微流控单分子检测免疫分析技术的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文分为三部分:Ⅰ.第一章,微流控单分子检测免疫分析条件的初步探讨。Ⅱ.第二章,微流控单分子检测免疫分析条件的优化及选择。Ⅲ.第三章,肿瘤相关抗原CA125的单分子检测的条件。
     论文第一章对微流控技术,免疫分析技术,单分子检测进行了简单的介绍,引用文献60余篇。本章重点对微流控单分子检测免疫分析的条件进行了初步探讨。研究了PDMS膜的修饰方法,盖玻片硅烷化时间,驱动电压选取,缓冲溶液的选择等条件;初步选择微流控免疫分析的条件:用新生态氧气对PDMS膜修饰2d;盖玻片硅烷化时间24h;缓冲液冲洗条件:1000V驱动电压,输出时间20min。BSA封闭条件:1000V驱动电压,输出时间10s,静止时间50s,重复这一过程80次。抗体与目标抗原的最佳孵育条件:1000V驱动电压,输出时间10s,静止时间50s,重复这一过程80次。
     论文第二章对微流控单分子检测免疫分析的条件在第一章的基础上做了进一步的研究。改变了储液池的直径及微通道的结构和尺寸,确定微通道的宽度150μm,深度~20μm,PDMS膜的厚度~5mm,储液池的直径2mm,通道末端21mm区域对应的载玻片进行硅烷化处理。在这一新制备的微流控芯片上,对缓冲液冲洗时间、BSA封闭时间、抗体与目标抗原孵育时间等条件做了进一步的研究。
     论文第三章在前面两章所找到的最佳条件的基础上,在微流控芯片上采用双抗夹心法进行免疫反应,并结合全内反射荧光显微镜单分子成像检测,探讨了检测人卵巢癌抗原CA125的相关条件。
The thesis includes three parts:Ⅰ.The preliminary study of the conditions of microfluidic immunoassay by single molecules detection.ⅡThe optimization and choice of the conditions of microfluidic immunoassay by single molecules detection.Ⅲ.Detecting conditions of Cancer antigen 125 single molecules.
     In chapter one of this dissertation,a brief review of microfluidic,immunoassay analysis and single molecules detection was made.In this part,60 references have been referred.Then the preliminary study of the conditions of microfluidic immunoassay by single molecules detection was made.Several parameters including modification of PDMS,silanization time,driving voltage,buffer system were optimized.The following conditions were suitable for microfluidic immunoassay: modified PDMS slab with nascent oxygen for 2 days;the glass coverslip was silanized with 3%GOPS for 24 h;buffer washing conditions:injection voltage,1000 V,injection time,20 min;blocking conditions:injection voltage,1000 V,injection time 10 s,quiet time 50 s,repeat this precess:80 times;incubation conditions: injection voltage,1000 V,injection time 10 s,quiet time 50 s,repeat this precess:80 times.
     In chapter two of this dissertation,we made a further investigation about the microfluidic immnunoassay conditions on the base of chapter one.The diameter of the reservoirs,the fabrication and dimension of the microchannels were changed.All channels on the~5-mm thickness PDMS slab with a length of 4 cm and a width of 2 cm were~150μm wide and~20μm deep.On this chip we investigated the washing conditions,blocking time and incubation time etc..
     In chapter three of this dissertation,we investigate the conditions of sandwich immunoassay with single molecule detection on the microfluidic chip.The following conditions were suitable for microfluidic immunoassay to detect CA 125:
引文
1.Manz,A.,N.Graber,and H.M.Widmer,Miniaturized total chemical analysis systems.A novel concept for chemical sensing.Sensors and Actuators B:Chemical,1990.1(1-6):p.244.
    2.Gonzalez-Techera,A.,et al.,Polyclonal Antibody-Based Noncompetitive Immunoassav for Small Analytes Developed with Short Peptide Loops Isolated from Phage Libraries.Anal.Chem.,2007.79(23):p.9191-9196.
    3.Nashida,N.,et al.,Electrochemical immunoassay on a microfluidic device with sequential injection and flushing functions.Biosensors and Bioelectronics,2007.22(12):p.3167.
    4.Wang,Y.C.,et al.,Enhancement of the Sensitiviy of a Capillary Electrophoresis Immunoassay for Estradiol with Laser-induced Fluorescence Based on a Fluorescein-labeled Secondary Antibody.Anal.Chem.,2001.73(22):p.5616-5619.
    5.Zhang,S.,J.Yang,and J.Lin,3,3'-diaminobenzidine(DAB)-H202-HRP voltammetric enzyme-linked immunoassay for the detection of carcionembryonic antigen.Bioelectrochemistry,2008.72(1):p,47.
    6.Gao,Y.,et al.,Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helicobacter pylon.Analytica Chimica Acta,2005.543(I-2):p.109-116.
    7.Phillips,K.S.and Q.Cheng,Microfluidic Immunoassay for Bacterial Toxins with Supported Phospholipid Bilayer Membranes on Poly(dimethylsiloxane).Anal.Chem.,2005.77(1):p.327-334.
    8.Lai,S.,et al.,Design of a Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay.Anal.Chem.,2004.76(7):p.1832-1837.
    9.Hofmann,O.,et al.,Three-Dimensional Microfluidic Confinement for Efficient Sample Delivery to Biosensor Surfaces.Application to Immunoassays on Planar Optical Waveguides.Anal.Chem.,2002.74(20):p.5243-5250.
    10.Yang,T.,et al.,Fabrication of Phospholipid Bilayer-Coated Microchannels for On-Chip Immunoassays.Anal,Chem.,2001.73(2):p.165-169.
    11.Dodge,A.,et al.,Electrokinetically Driven Microfluidic Chips with Surface-Modified Chambers for Heterogeneous Immunoassays.Anal.Chem.,2001.73(14):p.3400-3409.
    12.Jiang,X.,et al.,A Miniaturized.Parallel,Serially Diluted Immunoassay for Analyzing Multiple Antigens.J.Am.Chem.Soc.,2003.125(18):p.5294-5295.
    13.Piyasena,M.E.,et al.,Near-Simultaneous and Real-Time Detection of Multiple Analytes in Affinity Microcolumns.Anal.Chem.,2004.76(21):p.6266-6273.
    14.Linder,V.,S.K.Sia,and GM.Whitesides,Reagent-Loaded Cartridges for Valveless and Automated Fluid Delivery in Microfluidic Devices.Anal.Chem.,2005.77(1):p.64-71.
    15.Cesaro-Tadica,S.,et al.,High-sensitivity miniaturized immunoassays for tumor necrosis factor using microfluidic systems.Lab Chip,2004.4:p.563-569.
    16.Kim,K.S.and J.-K Park,Magnetic force-based multiplexed immunoassay using superparamagnetic nanoparticles in microfluidic channel.Lab Chip,2005.5:p.657-664.
    17.Liu,W.-T.,et al.,Microfluidic device as a new platform for immunofluorescent detection of viruses.Lab Chip,2005.5:p.1327-1330.
    18.Bai,Y.,et al.,Surface Modification for Enhancing Antibody.Binding on Polymer-Based Microfluidic Device for Enzyme-Linked Immunosorbent Assay.Langmuir,2006.22(22):p.9458-9467.
    19.Ma,Q.,et al.,The use of CdTe quantum dot fluorescent microspheres in fluoro-immunoassays and a microfluidic chip syvstem.Luminescence,2007.22(5):p.438-445.
    20.Hosokawa,K.,M.Omata,and M.Maeda,Immunoassay on a Power-Free Microchip with Laminar Flow-Assisted Dendritic Amplification.Anal.Chem.,2007.79(15):p.6000-6004.
    21.Gao,Y.,et al.,Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum.Analytica Chimica Acta,2008.606(1):p.98-107.
    22.Sia,S.K.,et al.,An Integrated Approach to a Portable and Low-Cost Immunoassay for Resource-Poor Settings.Angewandte Chemic International Edition,2004.43(4):p.498-502.
    23.Cho,J.H.,et al.,Plastic ELISA-on-a-Chip Based on Sequential Cross-Flow Chromatography.Anal.Chem.,2006.78(3):p.793-800.
    24.Rossier,J.S.and H.H.Girault,Enzyme linked immunosorbent assay on a microchip with electrochemical detection.Lab Chip,2001.1:p.153-157.
    25.Yakovleva,J.,et al.,Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection.Anal.Chem.,2002.74(13):p.2994-3004.
    26.Tsukagoshi,K.,N.Jinno,and R.Nakajima,Development of a Micro Total Analysis System Incorporating Chemiluminescence Detection and Application to Detection of Cancer Markers.Anal.Chem.,2005.77(6):p.1684-1688.
    27.Sato,K.,et al,,Microchip-based enzyme-linked immunosorbent assay(microELISA)system with thermal lens detection.Lab Chip,2004.4:p.570-575.
    28.Saleh,O.A.and L.L.Sohn,Direct detection of antibody-antigen binding using an on-chip artificial pore.Proceedings of the National Academy of Sciences,2003.100(3):p. 820-824.
    29.Carbonaro,A.and L.L.Sohn,A resistive-pulse sensor chip for multianalyte immunoassays.Lab Chip,2005.5:p.1155-1160.
    30.Millen,R.L.,et al.,Giant Magnetoresistive Sensors and Superparamagnetic Nanoparticles:A Chip-Scale Detection Strategy for Immunosorbent Assays.Anal.Chem.,2005.77(20):p.6581-6587.
    31.Nelson,K.E.,J.O.Foley,and P.Yager,Concentration Gradient Immunoassay.1.An Immunoassay Based on Interdiffusion and Surface Binding in a Microchannel.Anal,Chem.,2007.79(10):p.3542-3548.
    32.Soper,S.A.,et al.,Single-molecule detection of Rhodamine 6G in ethanolic solutions using continuous wave laser excitation.Anal.Chem.,1991.63(5):p,432-437.
    33.Lee,Y.-H.,et al.,Laser-Induced Fluorescence Detection of a Single Molecule in a Capillary.Anal.Chem.,1994.66(23):p.4142-4149.
    34.Fister,J.C.,et al.,Counting Single Chromophore Molecules for Ultrasensitive Analysis and Separations on Microchip Devices.Anal.Chem.,1998.70(3):p.431-437.
    35.Anazawa,T.,H.Matsunaga,and E.S.Yeung,Electrophoretic Quantitation of Nucleic Acids without Amplification by Single-Molecule hnaging.Anal.Chem.,2002.74(19):p.5033-5038.
    36.Chandler,E.L.,et al.,Membrane Surface Dynamics of DNA-Threaded Nanopores Revealed by Simultaneous Single-Molecule Optical and Ensemble Electrical Recording.Langmuir,2004.20(3):p.898-905.
    37.Nalefski,E.A.,et al.,Single-Molecule Detection of Transcription Factor Binding to DNA in Real Time:Specificity,Equilibrium,and Kinetic Parameters.Biochemistry,2006.45(46):p.13794-13806.
    38.Tani,Y.,et al.,FRET structure with non-radiative acceptor provided by dye-linker-glass surface complex and single-molecule photodynamics by TIRFM-polarized imaging.Journal of Luminescence,2008.128(5-6):p.757.
    39.Fu,G,et al.,Heterodimerization of integrin Mac-1 subunits studied by single-molecule imaging.Biochemical and Biophysical Research Communications,2008.368(4):p.882.
    40.Rotman,B.,Measurement of Activity of Single Molecules of {beta} -D-galactosidase.Proceedings of the National Academy of Sciences,1961.47(12):p.1981-1991.
    41.Kim,J.M.,et al.,Simultaneous Topographic and Fluorescence Imaging of Single DNA Molecules for DNA Analysis with a Scanning Near-Field Optical/Atomic Force Microscope.Anal.Chem.,2001.73(24):p.5984-5991.
    42.Sekatskii,S.K,G Dietler,and V.S.Letokhov,Single molecule fluorescence resonance energy transfer scanning near-field optical microscopy.Chemical Physics Letters.2008.452(1-3):p.220.
    43.Mashanov,G.I.,et al.,Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy Methods,2003.29(2):p.142.
    44.Nie,S.,D.T.Chiu,and R.N.Zare,Real-Time Detection of Single Molecules in Solution by Confocal Fluorescence Microscopy.Anal.Chem.,1995.67(17):p.2849-2857,
    45.Osborne,M.A.,et al.,Optically Biased Diffusion of Single Molecules Studied by Confocal Fluorescence Microscopy.J.Phys.Chem.B,1998.102(17):p.3160-3167.
    46.Burghardt,T.P.,K.Ajtai,and J.Borejdo,In Situ Single-Molecule Imaging with Attoliter Detection Using Objective Total Internal Reflection Confocal Microscopy.Biochemistry,2006.45(13):p.4058-4068.
    47.Fan,Z.and W.Jin,A method for visualization of biomolecules labeled by a single quantum dot in living cells by a combination of total internal reflection fluorescence microscopy and intracellular fluorescence microscopy.Talanta,2007.72(3):p.1114.
    48.Furukawa,Y.,et al.,Electron Transfer Reaction in a Single Protein Molecule Observed by Total Internal Reflection Fluorescence Microscopy J.Am.Chem.Soc.,2005.127(7):p.2098-2103,
    49.Lehr,H.P.,et al.,Real-Time Detection of Nucleic Acid Interactions by Total Internal Reflection Fluorescence.Anal.Chem.,2003.75(10):p.2414-2420.
    50.Wang,L.,et al.,Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium.Analytica Chimica Acta,2007.590(1):p.104.
    51.Constantino,C.J.L.,et al.,Single-Molecule Detection Using Surface-Enhanced Resonance Raman Scattering and Langmuir-Blodgett Monolayers.Anal.Chem.,2001.73(15):p.3674-3678.
    52.Goulet,P.J.G and R.F.Aroca,Distinguishing Individual Vibrational Fingerprints:Single-Molecule Surface-Enhanced Resonance Raman Scattering from One-to-One Binary Mixtures in Langmuir-Blodgett Monolayers.Anal.Chem.,2007.79(7):p.2728-2734.
    53.Kneipp,K.,H.Kneipp,and J.Kneipp,Surface-Enhanced Raman Scattering in Local Optical Fields of Silver and Gold Nanoaggregates-From Single-Molecule Raman Spectroscopy to Ultrasensitive Probing in Live Cells.Ace.Chem.Res.,2006.39(7):p.443-450.
    54.Tsai,C.S.,et al.,A Single Molecule View of Bistilbene Photoisomerization on a Surface Using Scanning Tunneling Microscopy J.Am.Chem.Soc.,2005.127(31):p 10788-10789.
    55.Bard,A.J.and F.R.F.Fan,Electrochemical Detection of Single Molecules.Acc.Chem.Res.,1996.29(12):p.572-578.
    56.Liu,E.-B.,Y.-M.Liu,and J.-K.Cheng,Ultrasensitive chemiluminescence detection of aM vanadium(IV)by capillary electrophoresis.Analytica Chimica Acta,2002.456(2):p.177.
    57.Zhang,Y.,G.J.Phillips,and E.S.Yeung,Quantitative Imaging of Gene Expression in Individual Bacterial Cells by Chemiluminescence.Anal.Chem.,2008.80(3):p.597-605.
    58.Berdichevsky,Y.,et al.,UV/ozone modification of poly(dimethylsiloxane)microfluidic channels.Sensors and Actuators B:Chemical,2004.97(2-3):p.402.
    59.Kang,J.,et al.,Dynamic coating for resolving rhodamine B adsorption to poly(dimethylsiloxane)/glass hybrid chip with laser-induced fluorescence detection.Talanta,2005.66(4):p.1018.
    60.Sui,G.,et al.,Solution-Phase Surface Modification in Intact Poly(dimethylsiloxane)Microfluidic Channels.Anal.Chem.,2006.78(15):p.5543-5551.
    61.Xiao,D.,T.V.Le,and M.J.Wirth,Surface Modification of the Channels of Poly(dimethylsiloxane)Microfluidic Chips with Polyacylamide for Fast Electrophoretic Separations of Proteins.Anal.Chem.,2004.76(7):p.2055-2061.
    62.Yu,L.,et al.,Poly(vinyl alcohol)Functionalized Poly(dimethylsiloxane)Solid Surface for Immunoassay.Bioconjugate Chem..2007.18(2):p.281-284.
    63.Eteshola,E.and D.Leckband,Development and characterization of an ELISA assay in PDMS microfluidic channels.Sensors and Actuators B:Chemical.2001.72(2):p.129.
    64.Liu,Y.,et al.,Dynamic Coating Using Polyelectrolyte Multilayers for Chemical Control of Electroosmotic Flow in Capillary Electrophoresis Microchips.Anal.Chem.,2000.72(24):p.5939-5944.
    65.Zhang,Z.L.,et al.,In situ bio-functionalization and cell adhesion in microfluidic devices.Microelectronic Engineering,2005.78-79:p.556.
    66.Roman,G.T.and C.T.Culbertson,Surface Engineering of Poly(dimethylsiloxane)Microfluidic Devices Using Transition Metal Sol-Gel Chemistry.Langmuir,2006.22(9):p.4445-4451.
    67.叶美英,方群.,殷学锋,聚二甲基硅氧烷基质微流控芯片通道的氧气氛改性研究.分析化学,2004.32(12):p.1585-1589.
    68.许光,单分子计数定量方法砚究.第二章,p38-40.山东大学.
    1.Wang,J.,et al.,Electrochemical Enzyme Immunoassays on Microchip Platforms.Anal.Chem.,2001.73(21):p.5323-5327.
    2.Shackman,J.G,M.S.Munson,and D.Ross,Gradient Elution Moving Boundary Electrophoresis for High-Throughput Multiplexed Microfluidic Devices.Anal.Chem.,2007.79(2):p.565-571.
    3.von Heeren,F.,et al.,Micellar Electrokinetic Chromatography Separations and Analyses of Biological Samples on a Cyclic Planar Microstructure.Anal.Chem.,1996.68(13):p.2044-2053.
    4.Koutny,L.B.,et al.,Microchip Electrophoretic Immunoassay for Serum Cortisol.Anal.Chem.,1996.68(1):p.18-22.
    5.Chiem,N.H.and D.J.Harrison,Microchip systems for immunoassay:an integrated immunoreactor with electrophoretic separation for serum theophylline determination.Clin Chem,1998.44(3):p.591-598.
    6.Roper,M,G,et al.,Microfluidic Chip for Continuous Monitoring of Hormone Secretion from Live Cells Using an Electrophoresis-Based Immunoassay.Anal.Chem.,2003.75(18):p.4711-4717.
    7.Wang,J.,A.Ibanez,and M.P.Chatrathi,On-Chip Integration of Enzyme and Immunoassays:Simultaneous Measurements of Insulin and Glucose.J.Am.Chem.Soc..2003.125(28):p.8444-8445.
    8.Herr,A.E.,et al.,On-Chip Native Gel Electrophoresis-Based Immunoassays for Tetanus Antibody and Toxin.Anal.Chem.,2005.77(2):p.585-590.
    9.Dishinger,J.F.and R.T.Kennedy,Serial Immunoassays in Parallel on a Microfluidic Chip for Monitoring Hormone Secretion from Living Cells.Anal.Chem.,2007.79(3):p.947-954.
    10.Rossier,J.S.and H.H.Girault,Enzyme linked immunosorbent assay on a microchip with electrochemical detection.Lab Chip,2001.1:p.153-157.
    11.Cesaro-Tadica,S.,et al.,High-sensitivity miniaturized immunoassays for tumor necrosis factor using microfluidic systems.Lab Chip,2004.4:p.563-569.
    12.Kim,K.S.and J.-K.Park,Magnetic force-based multiplexed immunoassay,using superparamagnetic nanoparticles in microfluidic channel.Lab Chip,2005.5:p,657-664.
    13.Sato,K.,et al.,Microchip-based enzyme-linked immunosorbent assay,(microELISA)system with thermal lens detection.Lab Chip,2004.4:p.570-575.
    14.Kiichi Sato,M.Y.H.T.M.T.H.K.T.K.,Microchip-based immunoassay system with branching multichannels for simultaneous determination of interferon.
    15.Liu,W.-T.,et al.,Microfluidic device as a new platform for immunofluorescent detection of viruses.Lab Chip,2005.5:p.1327-1330.
    16.Carbonaro,A.and L.L.Sohn,A resistive-pulse sensor chip for multianalyte immunoassays.Lab Chip,2005.5:p.1155-1160.
    17.Sia,S.K.,et al.,An Integrated Approach to a Portable and Low-Cost Immunoassay for Resource-Poor Settings.Angewandte Chemie International Edition,2004.43(4):p.498-502.
    18.Ma,Q.,et al.,The use of CdTe quantum dot fluorescent microspheres in fluoro-immunoassays and a microfluidic chip svstem.Luminescence,2007.22(5):p.438-445.
    19.Yang,T.,et al.,Fabrication of Phospholipid Bilayer-Coated Microchannels for On-Chip Immunoassays.Anal.Chem.,2001.73(2):p.165-169.
    20.Dodge,A.,et al.,Electrokinetically Driven Microfluidic Chips with Surface-Modified Chambers for Heterogeneous Immunoassays.Anal.Chem.,2001.73(14):p.3400-3409.
    21.Yakovleva,J.,et al.,Microfluidic Enzyme Immunoassay Using Silicon Microchip with Immobilized Antibodies and Chemiluminescence Detection.Anal.Chem.,2002.74(13):p.2994-3004.
    22.Hofmann,O.,et al.,Three-Dimensional Microfluidic Confinement for Efficient Sample Delivery to Biosensor Surfaces.Application to Immunoassays on Planar Optical Waveguides.Anal.Chem.,2002.74(20):p.5243-5250.
    23.Tsukagoshi,K..N.Jinno.and R.Nakajima,Development of a Micro Total Analysis System Incorporating Chemiluminescence Detection and Application to Detection of Cancer Markers.Anal.Chem..2005.77(6):p.1684-1688.
    24.Linder,V.,S.K.Sia and G.M Whitesides,Reagent-Loaded Cartridges for Valveless and Automated Fluid Delivery in Microfluidic Devices.Anal.Chem.,2005.77(1):p.64-71.
    25.Piyasena,M.E.,et al.,Near-Simultaneous and Real-Time Detection of Multiple Analytes in Affinity Microcolumns.Anal.Chem.,2004.76(21):p.6266-6273.
    26.Phillips,K.S.and Q.Cheng,Microfluidic Immunoassay for Bacterial Toxins with Supported Phospholipid Bilayer Membranes on Poly(dimethylsiloxane).Anal.Chem..2005.77(1):p.327-334.
    27.Cho,J.H.,et al.,Plastic ELISA-on-a-Chip Based on Sequential Cross-Flow Chromatography.Anal.Chem.,2006.78(3):p.793-800.
    28.Nelson,K.E.,J.O.Foley,and P.Yager,Concentration Gradient Immunoassay.1.An Immunoassay Based on Interdiffusion and Surface Binding in a Microchannel.Anal.Chem.,2007.79(10):p.3542-3548.
    29.Hosokawa,,K.,M.Omata,and M.Maeda,Immunoassay on a Power-Free Microchip with Laminar Flow-Assisted Dendritic Amplification.Anal.Chem.,2007.79(15):p.6000-6004.
    30.Lai,S.,et al.,Design of a Compact Disk-like Microfluidic Platform for Enzyme-Linked Immunosorbent Assay.Anal.Chem.,2004.76(7):p.1832-1837.
    31.Millen,R.L.,et al.,Giant Magnetoresistive Sensors and Superparamagnetic Nanoparticles:A Chip-Scale Detection Strategy for Immunosorbent Assays.Anal.Chem..2005.77(20):p.6581-6587.
    32.Jiang,X.,et al.,A Miniaturized.Parallel.Serially Diluted Immunoassay for Analyzing Multiple Antigens.J.Am.Chem.Soc.,2003.125(18):p.5294-5295.
    33.Bai,Y.,et al.,Surface Modification for Enhancing Antibody,Binding on Polymer-Based Microfluidic Device for Enzyme-Linked Immunosorbent Assay.Langmuir,2006.22(22):p.9458-9467.
    34.Saleh,O.A.and L.L.Sohn,Direct detection of antibody-antigen binding using an on-cliip artificial pore.Proceedings of the National Academy of Sciences,2003.100(3):p.820-824.
    35.Gao,Y.,et al.,Development of a novel electrokinetically driven microfluidic immunoassay for the detection of Helicobacter pylori.Analytica Chimica Acta,2005,543(1-2):p.109-116.
    36.Gao,Y.,et al.,Multiplexed high-throughput electrokinetically-controlled immunoassay for the detection of specific bacterial antibodies in human serum.Analytica Chimica Acta.2008.606(1):p.98-107.
    37.Agrawal,A.,et al.,Counting Single Native Biomolecules and Intact Viruses with Color-Coded Nanoparticles.Anal.Chem.,2006.78(4):p.1061-1070.
    38.Anazawa,T.,H.Matsunaga,and E.S.Yeung,Electrophoretic Quantitation of Nucleic Acids without Amplification by Single-Molecule Imaging.Anal.Chem.,2002.74(19):p.5033-5038.
    39.Li,H.,et al.,Molecule by Molecule Direct and Quantitative Counting of Antibody-Protein Complexes in Solution.Anal.Chem.,2004.76(15):p.4446-4451.
    40.Fang,X.and W.Tan,Imaging Single Fluorescent Molecules at the Interface of an Optical Fiber Probe by Evanescent Wave Excitation.Anal.Chem.,1999.71(15):p.3101-3105.
    41.Wang,L.,et al.,Quantification of protein based on single-molecule counting by total internal reflection fluorescence microscopy with adsorption equilibrium.Analytica Chimica Acta.2007.590(1):p.104-109.
    42.Li,L.,et al.,Quantitative Counting of Single Fluorescent Molecules by Combined Electrochemical Adsorption Accumulation and Total Internal Reflection Fluorescence Microscopy.Anal.Chem.,2008.
    43.李文鹏,单个中性粒细胞中过氧化物酶过氧化氢活性养的测定.山东大学博士学位论文,2006:p.41-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700