水中硝基苯光降解规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝基苯类化合物是常用的有机化学工业原料,在染料、医药、农药、橡胶、香料等行业都要用到这类化合物,但是,若要进入水体,将成为有毒有害的污染物。硝基苯是高毒性物质,其毒性一般为其它化合物的20-30倍,且具有弱致突变性。长期接触,对人体及动物危害极大。目前,国内各大江河由于工业发展过程产生结构性污染问题,致使水环境有机物污染日益严重,并且国内外已将硝基苯类污染物列入水中优先控制污染物名单。所以本文在实验室的条件下,就硝基苯在结冰过程中在冰、水中的分配规律,以及冰中和水中硝基苯光降解规律,光降解影响因素进行了研究,并且对水中硝基苯光降解的中间产物和生物综合毒性进行了初步分析。
     本文建立了水样中硝基苯的检测方法。水样中硝基苯的检测采用液相色谱法,实验结果表明硝基苯浓度在1.0~1000μg/L时,峰面积与硝基苯浓度成很好的线性相关性,其结果令人满意。
     本文通过模拟自然水体结冰实验考察了结冰过程中硝基苯在水中与冰中的分配规律,结果表明硝基苯水溶液在结冰过程中,硝基苯在水中与冰中重新分配,绝大部分(96%~98%)硝基苯留在水中,冰中硝基苯浓度较小(2%~4%)。
     通过不同光源下硝基苯光降解实验考察了硝基苯的光降解规律以及相关影响因素的作用,实验结果表明紫外光可以有效地降解冰中和水中的硝基苯,反应速率可以按一级反应解释。在20W低压紫外汞灯(中心波长254nm)辐射下,冰中硝基苯表观反应速率常数为0.268h~(-1),降解半衰期约2.59h。水中硝基苯降解反应表观速率常数平均值为k=0.00585min~(-1),半衰期平均为118.5min。在2~3月份太阳辐射强度下,冰中硝基苯降解反应表观速率常数0.045h~(-1) ,半衰期为13.6h ,水中硝基苯反应速率常数为0.042~0.059h~(-1),江面30~40mm厚的表层水中硝基苯光降解的半衰期约为2天。紫外光在冰中和水中光强衰减符合Lambert定律,随冰层厚度的增加光解反应迅速下降,厚度大于30mm以后光解反应可以忽略。酸性条件下水中硝基苯反应速率有所提高,碱性条件下反应速率基本无变化。江水中含有的腐殖质和各种杂质对光降解冰中和水中硝基苯有促进作用。
     通过液质联机分析不同光降解阶段的硝基苯溶液,研究表明硝基苯溶液光降解过程中有新物质产生,其质核比为108.04,经分析为硝基苯酚。用DeltaTOX毒性分析仪检测不同光降解阶段的硝基苯溶液,检测指标为发光细菌光损失率,结果表明起始阶段综合毒性略有上升,而随着反应的进行,毒性又有所下降,低于原始水样。
The nitrobenzene and its ramification are commonly used as the organic chemistry raw material for the industries of dye, medicine, agricultural chemicals, rubber and spice. However, if they enter the waters, they will become the virulent harmful pollutants. Nitrobenzene is toxious, and its toxicity is generally 20-30 times higher than that of other compounds, and it is weakly mutagenic. The long-term contact with it is deleterious for the human and the animals. At the present, the industry developing process brings structural pollution to the domestic big rivers, causing the organic pollution in the water environment becomes more and more serious, and the nitrobenzene pollutants have be listed as the pollutants which we should give priority to control home and abroad. So in laboratory conditions, we do research about the distribution of nitrobenzene in ice and water at icing processes, and about photodegradation of nitrobenzene in ice and water, the factors influencing photodegradation. And the intermediate products and synthetic biological toxicity of the photodegradation of nitrobenzene in water are preliminarily studied in this paper.
     In the paper we establish the method to test nitrobenzene in the water. We test nitrobenzene in the water sample by means of liquid chromatography, and the test results show that when the nitrobenzene concentration is between 1.0 and 1000μg·L~(-1), the peak area correlates linearly with the nitrobenzene concentration well, so the result is satisfactory.
     We investigate the distribution of nitrobenzene in ice and water at icing processes through simulation of nature water’s icing experiments, the result shows that in the course of nitrobenzene aqueous solution ice accretion, nitrobenzene reapportion in water and ice. Most of the nitrobenzene(96%~98%) in water, the concentration of nitrobenzene in ice is less(2%~4%).
     With different irradiation sources, the photochemical degradation of NB was studied. And the influence of different illumination intensity, pH Value and soluble matter in river water on the photodegradation of NB was investigated. Nitrobenzene could be degraded remarkably under ultraviolet radiation, and the photodegradation of NB is first-order reaction. The rate constants(k) of the photodegradation of nitrobenzene in ice under ultraviolet radiation is 0.268h~(-1), the half-life is 2.59h. The rate constants(k) of the photodegradation of nitrobenzene in water under ultraviolet radiation is 0.00585min~(-1), the half-life is 118.5min. Exposed to intensity of solar radiation in February and march , The rate constants(k) of the photodegradation of nitrobenzene in ice is 0.045h~(-1), the half-life is 13.6h, the rate constants(k) of the photodegradation of nitrobenzene in water under ultraviolet radiation is 0.042~0.059h~(-1), the half-life of photodegradation of NB in river water which below the river surface about 30~40mm is about two days. The attenuation regularity of ultraviolet light intensity in ice or water follows an exponentially attenuation law. The rate constants(k) of the photodegradation of nitrobenzene decreases with the increase of the ice layer thickness.when layer thickness more than 30mm, it can be neglected. Under the acidic condition the reaction rate increased while unchanged under alkalinity condition. And the photodegradation rate of NB has been stimulated when there were humic substance and various impurities in river water.
     LC-MS analysis on nitrobenzene aqueous solution of different photodegradation stages showed that some new material were produced in the process, whose cytoplasma/nucleus ratio.is 108.04, was thought as nitrophenol.
     Nitrobenzene aqueous solution in different stages of photodegradation was analyzed by DeltaTOX toxic analysor. The detection index is photogenic bacteria loss ratio. The result shows that at the initial stage the comprehensive toxicity is slightly increased, whereas with the prolonging of reaction time the comprehensive toxicity decreased, lower than original sample.
引文
1邹学贤,杨叶梅,朱凤鸣.饮用水有机污染物的检测及其健康危害的评价.昆明医学院学报. 1999, 20(3):76~82
    2周文敏,傅得黔,孙宗光.水中优先控制污染物黑名单.中国环境监测. 1990, 6(4):1
    3 R. L. Calderon. The Epidemiology of Chemical Contamination of Drinking Water. Food Chem Toxicol. 2000, 38(1):13~20
    4朱惠刚.环境与健康是人类永恒的主题.环境与健康杂志. 1999, 16(1):1~4
    5吴世安,周云霞,孙振国等.第二松花江水致突变性研究.中国公共卫生学报. 1991, 13(2):127~129
    6殷浩文,赵华清.黄浦江某支流河水生物毒性研究.上海环境科学. 1997, 16(6):43~45
    7 A. Aschengrou, A. Zierler, A. Cohen. Quality of Community Drinking Water and Occurrence of Late Pregnancy Utcome. Arch Environment Health. 1993, 48:105~113
    8王志强,陈昱,林育纯.胃癌高发现场长乐县饮水类型、改水与胃癌死亡率的比较.中国公共卫生学报. 1997, 16(1):7~10
    9张尤恩,朱振岗,郭殿林等.哈尔滨市各种环境因素对恶性肿瘤的影响及其预测.中国环境科学. 1985, 6(5):38~40
    10李延红,相喜魁,唐旭等.第二松花江污染与沿江居民癌症死亡率关系的调查研究.环境与健康杂志. 1998, 15(4):176~178
    11江城梅,庄颖,赵红等.淮河水中非挥发性有机物的遗传毒性研究.癌变?畸变?突变. 2000, 12(3):163~166
    12周才扬,穆宏强.我国的水污染现状及防治对策.长江职工大学学报. 2002, 19(4):8~9
    13刘征涛,姜福欣,王婉华等.长江河口区域有机污染物的特征分析.环境科学研究. 2006, 19(2):1~5
    14姜福欣,刘征涛,冯流等.黄河河口区域有机污染物的特征分析.环境科学研究. 2006, 19(2):7~10
    15周艳丽,吴青,穆伊舟.黄河流域有毒有机物污染分析及其对策.水文. 2004, 24(6):44~46
    16张曙光,渠康,宋华力.黄河上游重点河段特征有机污染物现状调查分析.人民黄河. 2006, 28(3):49~51
    17冯玉君,刘玲花,闫桂云等.黄河重点河段水环境有毒有机物污染现状浅析.水资源保护. 2004, 2:37~39
    18文峰,范莉,尹辉等.岷江成都段有机物污染调查.调查与评价. 2005, 17(3):22~25
    19李青松.松花江有机毒物污染状况调查与防治对策研究.水资源保护. 1995, 13:13~19
    20李东,吴惠勤,黄芳等.珠江广州河段水中有机污染物的GC-MS分析.分析测试学报. 2002, 21(3):86~88
    21王彻华,彭彪.长江干流主要城市江段微量有机物污染分析.人民长江. 2001, 32(7):20~23
    22刘巍.松花江有毒有机物污染特征与行为研究.水电站设计. 2002, 18(4):46~49
    23 V. A. Sakkas, D. A. Lambropoulou, T. A. Albanis. Photochemical Degradation Study of Irgarol 1051 in Nature Water: Influence of Humic and Fulvic Substance on the Reaction. Photochemisty and Photobiology A: Chemistry. 2002, 147:135~141
    24 V. A. Sakkas, L. K. Konstantinou, T. A. Albanis. Photodegradation Study of the Antifouling Booster Biocide Dichlofluanid in Aqueous Media by Gas Chromatographic Techniques. Chromatographic A. 2001, 930:135~144
    25 V. A. Sakkas, D. A. Lambropoulou, T. A. Albanis. Study of Chlorothalonil Photodegradation in Nature Waters and in the Presence of Humic Substances. Chemosphere. 2002, 48:939~945
    26康春莉,郭平,李军等.第二松花江水中苯酚和苯胺的光降解规律.吉林大学学报(理学版). 2002, 40(4):411~413
    27 H. E. Zagarese, M. Diaz, F. Pedrozo. et al. Photodegradation of Natural Organic Matter Exposed to Fluctuating Levels of Solar Radiation.Photochemistry and Photobiology B. Biology. 2001, 61:35~45
    28 C. Silvio, F. Matthias. Electron-Rich Phenol for Probing the Photochemical Reactivity of Fresh Waters. Environ Sci Technol. 2001, 35:690~695.
    29 D. Abele-Oeschger. Dynamics of UV-driven hydrogen Peroxide Formation on an Intertidal Sandflat. Limnol.Oceanogr. 1997, 42:1406~1415
    30 S. Metsarinne, T. Tuhkanen, R. Aksela. Photodegradation of Ethylenediaminetetraacetic Acid (EDTA) and Ethylenediamine Disuccinic Acid (EDDS) within Natural UV Radiation Range. Chemosphere. 2001, 48:949~955
    31 D. J. Strome, M. C. Miller. Photolytic Changes in Dissolved Humic Substances. Int. Ver Thero. Angew. Limnol. 1978, 20:1248~1254
    32 M. Sondergaard, M. Middelboe. A Cross-system Analysis of Labile Dissolved Organic Carbon. Mar. Ecol. Prog. Ser. 1995, 118:283~294
    33 K. L. Bushaw, R. G. Zepp, M. A. Tarr. et al. Photochemical Release of Biologically Available Nitrogen from Dissolved Organic Matter. Nature. 1996, 381:404~407
    34 M. J. Lindell, H. W. Graneliet, L. J. Tranvik. Effects of Sunlight on Bacterial Growth in Lakes of Different Humic Content. Aquat Microb. Ecol. 1996, 11:135~141
    35 B. Booth. Estimating Cell Concentration and Biomass of Autotrophic Plankton Using Microscopy. In:P. Kemp,B.Sherr,E.Sherr, J. J. Cole(Eds.). Handbook of Methods in Aquatic Microbial Ecology. CRC Press, Florida. 1993
    36 R. Sommaruga. The Role of Solar Radiation in the Ecology of Alpine Lakes. Photochemistry and Photobiology B. Biology. 2001, 62:35~42
    37 K. D. Tapan, H. Shigeaki. Fate of Crude Oil by the Combination of Photooxidation and Biodegradation. Environ Sci Technol. 2000, 34:1500~1505
    38 M. Sadao, N. Lulwa, G. Philippe. Photolytic Behavior of Polycyclic Aromatic Hydrocarbons in Diesel Particulate Matter Deposited on the Ground. Environ Sci Technol. 2001, 35:3139~3143
    39陶桂和.天然水体中泥沙颗粒在有机物迁移转化过程中的作用的研究.同济大学博士学位论文. 1992. 22~25
    40暴维英,曾令庆.黄河泥沙对有毒有机物吸附特性的研究.人民黄河. 1996, 7:21~22
    41暴维英,曾令庆,张绍峰等.多泥沙水体硝基氯苯监测方法研究.水资源保护. 1996, 1:41~46
    42 X. K. Zhao, G. P. Yang. Study on the Sorption of 2-naphthol on Marine Sediments. Colloids and Surfaces A: Physicochem. Eng. Aspects. 2002, 211:259~266
    43 Y. M. Zheng, Q. B. Zhao, H. Q. Yu. Adsorption of a Cationic Dye onto AerobicGranules. Process Biochemistry. 2005, 40:3777~3782
    44 G. P. Yang, Z. B. Zhang. Adsorption of Dibenzothiophene on Marine Sediments Treated by a Sequential Procedure. Colloid and Interface Science. 1997, 192:398~407
    45黄岁梁,万兆惠.重金属污染物动态吸附试验及数学模拟.水动力学研究与进展. 1994, 4(9):437~447
    46黄岁梁,万兆惠,王兰香.天然河流重金属污染物吸附自净现象的模拟试验研究.泥沙研究. 1994, 2:35~45
    47 X. K. Zhao, G. P. Yang, X. C. Gao. Studies on the Sorption Behaviors of Nitrobenzene on Marine Sediments. Chemosphere. 2003, 52:917~925
    48 C. T. Chiou, L. J. Peters, V. H. Freed. A Physical Concept of Soil–Water Equilibria for Non-ionic Organic Compounds. Science. 1979, 206:831~832
    49 S. W. Karickho, O. S. Brown, T. H. Scott. Sorption of Hydrophobic Pollutants on Natural Sediments. Wat. Res. 1979, 13:241~248
    50 R. P. Schwarzenbach, J. C. Westall. Transport of Nonpolar Organic Compounds from Surface Water to Groundwater—Laboratory Sorption Studies. Environ. Sci. Technol. 1981, 15:1360~1367
    51 S. W. Karickho. Organic Pollutant Sorption in Aqueous Systems. Hydraul. Engineer. 1984, 110:707~735
    52 D. M. Mackay, P. V. Roberts, J. A. Cherry. Transport of Organic Contaminants in Groundwater. Environ. Sci. Technol. 1985, 19:384~392
    53薛大明,赵雅芝,杨凤林等.沉积物的逐级分离与硝基苯的吸附.环境化学. 1994, 2(13):107~112
    54任广军,翟玉春,宋恩军等.水中硝基苯在柱撑膨润土上的吸附行为.化工学报. 2004, 55(11):1833~1836
    55 G. P. Yang, Y. H. Zhao, L. L. Xiao. Adsorption of Methomyl on Marine Sediments. Colloids and Surfaces A: Physicochem. Eng. 2005, 264:179~186
    56赵岚.硝基苯污染物在河床混合过程中的迁移转化行为研究.华东师范大学硕士学位论文. 2004. 25~30
    57 J. P. Gao, J. Maguhn, P. Spitzauer. Sorption of Pesticides in the Sediment of the Teufelsweiher Pond (Southern Germany) I: Equilibrium Assessments, ect of Organic Carbon Content and pH. Wat. 1998, 32:1662~1672
    58姜梅,展惠英,袁建梅. 2,4-二氯苯酚在黄土中的吸附—解吸行为研究.安全与环境学报. 2003, 4(3):73~77
    59陶庆会,汤鸿霄.阿特拉津在天然水体沉积物中的吸附行为.环境化学. 2004, 23(2):145~151
    60 B. S. Xing, J J. Pignatello. Competitive Sorption Between 1, 3-dichl or Obenzeneor 2,4-dichlorophenol and Natural Aromatic Acids in Soil Organic Matter. Environ Sci Technol. 1998, 32:614~619
    61侯玲,赵元慧,赵晓明等.江河中有机污染物挥发速率的模拟和预测.环境化学. 1997, 16(4):333~340
    62侯玲,赵元慧,郎佩珍等.有机污染物的迁移转化及模拟研究.北师大学报自然科学版. 1999, 2:48~56
    63周洁玫,张旭,袁园.环境水面苯乙烯挥发特性的实验研究.上海环境科学. 2003, 22(3):185~188
    64沈学优,孙俊杰,马战宇等.表面活性剂对苯系物在静水面挥发的影响.环境科学. 2005, 26(1):122~126
    65沈学优,马战宇,孙俊杰等.表面活性剂对萘在静水面挥发的影响.中国环境科学. 2004, 24(2):196~200
    66郎佩珍.挥发性有机物挥发速率的影响因素.环境化学. 1988, 6(7):39~44
    67黄廷林,史红星.黄土地区石油类挥发试验与挥发动力学.西安建筑科技大学学报(自然科学版). 2003, 35(2):111~115
    68孙为军,周集体,项学敏等.苯酚在大连近海海水中的生物降解动力学.中国环境科学. 1999, 19(1):26~28
    69 T. Nina, R. D. L. Julia. Effect of Exposure History on Microbial Herbicide Degradation in an Aerobic Aquifer Affected by a Poin Source. Environment Sci Technol. 2002, 36:2205~2212
    70 K. S. Steven, S. Stephen, A. Martin. Models for the Kinetics of Biodegradation of Organic Compounds Not Supporting Growth. Appl. Environ. Microbiol. 1996, 50:323~331
    71 M. Denis, F. B. James. Substrate Interaction During Aerobic Biodegration of Creosote-related Compouds: A Factorrial Batch Ewperiment. Environ Sci Technol. 1995, 29:1944~1952
    72 S. Patrick, T. Philipp. Effect of Environmental Factors on the Degradation of 2, 6-Dichlorophenol in Soil. Environ Sci Technol. 2000, 34:771~775
    73 R. V. Subba-Rao, M. Alexander. Effect of Sorption on Mineralization of LowConcentrations of Aromatic Compounds in Lake Water Samples. Appl. Environ. Microbiol. 1982, 44:659~668
    74夏星辉,余晖,陈立.黄河水体颗粒物对几种多环芳烃生物降解过程的影响.环境科学学报. 2005, 25(9):1226~1231
    75 W. T. Jeffrey, G. Upal. Particle-Scale Understanding of the Bioavailability of PAHs in Sediment. Environ Sci Technol. 2002, 36:477~483
    76 M. Rodriguez, V. Timokhin, F. Michl, et al. The Influence of Different Irradiation Sources on the Treatment of Nitrobenzene. Catalysis Today. 2002, 76:291-300
    77童少平,褚有群,马淳安等. O3/UV降解水中的乙酸和硝基苯.中国环境科学. 2005, 25(3):366-369
    78 D. S. Bhatkhande, V. G. Pangarkar, A. A. C. M. Beenackers. Photocatalytic Degradation of Nitrobenzene Using Titanium Dioxide and Concentrated Solar Radiation: Chemical Effects and Scaleup. Wat. Res. 2003, 37:1223~1230
    79韦朝海,陈传好,王刚等. Fenton试剂催化氧化降解含硝基苯废水的特性.环境科学. 2001, 22(5):60~64
    80曲媛媛,童健,周集体等.单环硝基芳香化合物好氧生物降解及其遗传学研究进展.环境污染治理技术与设备. 2004, 5(8):14~18
    81宗红鹰,谢强.硝基苯生产废水处理技术进展.化工进展. 2003, 23(5):265~269
    82李湛江,韦朝海,任源等.硝基苯降解菌的生长特性及其降解活性.环境科学. 1999, 20(5):20~24
    83 H. Liu, S. J. Wang, N. Y. Zhou. A New Isolate of Pseudomonas Stutzeri that Degrades 2-Chloronitrobenzene. Biotechnol Let. 2005, 27(4):275~278
    84张文静,林学钰,苏小四.硝基苯在含水层中迁移转化影响因素的定量研究.吉林大学学报(地球科学版). 2007, 37(2):346~349
    85 J. Chen, B. Gu, E. J. Leboeuf, et al. Spectroscopic Characterization of Strcutureal and Functional Properties of Natural Organic Matter Fractions. Chemosphere. 2002, 48(1):59~68
    86 R. G. Zepp, P. F. Schlotzhauer, R. M. Sink. Photosensitized Transformation Sinvolving Electronic Energy Transfer Innatural Waters:Role of Humic Substances. Environ Sci Technol. 1985, 19(1):74~81
    87 D. Vialation, C. Richard. Phototransformation of Aromatic Pollutants inSolarlight: Photolysis Versus Photosensitize Dreaction Under Natural Water Conditions. Aquaticscience. 2002, 64(1):207~215
    88 W. L. Monica, K. Tantuco, S. A. Mabury. Photofate: a New Approach in Accounting for the Contribution of Indirect Photolysis of Pesticides and Pharmaceuticals in Surface Water. Environ Sci Technol. 2003, 37(5):899~907
    89 A. C. Gerecke, S. Canonica, R. M. Stephan, et al. Quantification of Dissolved Natural Organic Matter(DOM) Mediated Phototransformation of Phenylurea Herbicides in Lakes. Environ Sci Technol. 2002, 3(19):3915~3923
    90 P. L. Brezonik, J. F. Brekken. Nitrate-induced Photolysis in Natural Waters: Controlsonc on Centrations of Hydroxyl Lradical Photointermediates by Natural Scavenging Agents. Environ. Sci. Technol. 1998, 32(19):3004~3010
    91 P. L. Miller. Photochemical Transformation of Agricultural Pesticides Promoted by Natural Water Constituents in Wet Land Surface Waters. The Ohio State University. 2001:128

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700