基于新型纳米材料修饰电极的电化学传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电化学传感器具有灵敏度高、选择性好、检测成本低、分析速度快、能在复杂环境中进行连续检测等优点,在生物工程、临床医学、环境保护、电子和食品工业具有广泛的应用价值。纳米材料具有许多优点,将纳米材料用于制备传感器,可以显著增强传感器的响应性能。磁性纳米颗粒四氧化三铁因为其独特的磁效应、电子传导性、生物相容性和催化作用,在仿生催化、材料制造、生物医学等领域受到广泛关注。生物酶具有很高的催化效率和对底物选择的高度选择性,但是酶易失活,提取困难,生产工艺不够成熟,因此开发一种具有生物仿生催化作用的材料具有重要意义。基于四氧化三铁纳米颗粒具有对过氧化氢良好的催化作用,本论文拟探索研发一系列新型纳米材料修饰的电化学传感器,并用以实现对过氧化氢的检测。近年来,电化学DAN传感器吸引了广大学者的关注,它拓展了电化学和分子生物学新的研究领域,对于临床医学和基因工程具有深远意义。本论文利用DNA特殊的生化性质制备新型电化学生物传感器,实现对多巴胺抗干扰检测,为探索生物体内电子传递和代谢提供一种新的研究手段。具体内容如下:
     (1)用共沉淀法合成磁性纳米颗粒四氧化三铁Fe_3O_4-NPs,并以其为传感器件,构建过氧化氢传感器。采用物理吸附法(成膜法)在玻碳电极表面修饰一层用PDDA(聚氯化二烯丙基二甲基铵)分散的Fe_3O_4-NPs(四氧化三铁纳米颗粒)敏感薄膜,成膜后再附着一层离子交换膜Nafion(全氟化磺酸酯),用以防止敏感材料的泄露,增强电流响应。由于Fe_3O_4-NPs具有仿生催化作用,实验中所制备的电化学传感器对过氧化氢浓度在10μM~2 mM的范围内有良好的信号响应,线性相关系数0.9929。在对不同H2O2浓度分析得出的米氏方程中,线性相关系数0.9989,米氏常数为5.1 mmol/L,显示了所制备传感器对过氧化氢良好的催化性能。
     (2)构建碳纳米管/四氧化三铁磁性纳米颗粒层层自组装膜的电化学传感器,其中采用了化学吸附和静电吸附相结合的方法对电极进行修饰。实验中运用循环伏安法和计时电流法考察修饰电极电极的性能,如直接电化学行为、对底物的催化还原行为等,同时也探讨了碳纳米管在修饰电极中的作用。当过氧化氢浓度在5μM~2.5 mM范围时有很好的响应,而且由于化学吸附和静电吸附的作用力比普通物理吸附作用力强,因此,制备的电极具有更好的稳定性和重现性。
     (3)用电沉积的方法构建DNA修饰电极,该DNA修饰电极表面的负电性磷酸基团可通过静电作用吸附富集正电性的多巴胺分子,显著增强多巴胺分子的电化学氧化电流;同时该修饰电极可以有效地分离在裸电极上发生重叠的多巴胺和抗坏血酸的氧化峰,从而消除电化学氧化检测多巴胺时共存电活性组分抗坏血酸的干扰。用脉冲伏安法灵敏地、选择性地检测到了浓度低至0.05μM的多巴胺。考虑到电沉积DNA修饰电极制备的简单性和对多巴胺检测的有效性,该修饰电极可提供一个具有广泛应用前景的多巴胺分子检测平台。
Due to their high sensitivity , excellent selectivity, low cost, rapid reponse and continuous detection in perplexing system, electrochemical biosensor has comprehensive valuable applications in bioengineering, clinical medicine, environmental protection, electonic and food-stuff industry. Because of a number of advantages, nanostructured materials are fitted for the preparation of sensor, and enhance their response performance. Magnetic Fe_3O_4 nanoparticles(Fe_3O_4-NPs) possess unique magnetic action, eminent electronic conduction , excellent biocompatibility and catalytic property, they have attracted considerable attentions in many fields, including material production, mimetic catalysis, biomedicine, and so on. Nature enzymes own high catalytic efficiency and perfect selectivity for substrate, however, they are relatively difficult to be extracted and critical to the environmental condition. Furthermore, the enzymes cannot keep a long-term stability due to their inherent instability, so the assembly-line production of nature enzymes may suffer from lots of difficulties. Thereore , it may make sense for exploiting functional materials. In this study, we succeeded to fabricate an electrochemical sensor based on novel nanomaterials, and used for the detection of hydrogen peroxide. Electrochemical DNA biosensor integrates electrochemistry with molecular biology, which makes far-reaching influence for clinical medicine and genetic engineering, as a result, a great number of attentions are awared by scholars recently. According to the above discusses, an original electrochemical DNA sensor was prepared to detect dopamine without interference. At the same time, the sensor paves a new way to the study of electrone transfer and metabolism in life. The details are described as follows:
     (1) Fe_3O_4-NPs were synthesized by co-precipitation method. After preparation , the self-synthesized nanoparticles were empolyed as a part of sensor and used for constructing modified electrode. We adopted physical adsorption method to manufacture electrode. The procedures are illuminated in the following essay. First of all, Fe_3O_4-NPs were dispersed in PDDA solution, then we added several drops to the carbon electrode. After the liquid drops dried in the air, another kind of drop called Nafion was added onto the carbon electrode , successively, which could prevent from the sensitive materials letting out. Fe_3O_4-NPs possess mimetic catalysis to hydrogen peroxide. In this experiment, the electrochemical sensor represented great response behavior to hydrogen peroxide with a linear rangeof 10μM~2 mM, and the related coefficient was 0.9929. According to Michealis equation based on the analysis of different concentration of hydrogen peroxidase, the related coefficient was 0.9989 and the Michaelis constant was 5.1 mmol/L,respectively,indicting that the self-preparation sensor displayed excellent catalysis capabililties to hydrogen peroxidase.
     (2) We fabricated CNTs and Fe_3O_4-NPs mixed electrode by chemical and static adsorption method. The functionalized electrode capabilities were investigated by cyclic voltammograms(CVs) and amperometric i-t curve, such as direct CVs, electrocatalytic CVs and advantages of the carbon nanotubes. The sensor could be used for the detection of hydrogen peroxide, and the linear range was 5μM~2.5 mM . Because the force between chemical and static adsorption were greater than simple physical adsorption, so this modified electrode represented properties in stability and repeatbalility.
     (3) DNA modified electrode was constructed by electrodeposition. The carbon electrode surface was overlayed by DNA after electrodeposition. In the rear of DNA, there exited much phosphate anion with negative charge, which could arrest dopamine, for dopamine moleculars were positive. This process could evidently amplify the anodic current. More importantly, the modified electrode successfully separated the anodic peaks between dopamine and asorbic acid , compared to normal bare electrode. We used impulse voltammograms to detect dopamine selectively and sensitively. The concentration of dopamine was allowed to 0.05μM could be detected, and the low limit is 0.05μM. Considering the preparation of electrodeposition DNA modified electrode was convient and efficient detection for dopamine, it may provide a broad platform for the detection of dopamine.
引文
[1] Kim Y S, Kim H J, Kim W B, et al. Composited Hybrid Electrocatalysts of Pt-based Nanoparticles and nanowires for low temperature polymer electrolyte fuel cell. Electrochemistry Communications, 2009, 11(5): 1026-1029
    [2] Liu R L, Wu D Q, Feng X L, et al. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angewandte Chemie International Edition, 2010, 49(14): 2565-2569
    [3] Deng C Y, Chen J H, Nie L H, et al. Sensitive bifunctional aptamer-based electrochemical biosensor for small molecules and protein. Analytical Chemistry, 2009, 81(24): 9972-9978.
    [4] Zhu C W, Zhao G. Y, Revankar V, et al. Systhesis of ultra-fine SiC powders in a d.c. plasma reactor.. Journal of materials science, 1986, 28(3): 659-668
    [5] Wang C, Chen J J, Zheng M S, et al.化学电源研究展望—美国化学学会第213次会议评述. Battery Bimonthly, 2008, 38(5): 297-299
    [6]朱振锋,杨箐.药物纳米控释系统的最新研究进展.国外医学(生物医学工程分册), 1998, 21( 6) : 327
    [7] Chavany C, Le Doan T, Convreur P, et al. Poly alkylcy anoacrylate nanoparticles as polymeric carriers for antisense alogonucleotides. Pharm Res, 1992, 9(4): 441
    [8] Lobenberg R, Mass J, Kreuter J. Improved body distribution of 14C- labelled ATZ bound to nanoparticles in rates determined by radio luminography. Journal of drug targeting, 1998, 5(3): 17
    [9] Lanza G M, Abendschein D R, Hall C S, et al. In vivomolecular imaging of stretch-induced tissue factor in carotid arteries with ligand- targeted nanoparticles. Journal of the American Society of Echocardiography, 2000, 13(6): 608-614
    [10]张小明.小型无人机机翼机构形式探讨. SHJ9501,科技资料,西北工业大学, 1995, 10
    [11] Murakami M, Birukawa M. Properties of microstructure on amorphous film of rare earth. Journal of Applied Physics, 2004, 95(11): 7327
    [12] Kang K, Suzuki T, Zhang Z G, et al. Structural and magnetic studies of nanocomposite FePt-MgO films for perpendicular magnetic recording applications. Journal of Applied Physics, 2004, 95(11): 7273-7275
    [13] Wang L, Tian G F, Wang H B, et al. Collected works of the 4th national conference on magnetic film and nano-magnetism. Tianjing: China Physical Society, 2004: 194
    [14] Sriha R V, DAS A. The kinetic and thermodynamic studies of phenol-sorption onto three agro-based carbon. Desalination, 2008, 225: 220-234
    [15]张国徽.纳米技术与环境保护.环境保护与循环经济, 2008, 28(10): 10-11
    [16]单志强.纳米材料特性及其在环境保护领域的应用.环境技术, 2005, 23(2): 40-42
    [17] Cohen S. Characterization of catechol derivative removal by lignin peroxidase in aqueous mixture. Bioresour Technol, 2009, 100: 2247-2253
    [18] Nahit A, Abdurrahman T L. Kinetics of lacase-catalyzed oxidative polymerization of catechol. Journal of Molecular Catelycis Enzymatic, 2003, 22: 61-69
    [19] Gao L Z, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2: 577-583
    [20]刘忠煌.纳米四氧化三铁的制备及其对含酚废水的处理: [合肥工业大学硕士学位论文].合肥:合肥工业大学, 2010, 8-9
    [21]冯春梁,邹文祥,李丽等.氧化铁磁性纳米粒子催化降解废水中邻苯二酚的研究.辽宁师范大学学报(自然科学版), 2010, 33(2): 194--197
    [22] Hoffmann M R, Martin S T, et al. Environmental application of semiconductor photocatalysis. Chemical Reviews, 1995, 95: 69-96
    [23] Linsebigler A L, Lu G, Yates J T J. Photocatalysis on TiO2 Surface, Mechaanisms and Selected Results. Chemical Reviews, 1995, 95: 735-758
    [24] Ollis D F, Pelizetti E, Serpone N. Photocatalyzed destruction of water contaminants. Envionmental Science & Technology, 1991, 25: 1523-1526
    [25]徐险峰,唐志列,陈更生等.用纳米级二氧化钛催化降解室内污染气体的实验.广州环境科学, 2002, 17(3): 27-28
    [26] Kishen A, Shi Z, Shrestha A, et al. An investigation on the antibacterial and antibiofilm efficacy of cationic nanoparticulates for root canal disinfection. The Journal of Endodontics, 2008, 34(12): 1515-1520
    [27] Wang W, Huang H M, Li Z Y, et al. Zinc oxide nanofiber gas sensors via electrospinning. Journal of the American Ceramic Society, 2008, 9(11): 3817-3819
    [28] Shen W Z, Li Z J, Wang H, et al. Photocatalytic degradation for methylene blue using zinc oxide prepared by code position and sol-gel methods. The Journal of Hazardous Materials, 2008, 152(1): 172-175
    [29] Li X H, Shao C L,Chu X Y, et al. Photoluminescence properties of highly dispersed ZnO quantum dots in polyvinyllpyrrolidone nanotubes prepared by a single capillary electrospinning. The Journal of Chemical Physics, 2008, 129(11): 114708
    [30] Rathinamoorthy R, Senthilkumar P.纳米颗粒的制备及在纺织领域的应用.国际纺织导报, 2010, 2: 26-27
    [31] Myung H L, K J Y, Sohk W K. Synthesis of a vinyl monomer containingβ-Cyclodextrin and grafting onto cotton fiber. Journal of Applied Polymer Science, 2001(80): 438-446
    [32] Yong L, Ding S Y, Chao Z. Biocompatible Graphene Oxide-Based Glucose Biosensors. Langmuir, 2010, 26(9): 6158-6160
    [33] F.A.科顿[美]等.高等无机化学(下册). [M].北京:人民教育出版社: 1981
    [34]高娃.四氧化三铁的结构.呼和浩特市赛罕区教研室.呼和浩特:化学教学出版社, 2001, 8: 46
    [35]邱星屏.四氧化三铁磁性纳米粒子的合成及表征.厦门大学学报(自然科学版),1999, 38(25): 711-715
    [36] Konishi Y, Nomura T, Mizoe K. Low Temperation Synthesis of NiFe2O4 by a Hydrothermal Method. Hydrometallurgy, 2004, 74: 57-65
    [37] Franger S, Berthet P, Berthon J. Electrochemicl synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Solid State Electronics, 2004, 8: 218-223
    [38] Wu M Z, Xiong Y, Jia Y S, et al. The fabrication and magnetic properties of Ni fibers synthesized under external magnetic fields. Chemical Physics Letters, 2005, 401: 374-379
    [39] Balasubramaniam C, Khollam Y B, Baneejee L, et al. A non-alkoxide sol-gel method for the preparation of magnetite (Fe3O4) nanoparticles. Materials Letters, 2004, 58: 3958-3962
    [40] Wang J, Chen Q W, Zeng C, et al. Properties of polyethylene-layered silicate nanocomposites prepared by melt intercalation with a PP-g-MA compatibilizer. Advanced Materrials, 2004, 16(2): 137-139
    [41]于广文,张同来,张建国等.纳米四氧化三铁(Fe3O4)的制备和形貌.化学进展, 2007, 19(6): 884-892
    [42] Thapa D, Palkar V R, Kurup M B, et al. Preparation of magnetic iron oxide nanoparticles for hyperthermia of cancer in a FeCl2-NaNO3-NaOH aqueous system. Materials Letters, 2004, 58: 2692-2694
    [43] Qu S C, Yang H B, Ren D W, et al. Size-controlled synthesis of magnetite nanoparticles in the presence of polyelectrolytes. Colloid and Polymer Science, 1999, 215: 190-192
    [44] Karynne C S, Nelcy D S M, Edesia M B S. Mesoporous silica-magnetite nanocomposite: facile synthesis route for application in hyperthermia. Journal of Sol-Gel Science and Technology, 2010, 53(2): 418-427
    [45] Franger S, Berthet P, Berthon J. Electrochemical synthesis of Fe3O4 nanoparticles in alkaline aqueous solutions containing complexing agents. Solid State Electrochemistry,2004, 8(4): 218-223(6)
    [46] Ru S H, Wen H C, Jiang J L. Nanohybrids of magnetic iron-oxide particles in Hydrophobic organoclays for oil recovery. Applied Materials Interfaces, 2010, 2(5): 1349-1354.
    [47] Morais P C, Azevedo R B, Rabelo D, et al. Dynamic susceptibility investigation of magnetite-based biocompatible magnetic fluids. Nano Letters, 2001, 1(2): 105-108
    [48] Melni V, Laura U. Poly(amidehydroxyurethane) template magnetite nanoparticles electrosynthesis:Ⅰ.Electrochemical aspects and identification. Journal of nanoparticle research, 2010, 12(7): 250-264
    [49] Jian F, Qiao Y, Zhuang R. Direct electrochemistry of hemoglobin in TATP film: Application in biological sensor. Sensors and Actuators B: Chemical, 2007, 124(2): 413-420
    [50]刘有芹.金属模拟酶的电分析化学传感器的研究: [南开大学博士学位论文].天津:南开大学, 2004, 6-7
    [51]宋思扬,楼士林.生物技术概论(第三版).北京:科学出版社, 2007, 125-126
    [52] Hirofusa S R, Tsuiki H, Masuda E ,Koyama T K, et al. Functional metallomacrocycles and their polymers.25.Kinetics and mechanism of the biomimetic oxidation of thiol by oxygen catalyzed by homogeneous polycarboxypythalocyaninato metals. The Journal of Physical Chemistry, 1991, 95(1): 417-423
    [53] Breslow R, Czarnik A W. Cyclodextrin-based class I aldolase enzyme mimics to catalyze crossed aldol condensations. Journal of the American Chemical Society, 1998, 39(42): 7673-7676
    [54] Strikosky A G., Kasper D G, et al. Mimicking the reactions of natural enzymes:organic molecularly imprinted polymers as mimics of hydrolytic enzymes. Journal of the American Chemical of Society, 2000, 122(22): 6295-6296
    [55] Moleneld P, Engbersen J F J, Kooijman H, et al. Synthesis of glycylcalix[6]arene and its applicaility as resin for separation and preconcentration of trace metals. Journal of the American Chemical Society, 1998, 120(27): 6726-6737
    [56] Beach J V, Sher K J. Journal of the American Chemistry Society, 1994, 116(1): 379-380
    [57] Fornasier R, Scrimin P. Journal of the American Chemistry Society, 1989, 111,224
    [58]邓迎春,张志培,程庆书等.功能化Fe3O4的制备及在基因转染中的应用.生物医学工程与临床, 2009, 13(1): 61-66
    [59] Yang H H, Zhang S Q, Chen X L, et al. Magnetite-containing spherical silica nanoparticles for biocatalysis and bioseparations. Analytical Chemistry, 2004, 76(5): 1316-1321
    [60] Wei H, Wang E. Fe304 magnetic nanoparticles as peroxidase mimetics and their applications in H202 and glucose detection. Analytical Chemistry, 2008, 80(6): 2250-2254
    [61] Krizova J, Spanova A, Rittich D. Magnetic hydrophilic methacrylate-based polymer microspheres for genomic DNA isolation. Journal of Chromatography A, 2005, 1064(2): 247-253
    [62] Altintas E B, Tuezmen N, Candan N, et al. Use of magnetic poly(glycidyl methacrylate) monosize beads for the purification of lysozyme in batch system. Journal of Chromatography B, 2007, 853(1-2): 105-113
    [63] Gu H, Xu K, Xu C, et al. Biofunctional magnetic nanoparticles for protein separetion and pathogen detection. Chemical Communications, 2006, 941-949
    [64] Morais J, Azevedo R B, Silva L P, et al. Magnetic resonance investigation of magnetic-labeled baker’s yeast cells. Journal of Magnetism and Magnetic Materials, 2004, 272: 2400-2404
    [65] Schoepf U, Marecos E M, Melder R J, et al. Intracellular magnetic labeling of lymphocytes for in vivo trafficking studies. Biotechniques, 1998, 24(4): 642-651
    [66] Tang D, Yuan R, Chai Y. Ultrasensitive electrochemical immunosensor for clinical immunoassay using thionine-doped magnetic gold nanospheres as labels and horseradish peroxidase as enhancer. Analytical Chemistry, 2008, 80: 1582-1588
    [67]吴亚男.磁性纳米四氧化三铁协同化疗药物及5-溴汉防己甲素在荷瘤鼠体内逆转耐药研究: [东南大学硕士学位论文].南京:东南大学, 2009, 2-3
    [68]铃木周编.霍继文,姜远海译.生物传感器.北京:科学出版社, 1988
    [69] Peter W. Carr Fourier analysis of the transient response of potential enzyme electrodes. Analytical Chemistry, 1977, 49(6): 799-802
    [70] Martin S P, Lamb D J, Lynch J M, et al. Enzyme–based determination of cholesterol using the quarts crystal acoustic wave sensor. Analytica Chimica Acta, 2003, 487(1): 91-100
    [71]刘风华,刘锋,邓严倬.现代免疫分析技术进展.分析科学学报, 1995, 11(1): 70-80
    [72] Kricka L J. In immunoassay. Eds Academic, 1996, 135-138
    [73]汪尔康.生命分析科学.北京:科学出版社, 2006, 353-358
    [74] Janata J. An immunoelectrode. Journal of the American Chemical Society, 1975, 97(10): 2914-2916
    [75]李毓琦,陈开全,何俊等.新型免疫电极法测定乙型肝炎表面抗原.分析化学, 1993, 21(2): 129-133
    [76]彭图治,祝方猛,杨丽菊等.测定甲胎蛋白的非标记电位型免疫传感器.应用化学,1998, 15(1): 47-49
    [77]吴再生,李继山,杨明辉等.一种基于静电吸附作用的直接检测补体C3新型可再生电容型免疫传感器.高等学校化学学报, 2005, 26(3): 441-445
    [78] Clark L C, Lyons C. Electrode systems for continous monitoring in cardiovascular surgery. Annals of the New York Academy of Science, 1962, 102(1): 29-45
    [79] Updike S J, Hicks G P. The enzyme electrode. Nature, 1967102(1): 29-45
    [80] Alonso B, Armad P G, Losad J, et al. Amperometric enzyme electrodes for aerobic and anaerobic glucose monitoring prepared by glucose oxidase immobilized in mixed ferrocene-cobaltocenium dendrimers. Biosensors and Bioelectronics, 2004, 19(8): 1617-1625
    [81] Laudet E, Botting N P, Craston J A, et al. A three-enzyme microelectrode sensor for detecting purine release from central nervous system. Birosensors and Biroelectronics, 2003, 18(1): 43-52
    [82] Okuda J, Wakai J, Yuhashi N, et al. Glucose enzyme electrode using cytochrome b562 as an electron mediator. Birosensors and Biroelectronics, 18(1): 699-704
    [83] Polsdy R, Harper J C, Dirk S M, et al. Diazonium-functionalized horsedish peoxidase immobilized via addressable electrodeposition: direct electron transfer and electrochemical detection. Langmuir, 2007, 23(2): 364-366
    [84] Jia J, Wang B, Wu A, et al. A Method to construct a third-generation horseradish peroxidase biosensor: self-assembling gold nanoparticles to third-dimensional sol-gel network. Analytical Chemistry, 2002, 74(9): 2217-2223
    [85] Topoglidis E, Cass A G, Gilardi G, et al. One step fabrication of microbiosensor prepared by the composition of enzyme and platinum particles. Analytical Chemistry, 1998, 70(23): 5111-5114
    [86] Raitman O A, Katz E, Buckman A F, et al. Integration of polyaniline/poly(acrylic aci)films and redox enzymes on electrode supports: an in situ electrochemical surface plasmon resonance study of the bioelectrocatalyzed oxidation of glucose or lactate in the integrated bioelectrocatalytic systems. Journal of the American Chemical Society, 2002, 124(22): 6487-6496
    [87] Foriter G, Beliveau R, Leblond E, et al. Development of biosensor based on immobilization of enzymes in eastman AQ polymer coated with a layer of nafion. Analytical Letters, 1990, 23(9): 1607-1619
    [88]杨保初.高电压技术.重庆:重庆大学出版社, 2002
    [89] Whitenett G, Stewart G, Atheerton K, et al. Optical fiber instrumenttation for environmental monitoring applications. Journal of the Optical Society of America B:Optical Physics, 2003, 23(7):140-145
    [90] Chaubey A D, Chaubey A, Malhotra D. Mediated biosensors. Biosensors and Bioelectron, 2002, 17(18): 441-456
    [91] Dalla V R, Sebro D, Nascimentob M G, et al. Carboxymethyl cellulose and poly(vinylalcohol) used as a film support for lipases immobilization. Process Biochem, 2005, 40(33): 2677-2682
    [92]付华,王枫.基于Clark氧电极的瓦斯微生物传感器的研究.传感器与微系统,2010, 29(8): 54-59
    [93] Nowak C, Obe G, Leeuwen K, et al. A cytological test system to detect mutagen-induced DNA single-strand breaks: posttreatment of G2 phase CHO cells with neurospora endonuclease. Mutation Research Letters, 1984, 140(2-3): 111-115
    [94] Lipshutz R J, Morris D. High-density DNA arrays. Biotechniques, 1995, 19: 442
    [95] Khrapko K R, Lysov Y P, Khorlyn A A, et al. Mixed hybridization and conventional strategies for DNA sequenceing. genetic analysis. Biomolecular Engineering, 1993, 10(3-4): 84-94
    [96] Szymonifka M J, Chapman K T. New high loading paramagnetic support for solid phase organic. Tetrahedron Letters, 1995, 40(18): 3531-3534.
    [97] Matson R S, J Rampal, Pentoney S L, et al. Technology for microarray analysis of gene expression. Analytical Biochemistry, 1995, 224(1): 110-116
    [98] Zhang R Y, Pang D W, Zhang Z L, et al. Investigation of ordered ds-DNA monolayers on gold electrodes. Journal of Physical Chemistry, 2002, 106(43): 11233-11239
    [99] Sangchul R, Deokjin J, Jae H L, et al. Electrochemical DNA biosensors based on thin gold films sputtered on capacitive nanoporous niobium oxide. Biosensors and Bioelectronics, 2007, 23(6): 852-856
    [100] Ayfer Caliskan, Hakan Karadeniz, Asiye Meric, et al. Electrochemical investigation of interactions between potential DNA targeted compounds,2,4-Di-and 2,3,4-trisubstituted benzimidazo [1,2-a]pyrimidines and nucleic acid. Analytical Sciences, 2010, 26(1): 117-120
    [101] Wang J, Rivas G, Cai X, et al. Label-free bioelectronic detection of point mutation by using peptide nucleic acid probes. Electroanalysis, 2003, 15(7): 667-670
    [102] Caruso F, Rodda E, Furlong E D,et al. Electrochemical detection of sequence-specific DNA using a DNA probe labeled with aminoferrocene and chitosan modified electrode immobilized with ssDNA. Analyst, 2001, 126(1): 62-65
    [103] Park J W, Lee H Y, Kim J M, et al. Electrochemical detection of nonlabeledoligonucleotide DNA using biotin-modified DNA(ss) on a streptavidin—modified gold electrode. Journal of Bioscience and Bioengineering, 2004, 97(1):29-32
    [104] Yasushi H, Koji H D, Takuya H, et al. Amperometric drug response of a DNA membrane electrode based on the enzyme-mimic catalytic activity of a DNA-copper(Ⅱ) comples. Analytical Communications, 1997, 34: 153-154
    [105] Koji H, Keiko I, Yoshio I, et al. Sequence-specific gene detection with a gold electrode modified with DNA probes and an electrochemically active dye. Analytical Chemistry, 1994, 66(21): 3830-3833
    [106]潘勇军,谢洪泉,谭晓明等.碘量滴定法测定过氧化氢溶液浓度的改进.理化检验-化学手册, 39(7): 404-405
    [107] Madsen B C, Kromis M. Flow injection and photometric determination of hydrogen peroxide in rainwater with N-ethy-N-(sulfopropyl) aniline sodium salt. Analytical Chemistry, 56(14): 2849-2850
    [108] Kiranas E R, Tzouwara K S M, Karayannis M I. Substitution of peroxidase in trinder’s reagent with iron(Ⅱ) for the determination of hydrogen peroxide in enzyme reactions by applying flow injection. Analyst, 1993, 118(6): 727-729
    [109] Zhang G, Dasgupta P K. Hematin as a peroxidase substitute in hydrogen peroxide determinations. Analytical Chemistry, 1992, 64(5): 517-522
    [110] Xu C L, Zhang Z J. Fluorescence determination of hydrogen peroxide using hemoglobin as mimetic enzyme of peroxidase.Analytical Sciences, 2001, 17(12): 1449-1451
    [111] Stigbrand M, Ponten E, Irgum K. 1,1’-oxalyldiimidazolc as chemiluminescene reagent in the determination of low hydrogen peroxide concentrations by flow injection analysis. Analytical Chemistry, 1994, 66(10): 1766-1770
    [112] Hasebe T, Hasegawa E, Kawashima T. Flow injection determination of hydrogen peroxide by bis(2,4,6-trichlorophenyl) oxalate chemiluminescene in O/W emulsion. Analytical Sciences, 1996, 12(6): 881
    [113]金根媂,杜诗,任艳艳等.三聚氰胺修饰玻碳电极测定过氧化氢.分析化学, 2009, 37(043): 25
    [114] Gao L Z, Zhuang J, Nie L, et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2007, 2: 577-583
    [115] Li T, Dong S J, Wang E K. Label-free colorimetric detection of aqueous mercury Ion(Hg2+) using Hg2+ modulated G-Quadruplex-based DNA ezymes. Analytical Chemistry, 81(6): 2144-2149
    [116] Ijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354: 56-58
    [117] Deo R P, Wang J, Block I, et al. Determination of organophosphate pesticides at a carbon nanotube/organophosphorus hydrolase electrochemical biosensor. Analytica Chimica Acta, 2005, 530(2): 185-189
    [118] Wohlstadter J N, Wilbur J L, Sigal G B, et al. Carbon nanotube-based biosensor. Advanced Materials, 2003, 15(14): 1184-1189
    [119] Zhang M G, Gorski W. Electrochemical sensing platform based on the carbon nanotubes/redox mediators-biopolymer system. Journal of the American Chemical Society, 2005, 127(7): 2058-2059
    [120] Chen R S, Huang W H, Tong H, et al. Carbon fiber nanoelectrodes modified by single-walled carbon nanotubes. Analytical Chemistry, 2003, 75(22): 6341-6345
    [121] Yang D Q, Rochette J F , Sacher E, et al. Spectroscopic evidence forπ-πinteraction between poly(diallyl dimethyammonium) chloride and multiwalled carbon nanotubes. Journal of Physical Chemistry B, 109: 4481-4484
    [122] Zhang L H, Zhai Y M, Gao N, et al. Sensing H2O2 with layer-by-layer assembled Fe3O4-PDDA nanocomposite film. Electrochemistry Communications, 2008, 10: 1524-1526
    [123] Goulet P R. Fiber-optic Biosensor based on luminescene and immoblized enzymes: microdetermination of sorbitol, ethanol and oxaloacetate. Biochimica et Biophysica .Acta, 1990, 5(1): 317-322
    [124] Tian Y C, Wu C J, Fendler J H. Flurescene activation and surface-state reaction of size-quantized cadmium sulfide particles in Langmuir-Blodgett film. Journal of Physical Chemistry, 1994, 98(18): 4913-4918
    [125] Ruzgas T, Gaigalas A, Gorton L. Effects of adsorption,electrode material,and operation variables on the oxidation of dihydronicontinamide adenine dinuleotide at Au electrodes. Journal of Electroanalytical Chemistry, 1999, 469(2): 123-131
    [126] Serge C. Biomolecule immobilization on electrode surfaces by entrapment or attachement to electrochemically polymerized films. Biosensors and Bioelectronics, 1999, 14(5): 443-456
    [127] Arvid C, Margit L, Tor M. 3,4-dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 1957, 180: 1200
    [128] Elkhawad A O, Woodruff G N. Studies on the behavioural pharmacology of a cyclic analogue of dopamine following its injection into the brains of consious rats. British Journao of Pharmacology, 1975, 54: 107-114
    [129] Shishani E, Chai S C, Jamokha S, et al. Determination of rat dopamine in animal tissues by liquid chromatography-fluorescene and liquid chromatography/tandemmassspectrometry. Analytica Chimica Acta, 2003, 483: 137-145
    [130] Zhao H, Zhang Y, Yuan Z. Study on the electrochemical behavior of dopamine with poly(sulfosalicylic acid) modified glassy carbon electrode. Analytica Chimica Acta, 2001, 441: 117-122
    [131] Li Y, Liu M, Xiang C, et al. Electrochemical quartz crystal microbalance study on growth and property of the polymer deposit at gold electrodes during oxidation of dopamine in aqueous solutions. Thin Solid Films, 2006, 497: 270-278
    [132] Deng C, Li M, Xie Q, et al. New glucose biosensor based on a poly(o-phenylendiamine)/glucose oxidase-glutaraldehyde /prussian blue/Au electrode with QCM monitoring of various electrode-surface modifications. Analytica Chimica Acta, 2006, 557: 85-94
    [133]孙登明,张振新,马伟等.聚L-酪氨酸修饰电极的制备及对多巴胺的测定.分析实验室, 2005, 24(7): 28-31
    [134] Shah R A, Ma Y F, Rishi R P, et al. A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine. Analytical Chemistry, 2007, 79: 2583-2587

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700