pH/温度敏感淀粉水凝胶的制备及释药性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淀粉是自然界中最为丰富的碳水化合物,具有良好的生物相容性,无毒,可降解。淀粉分子链上含有大量的醇羟基,可以与多种物质反应,得到多种不同性能的变性淀粉,是食品、医药、制革、废水处理、造纸、铸造、纺织、材料等众多工业的原辅料,尤其在药物研究方面具有广泛的应用前景。
     本文以淀粉(starch)、马来酸酐(MAH)、N-异丙基丙酰胺(NIPA)和甲基丙烯酸二甲胺基乙酯(DMAEMA)为原料,合成了高取代度的马来酸酐淀粉酯(starch-MAH),制备了具有温度和pH敏感的马来酸酐淀粉酯-N-异丙基丙酰胺( starch-MAH/NIPA )和马来酸酐淀粉酯-甲基丙烯酸二甲胺基乙酯(starch-MAH/DMAEMA)水凝胶,研究了淀粉酯和水凝胶的制备工艺,并进行结构表征和性能测试。采用模型计算和分析,结合体外实验的结果研究了水凝胶的释药行为,并探讨了水凝胶的释药机理。
     本论文的具体研究内容如下:
     1.高取代度马来酸酐淀粉酯的制备用溶剂法制备高取代度的starch-MAH,对取代度、结构等方面进行了研究,探讨淀粉用量、反应温度、时间等对产物性能的影响,通过正交设计实验得出了最优工艺。另外对原料和产物的结构进行红外、差热、13~C-NMR分析。实验结果表明该方法制备的淀粉酯取代度较高。
     2.starch-MAH/NIPA水凝胶的制备与性能研究
     以马来酸酐淀粉酯和N-异丙基丙烯酰胺为原料,合成具有温度和pH敏感的水凝胶,对其性能和结构进行了表征。研究了多种因素对水凝胶形态、膨胀度和载药量的影响。通过星点设计——效应面法,对评价指标和各影响因素之间的模型进行计算,得到优化工艺:当用8 mgBIS,5 ml含NIPA和starch-MAH的水溶液,25μlAPS和33μlTEMED,室温下反应24小时,可得到性能最好的水凝胶。对最佳条件下制备的水凝胶进行了结构表征和性能考察。结果表明,制备的水凝胶具有较好的膨胀性能以及温度和pH敏感性。
     3. starch-MAH/DMAEMA水凝胶的制备
     制备了starch-MAH/DMAEMA水凝胶,对其结构和性能进行研究,考察各种因素对产物的影响。通过星点设计——效应面法,得到优化工艺,并对制备的水凝胶进行结构和性能研究,发现starch-MAH/DMAEMA水凝胶的LCST在44℃左右,比starch-MAH/NIPA水凝胶的LCST高,且具有较好的pH/温度敏感性。
     4.探讨载药水凝胶的体外释放并进行模型计算
     研究载药水凝胶starch-MAH/NIPA和starch-MAH/DMAEMA在不同pH值的磷酸盐缓冲液中的释放行为,分析水凝胶的药物释放过程。药物释放的模型计算表明,制备的两种水凝胶均具有较好的缓释性能,释放机理属于一级动力学模型,且starch-MAH/NIPA水凝胶具有更好的pH/温度敏感性和缓释性能。这些结果为载药水凝胶的进一步研究提供实验和理论参考。
Starch is the most abundant carbohydrate in nature, which posses good biocompatibility, non-toxic and biodegradable. In starch molecular chain, there are a large number of alcoholic hydroxyl, which can reacted with a variety of substances to got different properties of modified starch. It’s the raw materials of food, medicine, leather, wastewater treatment, paper making, casting, textiles, materials and other industrial, especially in drug research has broad application prospects.
     In this paper, high degree of substitution of starch, temperature and pH-sensitive starch-MAH/NIPA hydrogel and starch-MAH/DMAEMA hydrogel were prepared using starch, MAH, NIPA and DMAEMA as the raw material. Optimized processes, structure characterization and performance testing were studied. Drug release behavior was investigated through model calculations and analysis, combined with the results of experiments. The mechanisms were also explored. The specific studies were as follows:
     1. Preparation of high degree substitution of starch
     High degree substitution of starch was prepared by solvent, and the degree of substitution, structure were studied. Through discussion of factors (starch concentration, reaction temperature, time) on the impact of products. Through the orthogonal design, the optimum process was obtained. In addition, the final product was analysised via IR, DSC and 13~C-NMR. The results show that the product prepared by this method posses high degree substitution.
     2. Preparation and Characterization of starch-MAH/NIPA hydrogel
     The temperature and pH sensitive starch-MAH/NIPA hydrogel was synthesized by starch-MAH and N-isopropylacrylamide. The structure characterization and performance testing were studied. In the preparing process, various factors were investigated according to their influences on the morphology, swelling, and drug loading of hydrogel. Through the central composite design– response surface method, the mathematical models of evaluation indicators and impact factors were established, the process were optimized. The hydrogel with optimal performance could obtained when using 8mgBIS, 5ml solution with NIPA and starch-MAH, 25μlAPS and 33μlTEMED, room temperature for 24 hours. The hydrogel which was prepared under the best conditions was characterized and tested. The results showed that the hydrogel posses good swelling properties, temperature and pH sensitivity. 3. Preparation and Characterization of starch-MAH/DMAEMA hydrogel
     Starch-MAH/DMAEMA hydrogel was prepared, and structure characterization and performance testing were studied. Various factors were investigated according to their influences on the product. Through the central composite design– response surface method, the mathematical models of evaluation indicators and impact factors were established, the process were optimized. The hydrogel which was prepared under the best conditions was also characterized and tested, which showed that the LCST of starch-MAH/DMAEMA hydrogel is around 44℃, higher than starch-MAH/NIPA hydrogel, and also has good pH and temperature sensitivity.
     4. Explore the in vitro release and doing model calculations
     The in vitro release of drug-loaded starch-MAH/NIPA and starch-MAH/ DMAEMA hydrogel were researched in different pH phosphate buffer. Drug release process was also investigated. Commonly used models in vitro release were fitted. It was found that first order kinetics model can be in line with the release characteristics better. And starch-MAH/NIPA hydrogel showed better pH/temperature sensitivity and sustained release performance. It will provide a theoretical basis and data reference for further research on hydrogel.
引文
[1]魏巍,魏益民,张波.淀粉/聚乳酸共混可降解材料研究进展[J].包装工程.2007, 28(1):23 - 26.
    [2]黄强,熊犍,何小维,等.淀粉类生物降解材料研究进展[J].粮食与饲料工业,2009,(9):51 - 53.
    [3]樊燕鸽,熊汉国,王锐亮.多孔淀粉制备条件的优化[J].粮食与饲料工业, 2007,(3):29 - 32.
    [4]刘再满,丁生龙,柳明珠.淀粉改性及其与聚乙烯共混[J].合成橡胶工业,2006,29(3):204 - 207.
    [5]张立武,阚建全,张锐利,等.改性淀粉在新型药物传递系统中的运用[J].山西医药杂志, 2004,33(10):833~835.
    [6] A.G.Pedroso,D.S. Rosa. Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends[J]. Carbohydrate Polymers, 2009, (59):1 - 9.
    [7] Ghania Hamdi, Gilles Ponchel, Dominique Duchene. An original method for studying in vitro the enzymatic degradation of cross-linked starch microspheres[J]. Journal of Controlled Release, 1998, (55):193 - 201.
    [8] Agneta Jansson, Lars Jarnstrom. Barrier and mechanical properties of modified starches[J]. Cellulose ,2005, (12):423 - 433.
    [9]萧聪明,叶俊.顺丁烯二酸酐羧化淀粉的制备[J].应用化学,2005,22(6):643 - 646.
    [10]李德富,李宏利,林炜,等.改性淀粉的制备与应用研究进展[J].中国皮革,2007,36(1):32 - 37.
    [11]夏新兴,薛玉可.酶改性淀粉工艺研究[J].中华纸业,2007,28(8):67 - 69.
    [12]郝晓敏,王遂.α-淀粉酶改性玉米淀粉表征及流变特性性质的研究[J].现代食品科技,2006,22(4):17 - 19.
    [13]李永红,蔡永红,曹凤芝等.化学改性淀粉的研究进展[J].化学研究,2004,15(4):71– 74.
    [14]邢国,刘诗丽,徐强,等.淀粉顺丁烯二酸单酯的研究进展[J].应用科技,2008,16(24):11 - 12
    [15]许克勋.精细有机化工原料及中间体手册[M].化学工业出版社,1998年第一版.
    [16]王欣宇,朱秀芳,韩颖超,等. pH/温度双重敏感高分子水凝胶的合成及性能[J].武汉理工大学学报, 2007,29(8):32 - 36.
    [17]毕韵梅,陈业高,毕旭滨,等.温度及pH值双重敏感性水凝胶研究进展[J].云南化工,2004,31(2):20 - 24.
    [18]刘锋,卓仁禧.水凝胶的制备及应用[J].高分子通报, 1995, (4):205 - 216.
    [19] Woerly S. Porous hydrogels for neural tissue engineering[J]. Materials Science Forum ,1997, (250):53 - 68.
    [20]邹新禧.超强吸水剂[M].北京:化学工业出版社(修订版),2000.
    [21] Gilanyi T ,Varga I,Meszaros R ,et al. Langmuir, 2001, 17(16):4764.
    [22] X.D. Xu et al. A strategy to introduce the pH sensitivity to temperature sensitive PNIPAAm hydrogels without weakening the thermosensitivity[J]. Carbohydrate Polymers, 2007, 68(1):416 - 423.
    [23]王志龙,杨元全,李树斌,等. pH敏感聚合物水凝胶的实验研究[J].化学工程师,2004,109(10):12 - 15.
    [24] M. George, T.E. Abraham. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs[J]. International Journal of Pharmaceutics, 2007, (335):123 - 129.
    [25]刘郁杨,范晓东,张双存.温度及pH敏感N-异丙基丙烯酰胺/β-环糊精水凝胶的合成与性能研究[J].高分子学报,2002,10(5):618 - 622.
    [26] Rosiak J M,Ruciska-Rybus A,Pekala W. Method of Manufacturingof the Hydrogel Dressings. US 4871490. 1989.
    [27] Feil H, Bae Y H, Feijen J et al. Mutual influence of pH and temperature on the swelling of ionizable and thermosensitive hydrogels[J]. Macromolecules, 1992, 25(20):5528 - 5530.
    [28] Bo Wang, Xiao-Ding Xu, Zong-Chun Wang et al. Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels[J]. Colloids andSurfaces B: Biointerfaces, 2008, (64):34 - 41.
    [29]程秀莲.温度及pH敏感水凝胶的合成及性能研究[J].沈阳理工大学学报,2005,24(4):59 - 62.
    [30]吴生辉,李谊,杨芬,王玉玲,等.温度及pH敏感水凝胶的制备与溶胀性能研究[J].精细化工中间体,2007,37(3):54 - 57
    [31] Ali Emileh, Ebrahim Vasheghani-Farahani, Mohammad Imani. Swelling behavior, mechanical properties and network parameters of pH-and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate -co-butyl methacrylate)[J]. European Polymer Journal, 2007, (43):1986 - 1995.
    [32] Ram Mohan Kripa Ramanan,Prithiviraj Chellamuthu,Liping Tang,et al. Nguyen. Development of a Temperature-Sensitive Composite Hydrogel for Drug Delivery Applications[J]. Biotechnology programme, 2006, 22(1):118 - 125.
    [33]刘爱红,姜发堂,张声华.魔芋粉接枝丙烯酸(钠)超强吸水剂的制备[J].材料科学与工程学报,2004,22(4):587 - 591.
    [34] Chen G H, Hoffman A S. pH and temperature sensitive graft copolymers[J]. Nature, 1995, 373(5):49 - 52.
    [35]赵群,倪沛红.pH/温度响应的两亲性嵌段共聚物的研究[J].化学进展,2006,18(6):768 - 779.
    [36] Woo Sun Shim, Jae Sun Yoo, You Han Bae et al. Novel Injectable pH and Temperature Sensitive Block Copolymer Hydrogel[J]. Biomacromolecules, 2005,(6):2930 - 2934.
    [37]陈义康,李立华,田冶,等. PVP/PVA半互穿网络材料的制备及其性能研究[J].功能高分子学报,2005,18(1):80 - 83.
    [38]高青雨,张玉娟.温度及pH敏感性水凝,胶的合成及性能研究[J].功能高分子学报,2001,14(2):158 - 162.
    [39] Ma′rcia R.de Moura, Fauze A.Aouada,Marcos R.Guilherme et al. Thermo-sensitive IPN hydrogels composed of PNIPAAm gels supported on alginate-Ca2+ with LCST tailored close to human body temperature[J].Polymer Testing, 2006, (25): 961 - 969.
    [40] Xiuyu Li, Wenhui Wu, Weiqi Liu.Synthesis and properties of thermo- responsive guar gum/poly (N-isopropylacrylamide) interpenetrating polymer network hydrogels[J]. Carbohydrate Polymers, 2008, (71): 394 - 402.
    [41]刘德华,袁才登,王艳君等.核壳结构反应性聚合物微凝胶的合成[J].高分子材料科学与工程,2000,16(5):46 - 48.
    [42] Kimiko Makino et al.Dependence of Temperature-Sensitivity of Poly (N-isopropylacrylamide-co-acrylic acid)Hydrogel Microspheres upon Their Sizes[J].Journal of Colloid and Interface Science,2000,(230):128 - 134.
    [43]陈玲,侯红瑞,黄云,李晓玺.环境敏感性水凝胶在药物控释系统中的应用[J].化工新型材料,2007,35(6):11 - 13.
    [44] Woo Sun Shim et al. pH- and temperature-sensitive, injectable, biodegradable block copolymer hydrogels as carriers for paclitaxel[J]. International Journal of Pharmaceutics, 2007,( 331):11 - 18.
    [45] Bromberg L E,Ron ES.Temprature- reponsive gels and thermogelling polymer matrices for protein and peptide delivery[J]. Adv Drug Deliv Rev, 1998, 31(3):197 - 221.
    [46] Jeong B,Kim SW ,Bae YH.Thermosensitive sol-gel reversible hydrogels [J]. Adv Drug Deliv Rev, 2002, 54(1):37 - 51.
    [47]乔明曦,陈大为,陈秀珍,胡海洋,王颖.注射用蜂毒多肽温度敏感型缓释凝胶的制备及体外释放研究[J].沈阳药科大学学报,2005,22(4):252 - 254.
    [48] M. George, T.E. Abraham. pH sensitive alginate–guar gum hydrogel for the controlled delivery of protein drugs[J].International Journal of Pharmaceutics, 2007,(335):123 - 129.
    [49]王姗.高分子凝胶薄膜和微凝胶的制备与应用研究[D].陕西师范大学,2003.
    [50]张剑波.温敏性水凝胶对金属离子Y3+, UO2+2的浓集分离[J].环境科学,1999,20(6):87 - 90.
    [51] Nobuo M, Hoffman A S. Effect of temperature cycling on the activity and productivity of immoblized(-galactosidase in a thermally reversible hydrogels bead reactor[J]. Appl Biochem and Biotech, 1988, 14(1):1 - 9.
    [52] Gehrhe S H, Cussler F C. Chemical aspects of gel extraction[J]. Chem Eng Sci, 1986,(41):2153 - 2160
    [53] T Yoshimura,R Yoshimura,C Seki,et al. Synthesis and characterization of biodegradable hydrogels based on starch and succinic anhydride[J]. Carbohydrate Polymers, 2006,(64):345 - 349.
    [54]金永君,艾延宝.核磁共振技术及应用[J].物理与工程,2002,12(1):47 - 50.
    [55] Wang Y M. Sato H, Adachi I, et al. Optimization of the formulation design of chito-san microspheres containing cisplatin[J]. J Pharm Sci, 1996,85(11): 1204 - 1210.
    [56]秦爱香,吕满庚,刘群峰,等.快速响应的聚(N-异丙基丙烯酰胺)水凝胶的合成及性能[J].高分子材料科学与工程, 2006, 22(5): 54 - 57
    [57] Z C Wang, X D Xu, C S Chen, et al. Study on novel hydrogels based on thermosensitive PNIPAAm with pH sensitive PDMAEAM grafts[J]. Colloids and Surfaces B: Biointerfaces, 2008, (67): 245 - 252.
    [58] Sanjeeb Kumar Sahoo, Tapas K. De,P. K. Ghosh,et al. pH- and Thermo-sensitive Hydrogel Nanoparticles[J]. Journal of Colloid and Interface Science,1998, (26):361 - 368.
    [59] Xianzheng Zhang, Daqing Wu, Chih-Chang Chu. Synthesis and characterization of partially biodegradable, temperature and pH sensitive Dex–MA/PNIPAAm hydrogels[J]. Biomaterials, 2004, (25):4719 - 4730.
    [60]黄怡,范晓东,胡晖.甲基丙烯酸N,N-二甲氨基乙酯与丙烯酰-β-环糊精共聚水凝胶的合成及其性能研究[J].高分子学报,2004,4(2):181 - 183.
    [61]任芳,陈晓农,夏宇正,等.聚(甲基丙烯酸N,N-二甲氨基乙酯)的温度和pH敏感性及其对乳液稳定性的影响[J].高分子学报,2007,9(9):838– 843.
    [62] D.J. Enscore, H.B. Hopfenberg and V.T. Stannett. Effect of particle size on the mechanism controlling n-hexane sorption in glassy polystyrene microspheres[J]. Polymer, 1977, 18(8):793 - 800.
    [63]林亚平,董芸.药物释放数学模型的评价及选择[J].数理医药学杂志,1994,7(4):308 - 310.
    [64]顾雪蓉,朱育平.凝胶化学[D].北京:化学工业出版社,2004.
    [65] Mulye,N.V, Turco,S.J. A simple model based on first order kinetics to explain release of highly water soluble drugs from porous dicalcium phosphate Dehydrate matrices[J]. Drug Dev. Ind. Pharm, 1995, (21):943 - 953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700