Mohamed, Magdy W. Sabaa. Thermal degradation behaviour of poly(vinyl chloride)-poly(vinyl butyral) blends. Euro Polym Jnl, 1999, 35: 1731-1737.
    [158] M. Naffakh, G. Ellis, M. A. Gomez, C. Marco. Thermal decomposition of technological blends 1. Poly(aryl ether ether ketone) with a thermotropic liquid crystalline polymer. Polym Degrad Stab, 1999, 66: 405-413.
    [159] Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C, 1964, 6(1): 183-195.
    [160] Xin-Gui Li, Mei-Rong Huang. Thermal decomposition kinetics of thermotropic poly(oxybenzoate-co-oxynaphthoate) Vectra copolymester. Polym Degrad Stab, 1999;64: 81-90.
    [161] Wetton R. E., Marsh R. D. L., Van-De-Velde J. G.. Theory and application of dynamic mechanical thermal analysis. Thermochim. Acta, 1991, 175: 1-11.
    [162] J. L. Vilas, J. M. Laza, M. T. Garay et al. Unsaturated polyester resins cure: kinetic, rheology, and mechanical dynamical analysis. Ⅱ. the glass transition in the mechanical dynamical spectrum of polyester networks. J Polym Sci: Part B: Polym Phys, 2001, 39: 146-152.
    [163] M. J. Jenkins. Relaxation behaviour in blends of PEEK and PEI, Polymer, 2000, 41: 6803-6812.
    [164] Sangmook Lee, Soon Man Hong, Yongsok Seo. Characterization and processing of blends poly (ether imide) with thermotropic liquid crystalline polymer. Polymer. 1994, 35 (3): 519-531.
    [165] 蹇锡高,陈平,廖功雄等.含二氮杂萘酮结构新型聚芳醚系列高性能聚合物的合成与性能.高分子学报.2003,4:469-475.
    [166] J. Ramiro, J. I. Eguiazabal, J. Nazabal, Synergistic mechanical behaviour and improved processability of poly(ether imide) by blending with poly(trimethylene terephthalate), polymer for advanced technologies, 2003, 14, 129-136.
    [167] Shi, Ping Ma, Takahashi, Toshisada. Binary blends of a new wholly aromatic thermoplastic polyimide and poly(ether imide), Polymer, 1996, 37(25): 5589-5596.
    [168] Bastida S, Eguiazabal J I, Etxeberria J N. Phase and mechanical characterization of poly(ether imide)/polyarylate injection moulded blends. European polymer journal. 1996, 32(10): 1229-1234.
    [169] Friedman H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry, Application to a phenolic plastic, J Polym Sci Part C 1964, 6(1): 183-195.
    [170] Bhanu Nandan, Kandpal L D, Mathur G N. Poly(ether ether ketone)/poly(aryl ether sulphone) blends: thermal degradation behaviour. European polymer journal. 2003, 39(1): 193-198.
    [171] Igor Lacik, Igor Krupa, Marek Stach et al. Thermal lag and its practical consequence in the dynamic mechanical analysis of polymers. Polymer testing. 2000, 19(7): 755-771.
    [172] 过美丽.高聚物与复合材料的动态力学热分析(第一版).化学工业出版社.2002:166.
    [173] 徐昌运.国外工程塑料现状与发展趋势.化工新型材料,1999,27(11):3-11.
    [174] Paul DR, Newman S. Polymer blends Ⅰ and Ⅱ. NY: Academic Press, 1971, p1.
    [175] 张培新,张奇志,吴黎明等.用神经网络—遗传算法优化MgO-B_2O_3-SiO_2渣系组成.金属学报,1995,31(6):B284.
    [176] 何明一.神经计算原理.原理.设计.应用.西安:西安电子科技大学出版社,1992,3-10.
    [177] Nielsen H. Progress of International Joint Conference on Neural Networks, 1989: 593-603.
    [178] K. Genel, S.C. Kurnaz, M. Durman. Modeling of tribological properties of alumina fiber reinforced zinc-aluminum composites using artifical neural network, Materials science and engineering, 2003, (363): 203-210.
    [179] Mohammed E. Haque, K.V. Sudhakar. ANN back-propagation prediction model for fracture toughness in microalloy steel, International journal of fatigue, 2002, (24): 1003-1010.
    [180] 飞思科技产品研发中心,MATLAB6.5辅助神经网络分析与设计。北京:电子工业出版社,2003.
    [181] 吴简彤,王建华.神经网络技术及其应用.哈尔滨:哈尔滨工程大学出版社,1997.
    [182] 黄庙由,刘先锋,吴凤云.人工神经网络在EPDM硫化胶性能预测中的应用,计算机仿真,2004,21(4):117-120.
    [183] 张清良,李先明.一种确定神经网络隐含层节点数的新方法,吉林大学学报,2002,3,14-16.
    [184] Mohammed E. Haque, K.V. Sudhakar. ANN back-propagation prediction model for fracture toughness in microalloy steel, International Journal of Fatigue, 2002, 24: 1003-1010.
    [185] 倪楠.基于神经网络的焊接机器人CO_2保护焊工艺参数优化,合肥工业大学硕士论文,2005,5,22-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700