中国海域中二甲基亚砜的生物地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以中国近海有代表性的-东海、黄海、渤海和南海为研究目标,对这些海域中二甲基亚砜(DMSO)的溶解态(DMSOd)和颗粒态(DMSOp)的浓度分布特征、时空变化等进行了研究。并探讨了DMSO与环境因子(温度、盐度、营养盐等)和主要生态因子叶绿素a,以及相关的硫化物二甲基硫(DMS)、β-二甲基巯基丙酸内盐(DMSP)之间的相关关系。以初步了解DMSO浓度分布的影响因素以及在DMS生物地球化学循环中所起的作用。本论文的主要研究成果如下:
     1.在实验室中改进了海水中DMSO的分析方法,其检测限为0.75 nmol L-1 (40 mL样品),精密度为4%~5%,与国外同类方法相当。
     2.分别于2009年12~1月对东海、2010年6月和2010年11月对长江口附近海域海水中DMSOd和DMSOp进行了研究,结果表明:冬季东海表层海水中DMSOd和DMSOp的平均浓度分别为61.90±26.37和21.31±4.51 nmol L-1,夏季和秋季长江口附近海域的浓度分别为30.18±9.08、16.61±6.24和21.39±11.58、5.18±1.36 nmol L-1。由此可见,长江口DMSOd和DMSOp呈现出明显的季节变化,夏季高于秋季。在三个季节中表层海水DMSOd的浓度均表现出近岸高,远海低的趋势。在长江口附近呈现出明显的高浓度区,表明在长江口附近DMSOd的平面分布主要受到了长江冲淡水的影响。DMSOp的分布则呈现出不同的规律性,在冬季,东海东北部呈现出由近岸向远海递增的趋势,可能是由于耐高盐、暖水性的甲藻等盛产DMSO藻种的增多引起的,也有可能是由于温度的升高所引起的,主要归咎于DMSO的抗氧化作用。夏季DMSOp的分布主要是由盐度和浮游植物的种类共同决定的。秋季DMSOp的分布趋势与Chl-a的分布趋势类似,这主要可能是由于秋季硅藻占有绝对优势所引起的。由于东海复杂的水文条件,以及藻种组成的差异,从而造成在冬季和夏季DMSOp与Chl-a之间没有任何相关性,只有在秋季两者之间具有显著的相关性。
     DMSOp/Chl-a的比值夏季明显高于秋季,是秋季的3.41倍,这主要是由于藻种的不同所引起的。DMSOp/Chl-a的比值在冬季东海东北部与温度有着较好的线性相关性,而在夏季和秋季的相关性不明显。在夏季DMSOp/Chl-a与溶解无机氮(DIN)有着弱的负相关性,与盐度有着较好的正相关性,表明DMSO在细胞内可能会起着渗透压调节的功能。夏季DMSOd和NO3-、溶解有机碳(DOC)以及细菌数量均具有很好的相关性,而与DMSOp没有任何相关性,该结果表明DMSOd主要来源于DMS的光化学氧化和细菌氧化,而非DMSOp。另一方面,也可能说明了DMSOd与NO3-和DOC之间有着相似的来源,即长江冲淡水人为输入造成的。在秋季DMSOd与这些参数之间均没有任何线性相关性,表明DMSOd的来源相对比较复杂,不是以其中任何一个来源为主。但在两个季节中DMSOd与盐度之间均表现出较好的负相关性。
     冬季东海垂直分布中,DMSOd的最大值一般出现在上层水体2~25 m处,主要可能是由于UV光的照射对DMS的光化学氧化和浮游植物细胞内DMSO的释放具有促进作用,因此DMSOd的浓度会随着深度的增加而减少。DMSOp的最大值一般出现在底层,主要可能是在冬季,水体的垂直混合比较剧烈,导致沉积物的再悬浮从而造成了DMSOp值的增大。周日变化中DMSOp的最大值出现在中午附近,可能是由于其抗氧化作用导致的。DMSOd的最大值出现在夜间0:00,在白天的浓度相对较低,该结果表明白天DMSOd也存在消耗过程。
     3.于2010年4-5月(春季)和2010年9月(秋季)对中国黄海、渤海表层海水中DMSOd和DMSOp的时空分布及变化特征进行了研究。DMSOd和DMSOp在春季和秋季的浓度分别为16.99±1.96、17.67±2.24和10.45±1.77、17.20±3.54 nmol L-1。由此可见黄海、渤海水体中春季和秋季表层水体中DMSOd呈现明显的季节变化,春季高于秋季,而DMSOp的浓度季节变化不明显,春季略高于秋季。
     两个季节中,DMSOp与Chl-a都存在很好的线性相关性,表明浮游植物生物量在控制黄海、渤海DMSO的生产分布中起着重要的作用。并且春季和秋季所有站位的DMSOp与Chl-a之间仍然具有很好的相关性。DMSOd与Chl-a在春季有着较好的相关性,而在秋季不存在相关性,表明在两个季节DMSOd的主要来源有所区别。并且在春季,DMSOd与DMSOp之间存在很好的相关性,进一步说明了在春季细胞内DMSO的释放是DMSOd主要的源;在秋季,DMSOd与细菌数量有着较好的相关性,表明在秋季,DMS的细菌氧化可能是DMSOd主要的源。DMSOd在秋季与盐度之间存在显著的负相关性,与夏季和秋季东海航次的结论一致。DMSOd与温度(T)、盐度(S)、NO3-、DOC等其它环境因子之间的相关性均不显著,这可能与DMSOd复杂的来源及消耗有关。
     黄海、渤海春季和秋季DMSOp/Chl-a的比值变化不明显,春季略高于秋季,可能是由于在两个季节中都是硅藻占有绝对优势的原因。DMSOp/Chl-a的比值除了在秋季与盐度有着很好的正相关性外,与东海夏季的结论一致。未发现其与其它的环境因子如T、S、营养盐之间有任何的相关性。表明DMSOp/Chl-a的比值是受众多因素作用的结果。
     4.于2010年2月期间对冬季南海进行的大面调查,获得了南海DMSO的平面分布、影响因素等方面初步的认识。DMSOd和DMSOp在表层海水中的平均浓度分别为49.97±16.47和11.08±2.20 nmol L-1。南海表层海水中DMSOd的平面分布呈现出近岸高,远海低的趋势,在珠江入海口附近出现异常高值,表明了入海径流对DMSOd分布的影响。DMSOp的平面分布也呈现出近岸高远海低的趋势,除了受浮游植物种类的影响外,浮游植物数量也起着一定的作用,有的近岸站位沉积物的再悬浮也可能是造成DMSOp较高的原因。
     表层海水中DMSOp/Chl-a的比值变化范围较大,可能是由藻的种类以及粒径决定的。DMSOp/Chl-a最大值出现在甲藻和金藻(球石藻)占比例较大的海域,表明甲藻和金藻(球石藻)可能是盛产DMSO的主要藻种。DMSOp和Chl-a之间不存在任何线性相关性,进一步说明了不同的藻种产生DMSO的能力差别较大。表层海水中DMSOd和DMS之间不存在任何相关性,表明DMS可能不是DMSOd主要的源。在远离近岸的站位,DMSOd和DMSOp之间具有显著的相关性,表明DMSOp可能是DMSOd重要的来源。
The spatial and temporal variations of distributions of DMSO were studied in the East China Sea (ECS), the Yellow Sea (YS), the Bohai Sea and the South China Sea (SCS). In order to obtain a preliminary feature of DMSO biogeochemistry, the possible relationships between the dimethyl sulfur compounds and the environmental factors such as temperature and salinity were also investigated. The main research results were summarized as follows:
     (1) A method of chemoreduction-purge-and-trap followed by gas chromatographic analysis for the determination of trace dimethylsulfoxide (DMSO) in seawater has been developed. It has a DMSO detection limit of 2.7 pmol of sulfur, corresponding to a concentration of 0.75 nM for a 40 mL sample, and has a precision of 4%~5%.
     (2) Distributions of DMSO were determined in the ECS from December 2009 to January 2010 and in the waters adjacent to the Yangtze Estuary in June and November 2010. The results showed that the average concentrations of DMSOd and DMSOp in the surface waters of the ECS wer 61.90±26.37 and 21.31±4.51 nmol L-1,respectively. In the waters off the Yangtze River Estuary, those were 30.18±9.08 and 16.61±6.24 nmol L-1 in summer, 21.39±11.58 and 5.18±1.36 nmol L-1 in autumn, respectively. In general, average concentrations of DMSOd and DMSOp in the ECS showed obvious seasonal variations, with higher values in summer and lower values in autumn. In the three studied seasons, the horizontal distributions of DMSOd in the ECS were obviously influenced by the Yangtze River, where high concentrations of DMSOd appeared around the mouth of it, and it decreased from inshore to offshore stations. The distribution patterns of DMSOp were compared in different seasons. In winter, it increased offshore in the northeast ECS due to the increasing temperature coupled to the change of phytoplankton species, but decreased offshore in the southwest ECS due to the poor DMSO-producer phytoplankton species in the open sea. In summer, DMSOp distributions did not show the same pattern as Chl-a which could be attributed to the seasonal change in phytoplankton community structure coupled with salinity. In autumn, DMSOp and Chl-a displayed a similar distribution pattern ascribed to the dominance of diatoms. No correlation between DMSOp and Chl-a was observed in winter and summer, while significant relationship between them was found in autumn.
     The ratios of DMSOp to Chl-a exhibited obvious seasonal variations, with an average value 3.41 times higher in summer than in autumn. DMSOp/Chl-a ratio correlated significantly with temperature in the northeast ECS in winter, while no relationship between them was found in summer and autumn. In summer, DMSOp/Chl-a was correlated with dissolved inorganic nitrogen and salinity, indicating that DMSO might act as an osmolyte in algal cells, while no relationship was found in autumn. DMSOd was correlated significantly with NO3-, dissolved organic carbon (DOC) and bacterial abundance in summer, but no correlation with DMSOp, indicating that DMSOd was mainly from photo-oxidation and bacterial oxidation of DMS rather than from DMSOp. DMSOd may have the same source as those materials such as the inputs of continent-derived organic matter via Yangtze River. In autumn, no relationship between DMSOd and those parameters was found, suggesting that the source of DMSOd was complicated and none of those parameters was a major source for DMSOd. Both in summer and autumn DMSOd and salinity had a significant negative relationship.
     The vertical profiles of DMSOd and DMSOp did not exhibit the same pattern. The maximum DMSOd was present at the depth of 2~25 m. Photochemical and biological oxidation of DMS together with the exudation of DMSO by phytoplankton might contribute to the high levels of DMSO observed near the surface. In contrast, the maximum DMSOp appeared at the bottom, probably due to the release of resuspending sediments. DMSOp and DMSOd exhibited a strong diurnal variation in the surface seawater. The highest DMSOp concentration appeared around noontime and then decreased sharply, presumably due to its antioxidant function. The DMSOd concentrations were much lower in the daytime than in the night, suggesting that there were significant loss processes of DMSOd such as microbial consumption and photo-oxidation during the daytime.
     (3) Distributions of DMSOd and DMSOp were determined during two cruises in the YS and the Bohai Sea in April and September 2010. The average concentrations of DMSOd in the surface waters in the two cruises were 16.99±1.96 and 10.45±1.77 nmol L-1; those of DMSOp were 17.67±2.24 and 17.20±3.54 nmol L-1, respectively. The average concentrations of DMSOd showed obvious seasonal variations, with the higher value in spring than in autumn, while seasonal variations of DMSOp were not distinct. The distribution patterns of DMSOp were controlled mainly by the phytoplankton biomass, with high DMSOp concentrations appearing in the waters containing high Chl-a levels.
     DMSOp and Chl-a had significant relationships in these two seasons, and even had significant relationships at all stations in two seasons, indicating that phytoplankton biomass might play a major role in controlling the distributions of DMSOp in the study area. In spring DMSOd was correlated with Chl-a, and had a significant relationship with DMSOp, suggesting that DMSOp might be the major source for the DMSOd in the surface water. In autumn, DMSOd was not correlated with Chl-a and DMSOp, but correlated with bacterial abundance, indicating that the bacterial oxidation of DMS might be responsible for the source of DMSOd. The relationship between DMSOd and other environmental factors such as temperature, NO3- and DOC concentrations was not found, which might be due to the complex production and consumption of DMSO.
     The seasonal variation of DMSOp/Chl-a was not distinct, because the phytoplankton were dominated by diatoms in these two seasons. In autumn, DMSOp/Chl-a and salinity had a significant relationship, similar to the results in the ECS in summer. No relationship between DMSOp/Chl-a and other environmental factors such as temperature, salinity and nutrients was found, suggesting that the biosynthesis of DMSO was influenced by many complex factors.
     (4) Distributions of DMSOd and DMSOp were investigated in the surface water of the SCS in January 2010. The average concentrations of DMSOd and DMSOp were 49.97±16.47 and 11.08±2.20 nmol L-1, respectively. The distribution of DMSOd was obviously influenced by Pearl River effluent, with high concentrations around the mouth of the river. The concentrations of DMSOp also decreased in the offshore direction due to the variation of phytoplankton biomass and the phytoplankton species composition. At the inshore stations the resuspending sediments might also account for the high DMSOp concentrations.
     The DMSOp/Chl-a ratios varied in a large range due to the different phytoplankton species. The three highest DMSOp/Chl-a values appeared at the offshore stations where Dinophyta and Chrysophyta (coccolithophores) were the dominant algal species indicating that these algal may the main DMSO producers. In the surface water DMSOd and DMS did not correlate significantly, indicating that in winter DMS was not the major source for DMSOd. At the offshore stations (depth> 50 m), DMSOd correlated significantly with DMSOp, suggesting that DMSOp might be the major source of DMSOd. No relationship between DMSOp and Chl-a, DMSOp and DMSPp was found in the SCS.
引文
[1] Andreae M O. Ocean-atmosphere interactions in the global biogeochemical sulfur cycle. Marine Chemistry, 1990, 30: 1-29
    [2] Charlson R J, Lovelock J E, Andreae M O, et al. Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature, 1987, 326: 655-661
    [3] SimóR. Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends in Ecology & Evolution, 2001, 16(6): 287-294
    [4] Andreae M O, Jones C D, Cox P M. Strong present-day aerosol cooling implies a hot future. Nature, 2005, 435: 1187-1190
    [5] Malin G, Turner S M, Liss P S. Sulfur: the plankton/climate connection. Journal of phycology, 1992, 28:590-597
    [6] Andreae M O, Crutzen P J. Atmospheric Aerosols: Biogeochemical Sources and Role in Atmospheric Chemistry . Science, 1997, 276: 1052-1058
    [7] Li M, Yuan D X, Li Q L, Jin X Y. Sequential analysis of dimethyl sulfur compounds in seawater. Chinese Chemical Letters, 2007, 18: 99-102
    [8]李猛,袁东星,汤坤贤.围隔藻类水华演替过程中二甲基硫化物的含量动态.生态学报,2007,27 (12):5308-5317.
    [9]孙倩,金晓英,李猛,袁东星.厦门西海域典型站位二甲基硫化物的周日变化初探. 2006, 25(3): 351-355
    [10] Yang G-P, Jing W-W, Li L, et al. Distribution of dimethylsulfide and dimethylsulfoniopropionate in the surface microlayer and subsurface water of the Yellow Sea, China during spring. Journal of Marine Systems, 2006, 62: 22-34
    [11] Yang G-P, Zhang H-H, Su L-P, Zhou L-M. Biogenic emission of dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution to sulfate in aerosol during summer. Atmospheric Environment, 2009, 1-8
    [12]Yang G-P, Watanabe S, Tsunogai S. Distribution and cycling of dimethylsulfide in surface microlayer and subsurface seawater. Mar. Chem., 2001, 76: 137-153
    [13]Yang G-P. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer and subsurface water of the western North Atlantic during spring. Mar. Chem., 2005, 96(3-4): 315-329
    [14] Yang G-P, Tsunogai S. Biogeochemistry of dimethylsulfide (DMS) and dimethylsulfoniopropionate (DMSP) in the surface microlayer of the western North Pacific. Deep-Sea Res. I, 2005, 52(4): 553-567
    [15] Yang G-P, Tsunogai S, Watanabe S. Biogenic sulfur distribution and cycling in the surface microlayer and subsurface water of Funka Bay and its adjacent area. Contin. Shelf Res., 2005, 25: 557-570
    [16] Hu M, Tang X-Y, Li J-L, et al. Distributions of dimethylsulfide in the Bohai Sea and Yellow Sea of China. Journal of Environmental Sciences, 2003, 15: 762-767
    [17] Jiao N-Z, Liu C-Z, Hong H-S, et al. Dynamics of dimethylsulfide and dimethylsulfoniopropionate produced by phytoplankton in the Chinese Seas: Distribution patterns and affecting factors. Acta Botanica Sinica, 2003, 45(7): 774-786
    [18] Ma Q-J, Hu M, Zhu T, et al. Seawater, atmospheric dimethylsulfide and aerosol ions in the Pearl River Estuary and the adjacent northern South China Sea. Journal of Sea Research, 2005, 53: 131-145
    [19]景伟文.海水微表层和次表层中DMS和DMSP的生物地球化学研究:[博士学位论文].青岛:中国海洋大学,2006
    [20]张洪海.中国东海、黄海中DMS和DMSP的生物地球化学研究:[博士学位论文].青岛:中国海洋大学,2009
    [21]厉丞烜.海水中DMS和DMSP的生物生产与消费的研究:[博士学位论文].青岛:中国海洋大学,2010
    [22] Kiene R P, Bates T S. Biological removal of dimethylsulphide from seawater. Nature, 1990, 345: 702-705
    [23] SimóR, Pedrós-AlióC. Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature, 1999, 402(25): 396-399
    [24] SimóR. From cells to globe: approaching the dynamics of DMS(P) in the ocean at multiple scales. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61: 673-684
    [25] Kieber D J, Jiao J, Kiene R P, Bates T S. Impact of dimethylsulfide photochemistry on methyl sulfur cycling in the Equatorial Pacific Ocean. Journal of Geophysical Research, 1996, 101: 3715-3722
    [26] Hatton A D. Influence of photochemistry on the cycling of dimethylsulphide in the northern North Sea. Deep-Sea ResearchⅡ, 2002, 49: 3039-3052
    [27] del Valle D A, Kieber D J, Toole D A, Bisgrove J, Kiene R P. Dissolved DMSO production via biological and photochemical oxidation of dissolved DMS in the Ross Sea, Antarctica. Deep-Sea ResearchⅠ, 2009, 56: 166-177
    [28] del Valle D A, Kieber D J, Bisgrove J, Kiene R P. Light-stimulated production of dissolved DMSO by a particle-associated process in the Ross Sea, Antarctica. Limnology and Oceanography, 2007, 52:2456-2466
    [29] Del Valle D A, Kieber D J, Kiene R P. Depth-dependent fate of biologically-consumed dimethylsulfide in the Sargasso Sea. Marine Chemistry, 2007, 103: 197-208
    [30] Hass P. The liberation of methylsulfide in seaweed. Biochem., 1935, 29: 1297-1299
    [31] Challenger F, Simpson M I. Studies on biological methylation. PartⅫ. A precursor of the dimethyl sulphide evolved by Polysiphonia fastigiata. Dimethyl-2–carboxyethyl -sulphoniumhydroxide and its salts. J. Chem. Soc., 1948, 3: 1591-1597
    [32] Keller M D, Bellows W K, Guillard R R L. Dimethylsulfide production in marine phytoplankton. In: Biogenic sulfur in the environment. (Eds.): Saltzman E S, Cooper W J. American Chemical Society, 1989, Washington DC, pp: 167-182
    [33] Kirst G O. Osmotic asjustment in phytoplankton and macroalage: The use of dimethylsulfoniopropionate (DMSP). In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York: Plenum Press, 1966. 121-130
    [34] Stefels J. Physiological aspects of the production and conversion of DMSP in marine algae and higher plants. Sea Res., 2000, 43: 183-197
    [35] Belviso S, Kim S K. Production of DMSP by a microbial food web. Limnol. Oceanog., 1990, 35: 1810-1821
    [36] Gage D A. A new route for synthesis of dimethylphoniopropionate in marine algae. Nature, 1997, 387: 891-894
    [37] Kiene R P, Linn L J, Bruton J A. New and important roles for DMSP in marine microbial communities. J. Sea Res., 2000, 43: 209-224
    [38] Variamuthy A, Andreae M A, Iverson R L. Biosynthesis of dimethylsulfide and dimethyl -propionthetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanog., 1985, 30: 59-70
    [39] Gr?ne T, Kirst G O. The effect of nitrogen deficiency, methionine and inhibitors of methionine metabolism on the DMSP contents of Tetraselmis subcordiformis (Stein). Marine Biology, 1992, 112:497-503
    [40] Nishigchi M K, Somero G N. Temperature and concentration dependence of compatibility of the organic osmolyteβ-dimethylsulphoniopropionate. Cryobiology, 1992, 29: 1-7
    [41] Karsten U, Kuck K, Vogt C. Dimethylsulphoniopropionate (DMSP) production in phototrophic organisms and its physiological function as a cryoprotectant. In: Kiene R P, Visscher P T, Keller M D, et al., eds. Biological and environmental Chemistry of DMSP and related sulfonium Compounds. New York: Plenum Press, 1996, 109-119
    [42] Karsten U, Wiencke C, Kirst G O. The effect of light intensity and day-length on theβ-dimethylphoniopropionate (DMSP) content of marine macroalgae from Antarctica. Plant, Cell & Environment, 1990, 13: 989-993
    [43] Van Rijssel M, Gieskes W W C. Temperature, light and the dimethylsulfoniopropionate (DMSP) content of Emiliania huxleyi (Prymnesiophyceae). Journal of Sea Research, 2002, 48: 17-27
    [44]王艳.温度和盐度对球形棕囊藻细胞DMSP产量的影响.水生生物学报,2003,27(4):367-370
    [45] Variamuthy A, Andreae M A, Iverson R L. Biosynthesis of dimethylsulfide and dimethyl-propionthetin by Hymenomonas carterae in relation to sulfur source and salinity variations. Limnol. Oceanog., 1985, 30: 59-70
    [46] Karsten U, Wiencke C, Kirst G O. Growth pattern andβ-dimethylphoniopropionate (DMSP) content of green macroalgae at different irradiance. Mar. Biol. 1991, 108: 151-155
    [47] Karsten U, Wiencke C, Kirst G O.β-dimethylphoniopropionate (DMSP) accumulation in green macroalgae from polar to temperate regions: interactive effects of light versus salinity and light versus temperature. Polar Biol. 1992, 12: 603-607
    [48] Keller M D, Kiene R P, Matrai P A. Production of glycine betaine and dimethylphoniopropionate in marine phytoplankton.Ⅱ. N-limited chemostat cultures. Marine Biology, 1999, 135: 249-257
    [49]焦念志,柳承璋,陈念红.东海二甲基硫丙酸的分布及其制约因素的初步研究.海洋与湖沼, 1999, 30: 525-531
    [50] Martin J H, Coale K H, Johnson K S, et al. Testing the iron hypothesis in ecosystems of the equatorial Pacific Ocean. Nature, 1994, 371: 123-129
    [51] Turner S M, Nightingale P D, Spokes L J, et al. Increased dimethylsulfide concentrations in sea water from in situ iron enrichment. Nature, 1996, 383: 513-517
    [52] Belviso S, Kim S K. Production of DMSP by a microbial food web. Limnol. Oceanog., 1990, 35: 1810-1821
    [53] Christaki U, Belviso S, Dolan J R, et al. Assessment of the role of copepods and ciliates in the release to solution of particulate DMSP. Marine Ecology Progress Series, 1996, 141: 119-127
    [54] Accher S D, Simith G C, Nightingale P D, et al. Dynamics of particulate dimethylsulfoniopropionate during a Lagrangian experiment in the Northern North Sea. Deep-Sea Research II, 2002, 49:2979-2999
    [55] Wilson W H, Tarran G A, Schroeder D, et al. Isolation of viruses responsible for the demise of an Emiliania huxleyi bloom in the English Channel. Journal of the Marine Biological Association of the United Kingdom, 2002, 82:369-377
    [56] Stefels J, Dijkhuizen L, Gieskes W W C. DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance. Mar. Ecol. Pro. Ser., 1995, 123: 235-243
    [57] Malin G, Turner S M, Liss P S. Sulfur: The plankton/climate connection. J. Phycol., 1992, 28: 590-597
    [58] Malin G, Liss P S, Turner S M. Dimethylsulfide: production and atmospheric consequences. In: The bbaptophyte Algae. (Eds.): Green J C, Leadbeater B S C. Clarendon Press, 1994, Oxford, pp: 303-320
    [59] Wolfe G V, Steinke M S. Contrasting production of dimethyl sulfide (DMS) by two clones of Emiliania hyxleyi during growth, and when grazed by Oxyrrhis marina. Limnology and Oceanography, 1996, 41:1151-1160
    [60] Archer S D, Gilbert F J, Allen J I, et al. Modelling of the seasonal patterns of dimethylsulphide production and fate during 1989 at a site in the North Sea. Canadian Journal of Fisheries and Aquatic Sciences, 2004, 61:765-787
    [61] Wilson W H, Tarran G, Zubkov M V. Virus dynamics in a coccolithophore-dominated bloom in the North Sea. Deep-Sea Research II, 2002, 49: 2951-2963
    [62] Archer S D, Widdicombe C E, Tarran G A, et al. Production and turnover of particulate dimethylsulphoniopropionate during a coccolithophore bloom in the northern North Sea. Aquatic Microbial Ecology, 2001, 24: 225-241
    [63] Evans C, Kadner S V, Darroch L J, et al. The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study. Limnology and Oceanography, 2007, 53(3): 1036-1045
    [64] Zeyer J. Oxidation of dimethylsulfide (DMS) to dimethyl sulfoxide (DMSO) by phototophic purple bacteria. Applied and Environmental Microbiology, 1987, 53: 2026-2032
    [65] Wolfe G V, Bates T S. Biological consumption of dimethylsulfide in the marine euphotic Zone: result of radioisotope experiments. In: Biogeochem. Global Change Sel. Pap. Int. Symp. Environ. Biogeochem., 10th, 1991. (Eds.): Oremland R S. Chapman and Hall, 1993, New York, pp: 691-703
    [66] Brimblecombe P, Shooter D. Photo-oxidation of dimethylsulfide in aqueous solution. Mar. Chem., 1986, 19: 343-353
    [67] Toole D A, Slezak D, Kiene R P, Kieber D J, Sigel D A. Effects of solar radiation on dimethylsulfide cycling in the western Atlantic Ocean . Deep-Sea ResearchⅠ, 2006, 53: 136-153
    [68] Deal C D, Kieber D J, Toole D A, Stamnes K, Jiang S, Uzuka N. Dimethylsulfide photolysis rates and apparent quantum yields in Bering Sea seawater. Continental Shelf Research, 2005, 25: 1825-1835
    [69] Jerlov N G. Marine Optics. Elsevier Scientific Publishing, New York, 1976, 231p
    [70] Brugger A, Slezak D, Obernosterer I, Herndl G. Photolysis of dimethylsulfide in the northern Adriatic Sea: Dependence on substrate concentration, irradiance and DOC concentration. Marine Chemistry, 1998, 59: 321-331
    [71] Toole D A, Kieber D J, Kiene R P, White E M, Bisgrove J, Del Valle D A, Slezak D. High dimethylsulfide photolysis rates in nitrate-rich Antarctic waters. Geophysical Research Letters, 2004, 31
    [72]杨桂朋,张正斌.二甲基硫光化学氧化反应的动力学研究.青岛海洋大学学报,1997,27:225-232
    [73] Shooter D, Brimblecombe P. Dimethylsulphide oxidation in the ocean. Deep-Sea Research, 1989, 36: 577-585
    [74] Kirchman D L, Keil G K, Simon M. Biomass and production of heterotrophicbacterioplankton in the oceanic subarctic Pacific. Deep-Sea Res.Ⅰ, 1993, 40: 967-988
    [75] Shiah F K, Liu K K, Kao S. The coupling of bacterial production and hydrography in the Southern East China Sea: spatial patterns in spring and fall. Contin. Shelf Res., 2000, 20: 459-477
    [76]白洁,张昊飞,李岿然,孙靖.海洋异养浮游细菌生物量及生产力的制约因素.中国海洋大学学报,2004,34(4):594-601
    [77]赵三军,肖天,岳海东.秋季东、黄海异养细菌的分布特点.海洋与湖沼,2003,34(3):295-305
    [78] Leyard K M, Dacey J W H. Microbial cycling of DMSP and DMS in coastal and oligotrophic seawater. Limnol. Oceanog., 1996, 41(1): 33-40
    [79] Kiene R P, Service S K. Decomposition of dissolved DMSP and DMS in estuarine water: dependence on temperate and substrate concentration. Mar. Ecol. Pro. Ser., 1991, 76: 1-11
    [80] Leyard K M, Dacey J W H. Dimethylsulfide production from dimethylsulfoniopropionate by a marine bacterium. Mar. Ecol. Pro. Ser., 1994, 110: 95-103
    [81] Wakeham S G, Howes B L, Dacey J W H. Dimethyl sulfide in a stratified coastal salt pond. Nature, 1984, 310: 770-772
    [82] Andreae M O, Ferek R J, Bermond F, Byrd K P, Engstorm R T, Hardin S, Honmere P D, LeMarrec F, Raemdonck H, Chatfield R B. Dimethylsulfide in the marine atmosphere. J. Geophy. Res., 1985, 90: 12891-12900
    [83] Kiene R P. Dimethyl sulfide metabolism in salt marsh sediments. FEMS Microbiol. Ecol., 1988, 53: 71-78
    [84] Taylor B F. Bacterial transformation of organic sulfur compounds in marine environments. In: Biogeochem. Global Change Sel. Pap. Int. Symp. Environ. Biogeochem, 10th, 1991. (Eds.): Oremland R S. Chapman and Hall, 1993, New York, pp: 745-781
    [85] Wakeham S G, Howes B L, Dacey J W H, Schwarzenbach R P, Zeyer J. Biogeochemistry of dimethylsulfide in a seasonally stratified coastal salt pond. Geochim. Cosmochim. Acta., 1987, 51: 1675-1684
    [86] Suylen G M H, Stefess GC. and Kuenen J.G. Mechanism of Oxidation of Dimethyl Disulphide by Thiobacillus thioparus strain E6 . Archives. Microbiology, 1986, 146: 192-198
    [87] Hatton A D,Malin G & McEwan A G. Identification of a periplasmic dimethyl- sulphoxide reductase in Hyphomicrobium EG grown under chemolithoheterotrophic conditions with dimethylsulphoxide as carbon source. Archives of Microbiology, 1994, 162: 148-150
    [88] Hanlon S P, Holt R A,Moore G R, McEwan, A G. Isolation and characterizeation of a strain of Rhodobacter sulfideophilus: a bacterium which grows autotrophically with dimethylsulfide as electron donor. Microbiology, 1993, 140: 1953-1958
    [89] Visscher P T, Van Gemerden H V. Photo-autotrophic growth of Thiocapsa roseopersicina on dimethylsulphide. Fems Microbiology Letters, 1991, 81: 247-250
    [90] Zeyer J, Eicher P, Wakeham S G, Schwarzenbach R P. Oxidation of DMS to DMSO by phototrophic purple bacterica. Applied and Environmental Microbiology, 1987, 53: 2026-2032
    [91] Zhang L. Oxidation of dimethylsulfide by Peseudomonas acidovorans DMR-11 isolated from peat biofilter. Biotechnology Letters, 1991, 13: 223-228
    [92] de Mora S J, Lee P A, Grout A, Schall C & Heumann K. Aspects of the biogeochemistry of sulfur in glacial melt water ponds on the McMurdo Ice Shelf, Antarctica. Antarctic. Science, 1996, 8:15-22
    [93]Andreae M O. Dimethylsulfoxide in marine and freshwaters. Limnology and Oceanography, 1980, 25: 1054-1063
    [94] SimóR, Hatton A D, Malin G, Liss P S. Particulate dimethyl sulphoxide in sea water: production by microplankton. Marine Ecology Progress Series, 1998, 167: 291-295
    [95] Lee P A, de Mora S J, Gosselin M, Levasseur M, Bouillon R C, Nozais C, Michel C. Particulate dimethylsulfoxide in Arctic sea-ice algal communities: the cryoprotectant hypothesis revisited. J Phycology, 2001, 37: 488-499
    [96] Bouillon R C, Lee P A, de Mora S J, Levasseur M, Lovejoy C. Vernal distribution of dimethylsulphide, dimethylsolphoniopropionate, and dimethylsulpoxide in the North Water in 1998. Deep-Sea ResearchⅡ, 2002, 49: 5171-5189
    [97] Lee P A, de Mora S J. Intracellular dimethylsulfoxide (DMSO) in unicellular marine algae: speculations on its origin and possible biological role . J Phycology, 1999, 35: 8-18
    [98] Sunda W, Kieber D J, Kiene R P, Huntsman S. An antioxidant function for DMSP and DMS in marine algae. Nature, 2002, 418: 317-320
    [99] Riseman S F, DiTullio G R. Particulate dimethylsulfoniopropionate and dimethylsulfoxide in relation to iron availability and algal community structure in the Peru Upwelling System. Can. J. Fish. Aquat. Sci, 2004, 61: 721-735
    [100] SimóR, Vila-Costa M. Ubiquity of algal dimethylsulfoxide in the surface ocean: Geographic and temporal distribution patterns. Marine Chemistry, 2006, 100: 136-146
    [101] Hatton A D, Wilson S T. Particulate dimethylsulphoxide and dimethylsulphoniopropionate in phytoplankton cultures and Scottish coastal waters. Aquatic Science, 2007, 69: 330-340
    [102] SimóR, Hatton A D, Malin G, Liss P S. Particulate dimethyl sulphoxide in sea water: production by microplankton. Marine Ecology Progress Series, 1998, 167: 291-295
    [103] Liu J, Zieger A J, Lakey J R T, Woods E, Critser J K. Water and DMSO permeability at 22°C, 5°C, and -3°C for human pancreatic islet cells. Transplant. Proc. 1997, 29:1987
    [104]Barnes I, Becker K H, Patrosescu I. FTIR products study of the OH initiated oxidation of dimethyl sulphide: observation of carbonyl sulphide and dimethyl sulphoxide. Atmospheric Environment, 1996, 30: 1805-1814
    [105] Sciare J, Baboukas E, Hancy R, Mihalopoulos N, Nguyen B C. Seasonal variation ofdimethylsulfoxide in rainwater at Amsterdam Island in the southern Indian Ocean: Implications on the biogenic sulfur cycle. Atmospheric Chemistry, 1998, 30: 229-240
    [106] Hatton A D. DMSP removal and DMSO production in sedimenting particulate matter in the northern North Sea. Deep-Sea ResearchⅡ, 2002, 49: 3053-3065
    [107]张正斌,杨桂朋,张建武.水溶液中二甲基硫的化学氧化过程研究.青岛海洋大学学报, 1997, 27: 405-412
    [108] Hatton A D, Malin G, Turner S M, Liss P S. DMSO: a significant compound in the biogeochemical cycle of DMS. In Biological and Environmental Chemistry of DMSP and Related Sulphonium Compounds, R.P. Kiene et al.(eds). New York: Plenum Press, 1996. 405-413
    [109] Hatton A D, Malin G, Liss P S. Distribution of biogenic sulfur compounds during and just after the southwest monsoon in the Arabian Sea. Deep-Sea ResearchⅡ, 1999, 46: 617-632
    [110] Bates T S, Kiene R P, Wolfe G V, Matrai P A, Chavez F P, Buck K R, Blomquist B W, Cuhel R L. The cycling of sulfur in surface seawater of the northeast Pcific. Journal of Geophysical Research, 1994, 99: 7835-7843
    [111] Gibson J A E, Garric R C, Burton H R, Mctaggart A R. Dimethylsulfide and the alga Phaeocystis pouchetii in Antarctic coastal waters. Marine Biology, 1990, 104:339-346
    [112]SimóR, Grimalt J O, Albaigés J. Dissolved dimethylsulphide, dimethylsulphoniopropionate and dimethylsulphoxide in western Mediterranean waters. Deep-Sea ResearchⅡ, 1997, 44: 929-950
    [113] Besiktepe S, Tang KW, Vila M, SimóR. Dimethylated sulfur compounds in seawater, seston and mesozooplankton in the seas around Turkey. Deep-Sea ResearchⅠ, 2004, 51: 1179-1197
    [114] Andreae M O. Determination of trace quantities of dimethylsulfoxide in aqueous solution. Analytical Chemistry, 1980, 52: 150-153
    [115] Hatton A D, Turner S M, Malin G, Liss P S. Dimethylsulphoxide and other biogenic sulphur compounds in the Galapagos Plume. Deep-Sea ResearchⅡ, 1998, 45: 1043-1053
    [116] Lee P A, Haase R, de Mora S J, Chanut J P, Gosselin M. Dimethylsulfoxide (DMSO) and related sulfur compounds in the Saguenay Fjord, Québec. Can. J. Fish. Aquat. Sci, 1999, 56: 1631-1638
    [117] SimóR, Pedrós-AlióC, Malin G, Grimalt J O. Biological turnover of DMS, DMSP and DMSO in contrasting open-sea waters. Marine Ecology Progress Series, 2000, 203: 1-11
    [118] Hatton A D, Malin G., Liss P S. Distribution of biogenic sulfur compounds during and just after the southwest monsoon in the Arabian Sea. Deep-Sea ResearchⅡ, 1999, 46: 617-632
    [119] Lee PA, de Mora SJ. DMSP, DMS and DMSO concentrations and temporal trends in marine waters at Leigh, New Zealand. In: Kiene RP, Visscher PT, Keller MD, Kirst GO editors. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds.New York: Plenum Press, 1996. 391-404
    [120] Geigert J, de Witt S K, Neidleman S L, Lee G, Dalietros D J, Moreland M. DMSO is a substrate for chloroperoxidase. Biochem. Biophys. Res. Commun. 1983, 116: 82-85
    [121] de Mora SJ, Lee PA, Grout A, Schall C, Heumann K. Aspects of the biogeochemistry of sulfur in glacial melt water ponds on the McMurdo Ice Shelf, Antarctica. Antarctic Science 1996, 8(1):15-22
    [122] Park S J, Yoon T I, Bae J H, Seo H J, Park H J. Biological treatment of wastewater containing dimethyl sulphoxide from the semi-conductor industry. Process Biochemistry, 2001, 36: 579-589
    [123] Wood P M. The redox potential for dimethyl sulphoxide reduction to dimethyl sulphide. Febs Letters, 1981, 124: 11-14
    [124] Murakami-Nitta T, Kurimura H, Kirimura K, Kino K, Usami S. Continuous Degradation of Dimethyl Sulfoxide to Sulfate Ion by Hyphomicrobium denitrificans WU-K217. Bioscience Bioengineering, 2002, 94: 52-56
    [125] Bardouki H, Rosa B D, Mihalopoulos N, Palm W U. Zetzsch C. Kinetics and mechanism of the oxidation of dimethylsulfoxide (DMSO) and methanesulfinate (MSI-) by OH radicals in aqueous medium. Atmospheric Environment, 2002, 36: 4627-4634
    [126] Zinder, S.H, Brock T D. Dimethyl sulfoxide reducetion by microorganisms. Jouunal of General Microbiology, 1978, 105: 335-342
    [127] McEwan A G, Wetzstein H G, Ferguson S J, Jackson J B. Periplasmic location of the terminal reductase in trimethylamine-N-oxide and dimethylsulphoxide respiration in the photosynthetic bacterium Rhodopseudomonas capsulate. Biochimica Biophysica Acta, 1985, 806: 410-417.
    [128] Bilous P T, Weiner J H. Dimethylsulfoxide reductase activity by anaerobically grown E coli HB 101. Journal of Bacteriology, 1985,162: 1151-1155
    [129] Spiese C E, Kieber D J, Nomura C T. Reduction of dimethylsulfoxide to dimethylsulfide by marine phytoplankton [J]. Limnology and Oceanography, 2009, 54: 560-570
    [130] Kiene R P, Hines M E. Microbial formation of dimethylsulfide in anoxic Sphagnum peat. Applied. Environmental. Microbiology, 1995, 61: 2720-2726
    [131] Lápez N I, Duarte C M. Dimethyl sulfoxide (DMSO) reduction potential in Mediterranean seagrass (Posidonia oceanica) sediments. Journal of Sea Research, 2004, 51: 11-20
    [132] Alef K, Kleiner D. Rapid and sensitive determination of microbial activity in soils and in soils aggregates by dimethylsulfoxide reduction. Biol. Fertil. Soils, 1989, 8: 349-355
    [133] Griebler C. Dimethylsulfoxide (DMSO) reduction: a new approach to determine microbial activity in freshwater sediments. J. Microbial. Methods, 1997, 29: 31-40
    [134] Hatton A D, Darroch L, Malin G.. The role of dimethylsulphoxide in the marine biogeochemical cycle of dimethylsulphide [J]. Oceanography Marine Biology, 2004, 42:29-56
    [135] Lee P A, de Mora S J, Levasseur M. A review of dimethylsulfoxide in aquatic environments. Atmosphere Ocean, 1999, 37: 439-56
    [136] Pearson T W, Dawson H J, Lackey H B. Natural occurring leveal of dimethyl sulfoxide in selected fruits, vegetables, grains, and beverages. J. Agric. Food Chem. 1981, 29: 1089-1091
    [137] Ogata M, Fujii T. ind. Health 1979, 17: 73-78
    [138] SimóR. Trace chromatographic analysis of dimethyl sulfoxide and related methylated sulfur compounds in natural waters (Review). J. Chromatography, 1998, 807 A:151-164
    [139] SimóR, Malin G, Liss PS. Refinement of the borohydride reduction method for trace analysis of dissolved and particulate dimethyl sulfoxide in marine water samples. Analytical Chemistry, 1998, 70:4864-4867
    [140] Annes B J. The determination of dimethyl sulphoxide in aqueous solution. Journal of the Science of Food and Agriculture, 1981, 32:353-358
    [141] Kiene R P, Gernard G. Determination of trace levels of dimethylsulfoxide (DMSO) in sea water and rainwater . Marine Chemistry, 1994, 47: 1-12
    [142] Hatton A D, Malin G, McEwan A G, Liss P S. Determination of DMSO in aqueous solution by an enzyme-linked method. Analytical Chemistry, 1994, 66: 4093-4096
    [143] Ridgeway R G, Thornton D C, Bandy A R. Determination of trace aqueous dimethylsulfoxide concentrations by isotope dilution gas chromatogramphy/mass spectometry: Application to rain and seawater. Journal of Atmospheric Chemistry, 1992, 14: 53-60
    [144] Yang G-P, Zhang Z-B, Liu L-S, et al. Study on the analysis and distribution of dimethylsulfide in the East China Sea. Chinese Journal of Oceanology and Limnology, 1996, 14(2): 141-147
    [145] Nguyen B C, Gaudry A, Bonsang B, et al. Reevaluation of the role of dimethyl sulfide in the sulphur budget. Nature, 1978, 275: 637-639
    [146] Rasmussen R A. Emission of biogenic hydrogen sulfide. Tellus, 1974, 1(2): 254-260
    [147] Andreae M O, Barnard W R. Determination of trace quantities of dimethylsulfide in aqueous solutions. Analytical Chemistry, 1983, 55: 608-612
    [148]杨桂朋,康志强,景伟文,等.海水中痕量DMS和DMSP的分析方法研究.海洋与湖沼, 2007, 38: 322-328
    [149]胡敏.二甲基硫测定方法及其海气通量的研究: [博士学位论文].北京:北京大学, 1993
    [150] Steudler P A, Kijowski W. Determination of reduced sulfur gases in air by solid adsorbent preconcentration and gas chromatography. Analytical Chemistry, 1984, 56: 1432-1433
    [151]陈猛,李和阳,袁东星,等.微波辅助-顶空固相微萃取-气相色谱-脉冲火焰光度法测定海水中二甲基硫和藻体中二甲基巯基丙酸.环境化学, 2002, 21(2): 183-188
    [152]金晓英,袁东星,陈猛.海水样品中二甲基硫的气相色谱测定.厦门大学学报(自然科学版), 2004, 43(2): 221-224
    [153] Dacey J W H, Blough N V. Hydroxide decomposition of DMSP to form DMS. Geophysical Research Letters, 1987, 14: 1246-1249
    [154]孙湘平.气候异常引起的黄海冷水团及渤海冰情变异的若干例证.海洋湖沼通报,1980, 1: 1-8
    [155]冯士筰,李凤岐,李少菁.海洋科学导论.北京:高等教育出版社, 1999
    [156] Su JL. Circulation dynamics of the China seas north of 18°N. The Sea, 1998, 11:483-505
    [157] Yuan D, Zhu J, Li C, Hu D. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. Journal of Marine Systems, 2008, 70: 134-149
    [158] Liu S X. Shen Y, Wang S H. Preliminary analysis of distribution and variation of perennial monthly mean water masses in the Bohai Sea, the Huanghai Sea and the East China Sea. Acta Oceanologica Sinica, 1992, 11(4): 483-498
    [159] Tian R C, Hu F X, Martin J M. Summer nutrient fronts in the Changjiang (Yangtze River) estuary. Estuarine, Coastal and Shelf Science, 1993, 37: 27-41
    [160] Zhang J. Nitrous oxide in the sea. Marine Chemistry, 1976, 4: 189-202
    [161] Kiene RP, Kieber DJ, Slezak D, Toole DA, del Valle DA, Bisgreve J, et al. Distribution and cycling of dimethylsulfide, dimethylsulfoniopropionate and dimethylsulfoxide during spring and early summer in the Southern Ocean south of New Zealand. Aquatic Sciences, 2007, 69: 305-319
    [162] SimóR, Grimalt JO, Pedrós-AlióC, Albaigés J. Occurrence and transformation of dissolved dimethyl sulfur species in stratified seawater (western Mediterranean Sea). Marine Ecology Progress Series, 1995, 127:291-299
    [163] Chen C T A. Distributions of nutrients in the East China Sea and the South China Sea connection. Journal of Oceanography, 2008, 64: 737-751
    [164]宋书群.黄、东海浮游植物功能群研究: [博士学位论文].青岛:中国科学院海洋研究所, 2010
    [165] Hu M, Liu L-L, Ma Q-J, et al. Spatial-temporal distribution of dimethylsulfide in the subtropical Pearl River Estuary and adjacent waters. Continental Shelf Research, 2005, 25: 1996-2007
    [166] Iverson R L, Nearhoof F L, Andreae M O. Production of dimethylsulfonium propionate and dimethylsulfide by phytoplankton in estuarine and coastal waters. Limnology and Oceanography, 1989, 34(1):53-67
    [167] Stefels J, Van L M. Effects of iron and light stress on the biochemical compound of Anarctica Phaeocystis sp.(Prymnesiophyceae). I. Intracellular DMSP concentrations. Phycol., 1998, 34: 186-195
    [168]杨桂朋,戚佳琳.影响海水中二甲基硫分布的生物因素.海洋科学, 2000, 24(3):37-40
    [169] Wilson W H, Turner S, Mann N H. Population dynamics of phytoplankton and viruses in a phosphate limited mesocosm and their effect on DMSP and DMSP reduction. Estuarine Coastal and Shelf Science, 1998, 46: 49-59
    [170] Hecky R E, Kilham P. Nutrient limitation of phytoplankton in freshwater and marine environment: a review of recent evidence on the effects of enrichmet. Limnol. Oceanog., 1988, 33(4): 796-822
    [171] Kilham P, Hecky R E. Comparative ecology of marine and freshwater phytoplankton. Limn. Ocean., 1988, 33(4): 776-795
    [172] Fisher T R, Peele E R, Ammerman J W. Nutrient limitation in Chesapeak Bay. Mar. Ecol. Prog. Ser., 1992, 82: 51-63
    [173]王保栋,战闰,臧家业.黄海、东海浮游植物生长的营养盐限制性因素初探.海洋学报,2003,25(增刊2):90-195
    [174] Bouillon R C, Miller W L. Determination of apparent quantum yield spectra of DMS photodegradation in an in situ iron-induced Northeast Pacific Ocean bloom. Geophysical Research Letters 2004, 31: L06310
    [175] Watanabe S, Yamamoto H, Tsunogai S. Dimethyl sulfide widely varying in surface water of the eastern North Pcific. Marine Chemistry, 1995, 51: 253-259
    [176] Yang G-P, Zhang J-W, Li L, Qi J-L. Dimethylsulfide in the surface water of the East China Sea. Continental Shelf Research 2000; 20:69-82
    [177] Yang G-P, Liu X-T, Li L, Zhang Z-B. Biogeochemistry of dimethylsulfide in the South China Sea. Mar. Res., 1999, 57: 189-211
    [178] Toole D A, Kieber D J, Kiene R P, Sigel D A, Nelson N B. Photolysis and the dimethylsulfide (DMS) summer paradox in the Sargasso Sea. Limnology and Oceanography, 2003, 48(3): 1088-1100
    [179] Cerqueira M A, Pio C A. Production and release of dimethylsulfide from an estuary in Portugal. Atmospheric Environment, 1999, 33: 3355-3366
    [180]金晓英.海洋中痕量二甲基有机硫化物的分析方法及其应用研究: [博士学位论文].厦门:厦门大学, 2005
    [181]孙萍,李瑞香,李艳,著名元,徐宗军. 2005年夏末渤海网采浮游植物群落结构.海洋科学进展, 2008, 26(3):3 54-363
    [182]孙军,刘东艳. 2000年秋季渤海的网采浮游植物群落.海洋学报, 2005, 27(3): 124-132
    [183]胡好国,万振文,袁立业.南黄海浮游植物季节性变化的数值模拟与影响因子分析.海洋学报, 2004, 26(6): 74-87
    [184]高生泉,林以安,金明明,高大伟.春、秋季东、黄海营养盐的分布变化特征及营养结构.东海海洋, 2004, 22(4): 38-49
    [185]王勇,焦念志.北黄海浮游植物营养盐限制的初步研究.海洋与湖沼, 1999, 30(50): 512-518
    [186]蒲新明,吴玉霖.浮游植物的营养盐限制研究进展.海洋科学, 2000, 24(2): 27-30
    [187] Falkowski P G. Rationalizing elemental ratios in unicellular algae. Journal of Phycology, 2000, 36: 3-6
    [188]俞建銮,李瑞香.渤海、黄海浮游植物生态的研究.黄渤海海洋, 1993, 11(3): 52-59
    [189]孙湘平.中国近海区域海洋.北京:海洋出版社, 2006
    [190]戴民汉,魏俊峰,翟惟东.南海碳的生物地球化学研究进展.厦门大学学报, 2001, 40:545-551
    [191]韩舞鹰.南海海洋化学.北京:技术出版社, 1998. 174
    [192]李立,吴日升,郭小钢.南海的季节环流—TOPEX/POSEIDON卫星测高应用研究.海洋学报, 2000, 22(6): 13-26
    [193]王东晓,杜岩,施平.南海上层物理海洋学气候图集.北京:气象出版社, 2002. 168.
    [194]彭欣,宁修仁,孙军,乐凤凤.南海北部浮游植物生长对营养盐的响应.生态学报, 2006, 26: 3960-3968
    [195] Yang G-P. Dimethylsulfide enrichment in the surface microlayer of the South China Sea. Mar. Chem., 1999, 66: 215-224
    [196] Yang G-P. Spatial distributions of dimethylsulfide in the South China Sea. Deep-Sea Res. I, 2000, 47: 177-192
    [197]孙军,宋书群,乐凤凤,王丹,戴民汉,宁修仁.2004年冬季南海北部浮游植物, 2007, 29(5): 132-145
    [198]乐凤凤,孙军,宁修仁,宋书群,蔡昱明,刘诚刚.2004年夏季中国南海北部的浮游植物, 2006, 37(3): 238-243
    [199] Ning X, Chai F, Xue H, Cai Y, Liu C, Shi J. Physical-biological oceanographic coupling influencing phytoplankton and primary production in the South China Sea. Journal of Geophysical Research, 2004,109, C1005, doi: 10. 1029/2004JC002365
    [200]乐凤凤,宁修仁,刘诚刚,郝锵,蔡昱明. 2006年冬季南海北部浮游植物生物量和初级生产力及其环境调控, 2008, 28(11): 5775-5784
    [201]朱根海,宁修仁,蔡昱明,刘子琳,刘诚刚.南海浮游植物种类组成和丰度分布的研究, 2003, 25(2): 8-23
    [202] Chen Y L L, Chen H Y, Karl D M, Takahashi M. Nitrogen modulates phytoplankton growth in spring in the South China Sea. Continental Shelf Research , 2004, 24: 527-541
    [203]袁良英.南海北部营养盐结构特征: [硕士学位论文].厦门:厦门大学, 2005
    [204] Wu J F, Chung S W, Wen L S, Liu K K, Chen Y L L, Chen H Y, Karl D M. Dissolved inorganic phosphorus, dissolved iron, and Trichodesmium in the oligotrophic South ChinaSea. Global Biogeochemical Cycles , 2003, 17: 1008-1018
    [205] Taylor B F, Kiene R P. Microbial metabolism of dimethyl sulfide. In: Biogenic sulfur in the environment. E.S. Saltzman and W.J.Cooper (Eds). American Chemical Society, Wahington D.C., 1989. 202-221

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700