PI/Al_2O_3纳米杂化膜聚集态结构研究及成分分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚酰亚胺(Polyimide,简称PI)作为一种高性能工程材料,在宽广的温度范围内具有优异的物理、化学和电性能,应用领域已经相当广泛。SiO_2、Al_2O_3和TiO_2等无机纳米粒子具有非常优异的物理化学性能,将其引入到聚酰亚胺基体中,能使材料表现出优异的综合性能。目前国内外关于不同掺杂方法对PI/Al_2O_3杂化薄膜聚集态结构的影响、杂化薄膜聚集态结构与热性能之间的关系及对杂化膜准确的成分分析方法还鲜有较为系统的报道。
     本论文以均苯四甲酸二酐和4,4′-二胺基二苯醚为有机单体,在N, N-二甲基乙酰胺中的逐步缩聚反应制备聚酰胺酸,分别通过纳米粒子直接掺杂法和溶胶改性法引入无机组分,再热亚胺化成膜。以纳米粒子直接掺杂法引入无机组分,称为纳米粒子杂化薄膜,以溶胶改性法引入无机组分,称为铝溶胶杂化薄膜。采用傅立叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、原子力显微镜(AFM)、热重分析仪(TG)、X射线荧光光谱仪波长色散型(WDXRF)分别表征和分析杂化薄膜的化学结构、聚集态结构、热性能和无机组分含量。
     研究结果表明:在聚集态结构上,与纳米粒子杂化膜相比,铝溶胶杂化膜的无机粒子粒径较小且分布均匀。随Al_2O_3含量的增加,铝溶胶杂化膜中,无机相由孤立球形粒子逐渐形成网络结构,而在纳米粒子杂化膜中,无机相由较大尺寸团聚粒子趋于连续分布;从热性能上看,氧化铝的加入,改善了两种杂化薄膜的热稳定性,但铝溶胶杂化膜的热稳定性优于纳米粒子杂化膜。杜邦膜击穿后,击穿孔边缘破坏严重,有机相被破坏,同时无机相发生迁移,而在击穿孔附近被有机相残留物包裹的无机相结构变化较小。在成分分析上,与电子能谱仪(EDX)相比,应用X射线荧光光谱波长色散型(WDXRF)分析杂化膜,其结果精度更高、偏差分布更窄。用其分析杂质金属元素的含量,对分析矿化度值、改进制备工艺及原料处理工艺有较大参考价值。
As a high-performance engineering material, polyimide (PI) had excellent physical, chemical and electrical properties in a broad temperature range, and had a wide application area. SiO_2, Al_2O_3 and TiO_2 nano-particles with super good physical and chemical properties were introduced into the PI matrix, and the composite materials showed excellent combined property. Presently at home and overseas, the coherent articles on the affects about different doped methods to the aggregation structure, the relationship between the thermal performance and state gathered, and the accurate component analysis were very rare.
     In this paper, the polyamide acid (PAA) were prepared with the Pyromellitic dianhydride (PMDA), 4, 4′oxydianilline (ODA) in the solution of the N, N′-dimethylacetamide (DMAc) by the poly-condensation. The PAA were doped with the way of sol-gel and mixed with the nano-particles directly. At last the films which contained nano-particles (named as nano-particles film) and the Al sol (named as Al Sol film) individually were obtained by the imidization. The chemical structure, aggregation structure, thermal properties and inorganic component content of two films were characterized and analyzed by fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA) and X-ray fluorescence spectrometer - dispersion wavelength (WDXRF), respectively.
     The results showed that, compared with nano-particles film, the nano-particles in the Al Sol film were smaller, and were dispersed very homogeneously from the aspect on aggregation structure. Increased with the content of Al_2O_3, the inorganic phase had evolved into network structure from the isolated spherical phase in the Al Sol film, but that of nano-particles film changed into the continuous distribution from the larger particle size. The thermal stability of two films had been improved with the addition of alumina from the aspect on thermal property. The thermal stability of the Al Sol film was better than that of nano-particles film. After the breakdown of DuPont membrane, the films had been damaged seriously on the edge of role. The organic matrix was completely decomposed and the inorganic particles were removed. However, the structure of inorganic phase embedded by organic leftovers had been changed a little near the breakdown hole. From the application of component analysis, the results with the method WDXRF was better than that with the way of electronic spectroscopy (EDX). The accuracy was higher and the deviation dispersed more narrowly. The results used with the method WDXRF about the content of heavy metal, the analysis of mineralization value, the improvement of preparation technology and treatment of the raw materials had great reference value.
引文
[1] WU C S, LIU Y L, HSU K Y. Maleimide-epoxy Resins: Preparation, Thermal Properties and Flame Retardance[J]. Polymer, 2003, (44): 565-573.
    [2]陈祥宝.高性能基体树脂[M].北京:化学工业出版社, 1998: 65-87.
    [3]刘晓洪,王玲,胡银霞.钼酚醛树脂/TiO_2纳米复合材料的研究[J].工程塑料应用, 2003, 31(2): 5-7.
    [4]赫丽华,宁荣昌,孔杰.纳米粒子在聚合物增强增韧中的应用[J].工程塑料应用, 2002, 30(4): 23-24.
    [5]鲁云华,詹茂盛,李论.碳纳米管/聚酰亚胺功能复合材料的制备与性能研究[C].邹志刚,彭天右,南策文等.第六届中国功能材料及其应用学术会议,武汉, 2007: 3663-3666.
    [6] MARK J E. Ceramic-reinforced Polymers and Polymer-modified Ceramics[J]. Polym Eng Sci, 1996, 36: 2905-2920.
    [7]丁孟贤,何白天.聚酰亚胺新型材料[M].北京:科学出版社, 1998: ix-xii.
    [8]严东生.纳米材料的合成与制备[J].无机材料学报, 1995, 10(1): 1-3.
    [9]徐国财,张立德.纳米复合材料[M].北京:化学工业出版社, 2002: 195-200.
    [10]罗立强. X射线光谱分析的现状和趋势[J].光谱学与光谱分析, 2006, 1: 189-191.
    [11] HUANG T C. Thin-film Characterization by X-ray Fluorescence[J]. X-ray Spectrometry, 1991, 20: 29-33.
    [12]吴振军.磷酸钙盐/Al_2O_3及相关复合生物涂层材料的制备、表征与体外性能研究[D].长沙:湖南大学博士学位论文, 2006: 3-21.
    [13]张明艳. PI/SiO_2纳米杂化薄膜的制备及性能研究[D].哈尔滨:哈尔滨理工大学博士学位论文, 2006: 93-94.
    [14] GLOAGUEN J M, LEFEBVRE J M. Plastic Deformation Behaviour of Thermoplastic/Clay Nanocomposites[J]. Polymer, 2001, 42: 5841-5847.
    [15]杨贯羽,朱路,李延虎,等.天然沸石红外光谱X粉末衍射及扫描电镜分析[J].安阳师范学院学报, 2006: 77-78.
    [16]樊友兵,李鸿岩,周升,等.聚酰亚胺/纳米二氧化钛复合物的合成与性能研究[J].绝缘材料, 2004, (3): 22-28.
    [17] LAMER V K, DINEGAR R H. Theory Production and Mechanism ofFormation of Monodispersed Hydrosols[J]. Amer Chem Soc, 1950, 72: 4847-4854.
    [18]陈艳,王新宇,高宗明,等.聚酰亚胺/二氧化硅纳米尺度复合材料的研究[J].高分子学报, 1997, (1): 73-78.
    [19]尚修勇,朱子康,印杰,等.可溶性PI/SiO_2纳米复合材料中SiO_2微相结构研究[J].高分子材料与工程, 2001, 17(2): 68-71.
    [20] YANO K, USUKI A, OKADA A J. Synthesis and Properties of Polyimide-Clay Hybrid Film[J]. Polym. Sci, 1997, 35: 2289-2294.
    [21] LIANG Z M, YIN J, XU H J. Polyimide/Montmorillonite Nanocomposites Based on Thermally Stable, rigid-rod Aromatic Amine Modifiers[J]. Polymer, 2003, 44: 1391-1399.
    [22] MICHALE A, PHILIPE D. Polymer-layered Silicate Nanocomposites: Preparation, Properties and Use of a New Class of Material[J]. Mater Sci and Eng, 2000, (28): 61-63.
    [23] WU J T, YANG S Y, GAO S Q, et al. Preparation, Morphology and Properties of Nano-Sized Al2O3/Polyimide Hybrid Films[J]. European Polymer Journal, 2005, 41(1): 73-81.
    [24] HU A J, WU J T, WANG D S, et al. Preparation of Nano-Sized Al2O3/Polyimide Hybrid Films[J]. Aerospace Materials & Technology, 2006, 36(2): 23-26.
    [25] MORIKAWA A, IYOKU Y, KAKIMOTO M, et al. Preparation of a New Class of Polyimide-silica Hybride Films by Sol-gel Process[J]. Polymer Journal, 1992, 24(1): 107-113.
    [26] TU D M, LIU W B, KAO K C. Electric Breakdown under Quasi-uniform Field Conditions and Effect of Emission Shields in Polyethylene[J]. IEEE Trans Diel Electr Insul, 1989, 24(4): 581-585.
    [27] BREVAL E, MULVIHILL M L. Polyimide-silica Microcomposite Films[J]. Journal of Materials Science, 1992, 27: 3297-3300.
    [28] CHON X H, GONSALVES K E. Synthesis and Properties of an Aluminum Nitride/Polyimide Nanocomposite Prepared by a Nonaqueous Suspension Process[J]. Mater Res, 1997, 12: 1274-1286.
    [29] CHEN X H, GONSALVES K E, CHOW G M. Synthesis of Polymer-clay Nanocomposites from Silicate Gels[J]. Adv Mater, 1994, (6): 481-483.
    [30] TAKAHASHI N, YOON D Y, PARRISH W. Molecular Order in Condensed States of Semiflexible Poly (amic acid) and Polyimide[J]. Macro-molecules, 1984, 17: 2583-2586.
    [31] JOU J H, HUANG P T. Effect of Thermal curing on The Structures and Properties of Aromatic Polyimide Films[J]. Macromolecules, 1991, 24: 3796-3798.
    [32] OJEDA J R, MOBLEY J, MARTIN D C. Physical and Chemical Evolution of PMDA-ODA during Thermal Imidization[J]. Journal of Polymer Science Part B: Polymer Physics, 1995, 32: 559-561.
    [33]杜宏伟,孔瑛. PI/TiO_2纳米复合材料的耐溶剂和耐热性能研究[J].高分子学报, 2003, 2: 288-292.
    [34]邵怀启,钟顺和.负载型聚酰亚胺-二氧化钛-银杂化膜的制备和表征[J].膜科学与技术, 2005, 6: 40-44.
    [35]赵斯梅.范勇. PI/Al-Si氧化物纳米氧化薄膜的制备及性能表征[J].哈尔滨理工大学学报, 2006, 4: 89-98.
    [36]赵斯梅. SiO_2-Al_2O_3纳米杂化聚酰亚胺薄膜的结构与性能[J].化学推进剂与高分子材料, 2005, 4: 40-45.
    [37]雷勇,刘宇锋,江璐霞,等.聚酰亚胺/蒙脱土纳米复合薄膜的制备和性能研究[J].绝缘材料, 2001, (1): 5-8.
    [38]吴正元,张硕,董晓敏,等.高压VDMOS场板终端技术的研究[J].华中理工大学学报, 1999, 27(4): 43-46.
    [39]朱子康,尚修勇,印杰.可溶性PI/SiO_2纳米复合材料的研究[J].塑料, 2000, 29(2): 9-12.
    [40]童跃进,李小晶,陈守正,等.聚酰亚胺/无机物纳米杂化材料的研究(Ⅱ).聚酰亚胺(TDPA/ODA)-BaTiO3纳米杂化物的合成与表征[J].福建师范大学学报(自然科学版), 1999, 15(4): 45-48.
    [41]童跃进,李秀茹,陈守正,等.聚酰亚胺/无机物纳米杂化材料的研究(Ⅰ).聚酰亚胺(HQDPADMMDA)-TiO_2纳米杂化物的合成与表征[J].福建师范大学学报(自然科学版), 1999, 15(3): 42-45.
    [42]郭洪,宋磊,胡源.聚酰亚胺/锌铝双氢氧化物纳米复合材料的制备和表征[J].火灾科学, 2006, 2: 82-85.
    [43]董素芳.纳米SiO_2-Al_2O_3/聚酰亚胺杂化薄膜的制备及表征[J].化工新型材料, 2006, 6: 31-35.
    [44]禹坤,于先进.纳米SiO_2Al_2O_3/聚酰亚胺杂化薄膜的制备及表征[J].山东理工大学学报(自然科学版), 2006, 4: 74-80.
    [45]吴大青.无机掺杂改性聚酰亚胺薄膜的制备及表征[J].材料科学与工艺, 2006, 4: 436-441.
    [46]薛书凯.无机纳米聚酰亚胺复合膜的结构与性能[J].化学推进剂与高分子材料, 2004, 2(6): 37-39.
    [47]边丽娟,张灵云.氧化铝掺杂聚酰亚胺纳米复合薄膜的制备与性能研究[J].塑料工业, 2006, 9: 5-6.
    [48]殷景华,范勇,王暄,等.纳米杂化PI薄膜击穿孔区形貌及元素分布[J].材料科学与工艺, 2006, 2: 204-211.
    [49]陈培榕,李景虹,邓勃.现代仪器分析实验与技术[M].北京:清华大学出版社, 2006: 1-3.
    [50]韩小元,卓尚军,王佩玲. X射线荧光光谱法表征薄膜进展[J].光谱学与光谱分析, 2006, (1): 159-165.
    [51] SHANG X Y, ZHU Z K, YIN J, et al. Compatibility of Soluble Polyimide/Silica Hybrids Induced by a Coupling Agent[J]. Chem Mater. 2002, 14: 71-77.
    [52] ZHANG Y H, DANG Z M, et al. Dielectric Properties of Polyimide-Mica Hybrid Films. Macromol Rapid Commun[J], 2005, 26: 1473-1477.
    [53] TYAN H L, WU C Y, WEI K H. Effect of Montmorillonite on Thermal and Moisture Absorption Properties of Polyimied of Different Chemical Structures[J]. Appl Polym Sci, 2001, 81: 1742-1747.
    [54] TYAN H L, WEI K H, HSIEH T E. Effect of Reactivity of Organics-m Odified Montmorillote/PI Nanocomposites[J]. Chem Mater, 2001, 13: 222-226.
    [55] GILMAN J W, JACKSON C L, MORGAN A B, et al. Flammability Properties of Polymer Layered-silicate Nanocomposites Polypropylene and Polystyrene Nanocomposites[J]. Chem Mater, 2000, 12: 1866-1873.
    [56] TYAN H L, WEI K H, HSIEH T E. Mechanical Properties of Clay-polyimide (BTDA-ODA) Nanocomposites via ODA-modified Organoclay[J]. Polym Sci, Part B: Polym Phys, 2000, 38: 2873-2878.
    [57] SUN T, GARCES J M. High Performance Polyproplylene-Clay Nano-composites by In-situ Polymerization With Metallocene/Clay Catalysts[J]. Adv. Mater, 2002, 14(2): 128-130.
    [58]梁基照.无机纳米粒子在聚合物熔体中分散机理及表征[J].现代塑料加工应用, 2005, 17(2): 57-60.
    [59]井新利,郑茂盛,金志浩,等. PMMA-SiO_2原位复合材料的制备及性能研究[J].高分子材料科学与工程, 1998, 14(4): 62-64.
    [60]乔放,李强,漆宗能,等.聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究[J].高分子通报, 1997, 5(3): 135-143.
    [61]陈雷,杨文军,黄程,等.以高分子材料为分散介质制备纳米氧化铁颗粒[J].高分子材料科学与工程, 1998, 14(4): 53-55.
    [62]高歌,钦曙辉,马荣堂. ABS/透闪石复合材料的研究[J].高分子材料科学与工程, 1998, 14(4): 114-116.
    [63]张辉,刘志英,高绪珊.含陶瓷粒子PET纤维的纺丝流变性研究[J].合成纤维, 1998, 27(1): 3-6.
    [64] BREKNER M J, FEGER C. Curing Studies of a Polyimide Precursor. II. Polyamic Acid[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25: 2479-2491.
    [65] BREKNER M J, FEGER C. Curing Studies of a Polyimide Precursor[J]. Journal of Polymer Science Part A: Polymer Chemistry, 1987, 25: 2005-2020.
    [66] OJEDA J R, MOBLEY J, MARTIN D C. Physical and Chemical Evolution of PMDA-ODA during Thermal Imidization[J]. Journal of Polymer Science Part B: Polymer Physics, 1995, 32: 559-569.
    [67] DABRAL M, XIA X Y, GERBERICH W W, et al. Near-surface Structure Formation in Chemically Imidized Polyimide Films[J]. Journal of Polymer Science Part B: Polymer Physics. 2001, 39: 1824-1838.
    [68] LIANG T, MAKITA Y, KIMURA S. Effect of Film Thickness on The Electrical Properties of Polyimide Thin Films[J]. Polymer, 2001, 42: 4867-4872.
    [69]翟燕,顾宜. PMDA-ODA型聚酰亚胺制备工艺与聚集态结构的研究进展[J].高分子材料科学与工程, 2007, 23(2): 28-32.
    [70] BETZ. Loss of a GP130 Cardiac Muscle Cell Survival Pathway Is a Critical Event in the Onset of Heart[J] .Cell, 1999, 97: 189-195.
    [71]张积之.固体电解质的击穿[M].第2版.杭州:杭州大学出版社, 1994: 39-42.
    [72]孙目珍.电介质物理基础[M].广州:华南理工大学出版社, 2002: 175-186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700