二氯乙烷裂解炉的数值模拟与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氯乙烷裂解炉是热裂解法制备氯乙烯单体工艺中关键的工艺设备之一,对其操作过程进行数学模拟和开展深入的研究工作,在维持裂解炉的正常生产、节约燃料、提高产量和经济效益等方面具有重要的理论和现实意义。裂解炉中存在着燃烧、传热、传质等复杂流体的流动,建立由偏微分方程组成的管式裂解炉数学模型求解困难。计算流体力学(Computational Fluid Dynamics,CFD)可以对这些复杂流体的流动进行详细的数值计算。它综合了计算数学、计算机科学、流体力学、科学可视化等多种学科,为现代科学中许多复杂流动与传热问题提供了有效的解决方法。本文主要利用CFD技术对裂解炉辐射室进行数值模拟与分析。
     管式加热炉内部炉管的裂解反应与管外的辐射传热是相互影响而又分别独立的两部分。本文分别以二氯乙烷裂解炉中反应管内的反应过程和辐射室内的热传递过程为对象,通过计算机进行了数学模拟与分析。本文主要进行了以下的研究工作:
     1.结合别洛康法计算裂解炉辐射室的传热模型,建立了整个管式裂解炉的数学模型并确定了模型中的参数。利用所建立的数学模型,分别研究了进料温度、氧含量、燃料量等操作变量对裂解炉的转化率和热效率的影响,得出了所研究的管式加热炉较优的操作条件。结合某石化厂二氯乙烷裂解单元装置的DCS数据进行了模拟计算。实例结果表明,本文建立的数学模型基本符合实际生产状况,可用于管式加热炉的模拟计算。这些对于指导实际生产操作以及进一步对工业裂解炉的优化设计提供了参考依据。
     2.研究了数值计算中的网格划分技术以及控制方程的离散化格式,针对裂解炉的物理结构特点,选用Gambit对裂解炉辐射段进行几何建模,采取分块结构、非结构化自适应网格,对火嘴周围进行网格加密处理,建立整个裂解炉辐射室的网格模型,同时确定裂解炉数值模拟的边界条件类型。
     3.研究了流体动力学的基本原理,建立了二氯乙烷裂解炉辐射段的流体控制方程、传热方程、燃烧方程以及辐射方程。根据裂解炉的结构确定边界条件,采用FLUENT软件对上述方程进行数值求解。计算得到裂解炉内部流场、温度场以及浓度场分布的相关信息,这些数据可为裂解炉的优化操作、设计和工程改造提供很多有价值的信息。
The dichloroethane cracking furnace is an important device in the manufacture of vinyl chloride monomer (VCM) by heat cracking method. A detailed study on the furnace is both theoretically and practically valuable for its daily maintenance, energy saving, productivity improvement and economic performance. Inside the furnace, there is a complicated flow process, which involves combustion, heat transfer and mass transfer phenomenon. Therefore building an accurate and reliable mathematical model is the necessary precondition for further research of furnace. Computational Fluid Dynamics (CFD), as a new subject embracing calculation mathematics, computer science, fluid dynamics and visible technology etc, provides effective solutions to the complicated flow and heat transfer problems in modern science. CFD can perform numerical calculation to analyze the complicated flowing characteristics inside the dichloroethane cracking furnace.
     In this paper, both the reaction process in reaction tube and heat transfer in radiation chamber are numerically simulated on computer . The simulation results are then analyzed in detail. The contributions of the research are as follows.
     Firstly, a mathematical model of tube cracking furnace is set up, whose parameters are determined by the method ofъелоконь. The effect of multi-operation variables, such as feeding temperature, oxygen content and fuel content, on the conversion and heat efficiency of cracking furnace is studied to obtain the optimum operation conditions within the specific tube heating furnace by the mathematic model. A simulation is performed based on the data of DCS from the equipment of dichloroethane cracker in a petrifaction company. The result shows that the mathematic model in this paper is reliable; the result is accorded with the data of actual production well and can be used to perform simulation for tube heating furnace.
     Secondly, based on the principal theorem of adaptive grid creating method, the use of self-adaptive mesh refinement method for unstructured mesh provides a good mesh-creating solution for the complicated configuration of cracking furnace by Gambit. Meanwhile, boundary condition of cracking furnace is determined for numerical simulation.
     Thirdly, based on the fundamental principle of CFD, the corresponding fluid control equation, heat-transfer equation, combustion equation and radiation equation are set up respectively. The principal boundary condition is determined according to configuration of cracking furnace and DCS data of some chemical factory. The couple algorithm for pressure-velocity coupling scheme are employed in cracking furnace modeling. These equations are solved and useful information is achieved about the flow field, temperature field and density field about the inner combustion of cracking furnace.
引文
[1]周游,化学反应器分析[M],北京:烃加工出版社,1986
    [2]Kiri-Othmer,Encyclopedia of Chemical technology,3rd,Wiley,New York,1980
    [3]严福英主编,聚氯乙烯工艺学[M],北京:化学工业出版社,1996
    [4]魏文德主编,有机化工原料大全[M],北京:化学工业出版社,1989
    [5]钱伯章,朱建方,二氯乙烷和氯乙烯单体的市场分析与生产技术,中国氯碱,2006,5:1-5
    [6]叶由忠,2005年世界PVC/VCM市场回顾,中国氯碱,2006,12:19-22
    [7]Miller,S.A.主编,乙烯及其工业衍生物[M],北京:化学工业出版社,1980
    [8]吴指南主编,基本有机化工工艺学,第二版[M],北京:化学工业出版社,1990
    [9]杨朝富,夏顶,秦圣祥,杨学远,氯乙烯生产先进工艺简介,中国氯碱,2005,7
    [10]Orejas J.A.,Model evaluation for industrial process of direct chlorination of ethylene in a bubble-column reactor with external recirculation loop,Chemial Engineering Science,2001,56:513-522
    [11]S.Zahrani M.A.,Aljodai A.M.,Modelling and simulation of 1,2-dichloroethane production by ethylene oxychlorination in fluidized-bed reactor,Chemical Engineering Science,2001,(56):621-626
    [12]37万吨/年VCM装置工艺技术规程[M],齐鲁股份有限公司氯碱厂改造指挥部,2004
    [13]张濂,朱海东,二氯乙烷裂解过程研究,化工反应工程与工艺,1995,6(11):160-166
    [14]朱海东,张濂,二氯乙烷裂解过程模拟研究,化学反应工程与工艺,1995,9(12):251-258
    [15]黄卫,张濂,二氯乙烷裂解过程的模拟与优化,华东理工大学学报,1997,12(23):641-648
    [16]阳永荣,曹彬,二氯乙烷裂解管式反应器二维模拟,2002,10(53):1046-1050
    [17]王喜芹,吴慧雄,EDC裂解炉的数学模型及其仿真研究,防化研究,2002,3:34-37
    [18]郭亚军,代少勇等,氯乙烯制备工艺研究进展,化学与粘合,2002,6:277-279
    [19]蓝凤祥,世界聚氯乙烯工业技术进展,聚氯乙烯,2001,3:1-17
    [20]Korai Y.,Yamamoto K.,Tsunawaili T.,Structure and properties of isotropic carbon produced at 200~300℃ in heat exchangers of commercial ethylenedichloride(RDC)pyrolysis,Carbon,2001,39:1613-1616
    [21]Alessandro G.B.,Andrew M.H.,Thoma J.M.,Robert L.M.,eg.,Characterizaton of coke formed in vinyl chloride manufacture Ind.Eng.Chem.Res,1991,2:4259-4267
    [22]Lihou D.A,Review of furnaces design methods,Trans.I.ChemE,1977:555,255
    [23]黄祖祺,炼油化工管式辐射室传热计算方法的发展与展望,石油大学学报,1989,3(13):86-106
    [24]黄祖祺,杨光炯等编,石油化工管式炉的模拟与计算机计算[M],北京:化学工业出版社,1993
    [25]Lobo W.E.,Evans J.E.,Heat transfer in the radiant section of petroleum engineering heaters,Trans.AIChE.,1939:35-740
    [26]Lobo W.E.,Design of furnaces with flus gas temperature gradients,Chemical Engineering Process,1974,1:65-71
    [27]钱家麟 主编,管式加热炉(第二版)[M],北京:中国石化出版社,2003
    [28]巴赫希特(苏)著,王兰田等译,无焰板式喷嘴双辐射墙管式炉[M],北京:中国工业出版社,1973
    [29]佐野司朗,管式加热炉设计,化学工场(日),1962,4:5-10
    [30]McAdams W.H.,,Heat transfer mission,3rd,New York:McGraw Hill Book Company,1954
    [31]Hottle H.C.,Cohen E.S.,Radiant heat exchange in a gas filled enclosure:allowance for non-uniformity of gas temperature,AIChE,1958,4:3-14
    [32]H.C.Hottel,Sarofim A.F.Radiative transfer,McGraw-Hill Book Company,1967
    [33]Maddock M.J.,Check furnace performance by computer,Hydrocarbon Processing,1967,6:46-161
    [34]于遵宏等,区域法在烃类蒸汽转化侧烧炉工艺计算上的应用,化工设计与开发,1980,3
    [35]Howell F R,Monte carlo application in heat transfer,Advance in Heat Transfer,1968
    [36]Steward F.R.,Cannon P.,International Journal of Heat and mass Transfer,1971,14:245
    [37]谷口博等,三次元火炉内温度分布,日本机械学会论文集,36,284号,610(昭和45年)
    [38]徐旭常,燃烧室数学模拟核辐射传热的Monte-Carlo解法,清华大学科学报告,1979
    [39]徐旭常,燃烧室中火焰三元传热过程的数学模拟,The 18th symp(Int)on Comb,1980
    [40]黄祖祺,杨光炯等,蒙特卡洛法在圆筒炉中辐射传热计算的应用,华东石油学院学报,1981,5(2):100-107
    [41]黄祖祺,圆筒炉中辐射传热的Monte-Carlo解法,华东石油学院学报,1986,10:32-35
    [42]Roesler F.C,Theory of radiative heat transfer in co-current tube furnace,Chemical Engineering Science,1967,22:1325-1336
    [43]Gosman A.P.,Pun W.M.,Runchal A.K.,Spalding D.B.,Heat and mass transfer in recirulating flows,Academic Press,1969
    [44]S.V.帕塔卡著,张政译,传热与流动的数值计算[M],北京:科学出版社,1984
    [45]E.E.卡里尔著,陈熙等译,燃烧室与工业炉的模拟[M],北京:科学出版社,1987
    [46]杨光炯,黄祖祺,钱家麟,原油加热炉管内两相传热及压力降计算,石油炼制与化工,1983,3:3-10
    [47]杨光炯,张宗贤,钱家麟,减压炉管内两相传热及压降计算,石油炼制与化工,1988,11:52-56
    [48]潘惠琴,孙杏元,于遵宏等,乙烷裂解炉的数学模拟,华东理工大学学报,1981,4:50-60
    [49]于遵宏,沈才大,潘惠琴等,在方箱炉、圆筒炉中区域法计算辐射传热的数学模型及其应用,化工学报,1980,2:37-58
    [50]申海女,何细藕,计算流体力学在裂解炉设计上的应用,乙烯工业,2004,16(4):34-37
    [51]ABB,New ethylene breakthrough technologies to be demonstrated,Synergy 2,2002:10-11
    [52]曹杰译,评估大型裂解炉设计的模拟工具,乙烯工业,2000,12(1):60-64
    [53]http://www.johnzinc.com/whats-new/html/2001/cfd-aim.htm
    [54]王福军,计算流体动力学分析—CFD软件原理与应用[M],北京:清华大学出版社,2004
    [55]韩占忠,王敬等,FLUENT流体工程仿真计算实例与应用[M],北京:北京理工大学出版社,2004
    [56]FLUENT 6.0 user's guide,Flent Inc.
    [57]王瑞金,张凯等,FLUENT技术基础与应用实例[M],北京:清华大学出版社,2007
    [58]周雪漪,计算水力学[M],北京:清华大学出版社,1995
    [59]陶文铉,数值传热学(第二版)[M],西安:西安交通大学出版社,2001
    [60]郭鸿志,传输过程数值模拟[M],北京:冶金工业出版社,1998
    [61]John D.Anderson,JR.计算流体力学入门[M],北京:清华大学出版社,2003
    [62]卢焕章等编著,石油化工基础数据手册[M],北京:中国石化出版社,1993
    [63]ECSS工程化学模拟系统技术手册[M],青岛:青岛化工学院计算机与化工研究所,1995
    [64]邹仁鋆等译,反应器分析与设计[M],北京:化学工业出版社,1985
    [65]李人宪,有限体积法基础[M],北京:国防工业出版社,2005
    [66]蓝兴英,高金森,徐春明等,乙烯裂解炉内传递及反应过程综合数值模拟(Ⅰ),石油化工学报,2003,10(5):80-85
    [67]蓝兴英,张红梅,高金森等,乙烯裂解炉内传递及反应过程综合数值模拟(Ⅱ),石油学报,2003,12(6):64-69
    [68]蓝兴英,高金森,徐春明,乙烯裂解炉内传递及反应过程综合数值模拟(Ⅲ),石油学报,2004,1:46-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700