纳米复合水凝胶的独特拉伸现象及其功能响应性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本工作的主要目的是以锂藻土Laponite XLS作为交联剂,通过功能性单体在Laponite XLS分散液中原位聚合得到纳米复合水凝胶(nanocomposite hydrogel,NC gel),探讨其具有优异力学性能的本质及制备出具有环境响应性的NC凝胶。研究工作的基本思路是:通过重复拉伸及迟滞性测试,观察NC凝胶的拉伸现象,并通过时间追踪确定NC凝胶的可恢复性的时间依赖性;通过偏光显微镜、XRD测试,及小应变下的动态粘弹性测试,揭示锂藻土Laponite与高分子的相互作用和交联网络的结构,从而明确NC凝胶具有优异力学性能的本质。在此基础上,筛选出合适的功能性单体与亲水性的N-异丙基丙烯酰胺(NIPAm)在Laponite的分散液中原位共聚,控制、优化反应工艺条件,制备具有优异力学性能的环境响应性NC凝胶。本工作的主要内容和结果如下:
     1.以溶胶型的锂藻土Laponite XLS为交联剂, NIPAm为单体,合成了具有超拉伸性的NC凝胶。重复拉伸及迟滞性实验发现NC凝胶在拉伸过程中出现应力硬化现象,并随锂藻土含量的增加更加明显;通过对不同交联剂含量的NC凝胶做时间追踪回复性测试,发现低粘土含量的NC凝胶能够得到更快的恢复;为了揭示NC凝胶具有可回复性的本质,对拉伸前后的NC凝胶进行偏光显微镜以及XRD观测对比,证实了拉伸过程中NC凝胶分子链会发生取向,这表明NC凝胶的超大拉伸应力可能与此相关。而对PNIPAm溶液及(PNIPAm + Laponite XLS)混合溶液的小应变下的动态粘弹性测试则证实了NC凝胶超大拉伸率及可回复性的原因:NC凝胶在拉伸过程中可能出现部分分子链的拉脱,而在经过一段时间恢复之后,大分子链能够重新粘附到锂藻土Laponite XLS片层上。
     2.以溶胶型的锂藻土Laponite XLS为交联剂,采用阳离子型单体甲基丙烯酸N,N-二甲胺基乙酯(DMAEMA)与NIPAm在Laponite XLS分散液中原位自由基聚合,合成了具有明显温度及pH双响应性的阳离子型NIPAm/DMAEMA/Laponite纳米复合水凝胶,并考察了阳离子型单体DMAEMA对Laponite XLS分散液稳定性的影响及NIPAm/DMAEMA/Laponite纳米复合水凝胶的力学性能、透明度和温度、pH响应性。DMAEMA的加入导致分散液的Zeta电位绝对值降低,稳定性下降。从而导致合成的共聚NC凝胶结构不均匀,凝胶呈现半透明,并且随着共聚NC凝胶中阳离子型单体DMAEMA含量的增加,透明度下降。这种结构的不均一性导致共聚得到的NC凝胶其拉伸强度和断裂伸长率有所下降,但是仍然具有优异的拉伸性能,拉伸强度大于120kPa,断裂伸长率大于790%。对该NC凝胶根据小应变下的平衡剪切模量Ge计算得到不同组成的NC凝胶的有效网链密度较低,当交联剂含量高达6w/v%时,其NC凝胶的有效网链密度为0.739 mol/m~3,远远小于化学交联凝胶有效网链密度的4.1 mol/m3(约为单体含量的2.7mol%)。结果表明:NC凝胶的超拉伸性来源于其较低的网链密度。该双响应水凝胶在温度为35°C时有明显的温度敏感性;在pH<4的介质中溶胀,在pH>4的介质中收缩,当pH在4-6之间发生体积突变。
In this thesis, stimuli-responsive nanocomposite hydrogels (NC gel) with ultrahigh tensibility were synthesized by in-situ copolymerization of functional monomers in the aqueous suspension of hectorite clay Laponite XLS and Laponite was used as the cross-linker. And the internal reason of the amazing mechanical properties was also investigated. First, the special elongation phenomenon was investigated by the method of the repeated elongation and the hysteresis experiments, and we confirmed the recovery of the NC gels by time-tracking; through the tests of Polarizing microscope and XRD, and the results of the Dynamic moduli also proved it, the interaction and the network between the Laponite XLS and the polymer were assumed to be the reason of the amazing mechanical ability of the NC gels. On the basis, we chose suitable ionic monomers and prepared ionic NC gels with ultrahigh tensibility by in-situ copolymerization of functional monomers and N-isopropylacrylamide (NIPAm) in the aqueous suspension of Laponite XLS. The main contents and the results of the work are as follows:
     1. NC gels with ultrahigh tensibility were synthesized through in-situ polymerization of NIPAm with hectorite clays of Laponite XLS. The stress hardening became more apparently with more Laponite XLS while the repeated elongation and the hysteresis; the NC gels with lower Laponite XLS recovered more quickly; by comparing the results of the Polarizing microscope and XRD before and after elongation, it was concluded the NC gels can be oriented to make the NC gels hard while the elongation. After the Dynamic moduli under the small strain was tested on the PNIPAm and (PNIPAm + Laponite XLS) solution, we found the reason for high tensibility of the NC gels maybe the process of peel-off and adhere back to between the polymer and the clay platetes.
     2. Positively chargeable nanocomposite hydrogels (NC gels) with temperature and pH responsed were synthesized by in-situ copolymerization of N-isopropylacrylamide (NIPAm) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) in an aqueous suspension of hectorite clay Laponite XLS. The stability of the Laponite suspension containing DMAEMA was monitored and the mechanical property, transmittance and dual response of the NC gels were also investigated. The addition of DMAEM decreased the absolute value of the zeta potential to make the half-transparent of the NC gels. The nonuniformity of the structure made the NC gels weaker, however, still with ultrahigh tensibility. The stress was bigger than 120 kPa and the strain also exceeded 790 %. The effective network chain density of the NC gel determined from equilibrium shear modulus was 0.739 mol/m3 of the NC gels with 6 w/v% Laponite, which was evidently lower than that of the chemically cross-linked hydrogel (about 4.1 mol/m3). The present results reveal that the high deformability of these NC gels comes from their low effective network chain density. The NC gels showed obvious volume phase transition at 35oC or pH=4.
引文
[1]龚剑萍.智能凝胶[M]. In:何天白,胡汉杰主编.海外高分子科学的新进展.化学工业出版社,1997: 174-184.
    [2] DeRossi D.; Kajiwara K.; Osasa Y., et al. Polymer gels-fundamentals and biomeidical applications[M]. New York:Plenum Press, 1991: 1-60
    [3]顾雪蓉,朱育平.凝胶化学[M].北京:化学工业出版社, 2005: 1-24
    [4]廖敬阳.高pH值响应型敏感水凝胶的制备及性能[D].华南理工大学硕士学位论文.
    [5] Haraguchi, K., Farnworth, R., Ohbayashi, A., Takehisa, T. Compositional Effects on Mechanical Properties of Nanocomposite Hydrogels Composed of Poly(N,N-dimethylacrylamide) and Clay[J]. Macromolecules, 2003, 36(15): 5732-5741
    [6] Matzelle, T. R., Geuskens, G., Kruse, N. Elastic Properties of Poly(N-isopropylacrylamide) and Poly(acrylamide) Hydrogels Studied by Scanning Force Microscopy[J]. Macromolecules, 2003, 36(8): 2926-2931
    [7] Caykara, T., Kiper, S., Demirel, G. Thermosensitive poly(N-isopropylacrylamide-co-acrylamide) hydrogels: Synthesis, swelling and interaction with ionic surfactants[J]. Eur Polym J, 2006, 42(2): 348-355
    [8] Sousa, R. G., Freitas, R. F. S., Magalheas, W. F. Structural characterization of poly(N-isopropylacrylamide) gels and some of their copolymers with acrylamide through positron annihilation lifetime spectroscopy[J]. Polymer, 1998, 39(16): 3815-3819
    [9] Morimoto, N., Ohki, T., Kurita, K., Akiyoshi, K. Thermo-Responsive Hydrogels with Nanodomains: Rapid Shrinking of a Nanogel-Crosslinking Hydrogel of Poly(N-isopropyl acrylamide)[J]. Macromol Rapid Comm, 2008, 29(8): 672-676
    [10] Stile, R. A., Burghardt, W. R., Healy, K. E. Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide)-Based Hydrogels That Support Tissue Formation in Vitro[J]. Macromolecules, 1999, 32(22): 7370-7379
    [11] Elliott, J. E., Macdonald, M., Nie, J., Bowman, C. N. Structure and swelling ofpoly(acrylic acid) hydrogels: effect of pH, ionic strength, and dilution on the crosslinked polymer structure[J]. Polymer, 2004, 45(5): 1503-1510
    [12] Lord, M. S., Stenzel, M. H., Simmons, A., Milthorpe, B. K. The effect of charged groups on protein interactions with poly(HEMA) hydrogels[J]. Biomaterials, 2006, 27(4): 567-575
    [13] Tanaka, T. Collapse of Gels and the Critical Endpoint[J]. Phys Rev Lett, 1978, 40(12): 820
    [14]陈莉.智能高分子材料[M].北京:化学工业出版社, 2005: 43-73
    [15] Caykara, T., Dogmus, M., Kantoglu, O. Network structure and swelling-shrinking behaviors of pH-sensitive poly(acrylamide-co-itaconic acid) hydrogels[J]. J Polym Sci Pol Phys, 2004, 42(13): 2586-2594
    [16] Tanaka, T., Fillmore, D., Sun, S.-T., Nishio, I., Swislow, G., Shah, A. Phase Transitions in Ionic Gels[J]. Phys Rev Lett, 1980, 45(20): 1636-1639
    [17] Iyer, G., Tillekeratne, L. M. V., Coleman, M. R., Nadarajah, A. Equilibrium swelling behavior of thermally responsive metal affinity hydrogels, Part I: Compositional effects[J]. Polymer, 2008, 49(17): 3737-3743
    [18] Maurer, G. Stimulations of responsive hydrogels: experimental investigations and modeling[J]. Macromol Symp, 2008(266): 85-91
    [19] Hirokawa Y.; Tanaka T. Volume phase transition in a nonionic gel[J]. J. Chem. Phys., 1984, 81: 6379-6389
    [20] Janovák, L., Varga, J., Kemény, L., Dékány, I. Investigation of the structure and swelling of poly(N-isopropyl-acrylamide-acrylamide) and poly( N-isopropyl-acrylamide-acrylic acid) based copolymer and composite hydrogels[J]. Colloid & Polymer Science, 2008, 286(14): 1575-1585
    [21] Lee, W.-F., Shieh, C.-H. pH-thermoreversible hydrogels. I. Synthesis and swelling behaviors of the (N-isopropylacrylamide-co-acrylamide-co-2-hydroxyethyl methacrylate) copolymeric hydrogels[J]. J Appl Polym Sci, 1999, 71(2): 221-231
    [22] Ni, H., Kawaguchi, H., Endo, T. Preparation of amphoteric microgels ofpoly(acrylamide/methacrylic acid/dimethylamino ethylene methacrylate) with a novel pH-volume transition[J]. Macromolecules, 2007, 40(17): 6370-6376
    [23] Osada, Y., Gong, J. P. Soft and wet materials: Polymer gels[J]. Adv Mater, 1998, 10(11): 827-837
    [24]Zhu, M. F., Liu, Y., Sun, B., Zhang, W., Liu, X., Yu, H., Zhang, Y., Kuckling, D., Adler, H. J. P. A Novel Highly Resilient Nanocomposite Hydrogel with Low Hysteresis and Ultrahigh Elongation[J]. Macromol Rapid Comm, 2006, 27(13): 1023-1028
    [25] Liu, Y., Zhu, M., Liu, X., Zhang, W., Sun, B., Chen, Y., Adler, H. J. P. High clay content nanocomposite hydrogels with surprising mechanical strength and interesting deswelling kinetics[J]. Polymer, 2006, 47(1): 1-5
    [26]宋红艳.温度、pH敏感共聚物/粘土复合水凝胶的制备与表征[D].郑州大学硕士学位论文.
    [27] Haraguchi, K., Li, H.-J. Mechanical Properties and Structure of Polymer-clay Nanocomposite Gels with High Clay Content[J]. Macromolecules, 2006, 39(5): 1898-1905
    [28]金淑萍.智能高分子及水凝胶的响应性及其应用[J].物理化学学报, 2007, 23(3): 438-446
    [29] Brazel, C. S., Peppas, N. A. Synthesis and Characterization of Thermo- and Chemomechanically Responsive Poly(N-isopropylacrylamide-co-methacrylic acid) Hydrogels[J]. Macromolecules, 1995, 28(24): 8016-8020
    [30] Haraguchi, K., Takehisa, T., Fan, S. Effects of Clay Content on the Properties of Nanocomposite Hydrogels Composed of Poly(N-isopropylacrylamide) and Clay[J]. Macromolecules, 2002, 35(27): 10162-10171
    [31]张青松等. pH和温度双重敏感高分子凝胶的最新研究进展[J]. 2007, 21(5)
    [32] Okumura, Y., Ito, K. The Polyrotaxane Gel: A Topological Gel by Figure-of-Eight Cross-links[J]. Adv Mater, 2001, 13(7): 485-487
    [33] Gong, J. P., Katsuyama, Y., Kurokawa, T., Osada, Y. Double-Network Hydrogels with Extremely High Mechanical Strength[J]. Adv Mater, 2003, 15(14): 1155-1158
    [34] Yasuda, K., Ping Gong, J., Katsuyama, Y., Nakayama, A., Tanabe, Y., Kondo, E., Ueno, M., Osada, Y. Biomechanical properties of high-toughness double network hydrogels[J]. Biomaterials, 2005, 26(21): 4468-4475
    [35] Tanaka, Y., Kuwabara, R., Na, Y.-H., Kurokawa, T., Gong, J. P., Osada, Y. Determination of Fracture Energy of High Strength Double Network Hydrogels[J]. The Journal of Physical Chemistry B, 2005, 109(23): 11559-11562
    [36] Tanaka, Y., Gong, J. P., Osada, Y. Novel hydrogels with excellent mechanical performance[J]. Prog Polym Sci, 2005, 30(1): 1-9
    [37]Na, Y. H., Kurokawa, T., Katsuyama, Y., Tsukeshiba, H., Gong, J. P., Osada, Y., Okabe, S., Karino, T., Shibayama, M. Structural characteristics of double network gels with extremely high mechanical strength[J]. Macromolecules, 2004, 37(14): 5370-5374
    [38] Huang, T., Xu, H. G., Jiao, K. X., Zhu, L. P., Brown, H. R., Wang, H. L. A Novel Hydrogel with High Mechanical Strength: A Macromolecular Microsphere Composite Hydrogel[J]. Adv Mater, 2007, 19(12): 1622-1626
    [39] Haraguchi, K., Takehisa, T. Nanocomposite Hydrogels: A Unique Organic–Inorganic Network Structure with Extraordinary Mechanical, Optical, and Swelling/De-swelling Properties[J]. Adv Mater, 2002, 14(16): 1120-1124
    [40] Herrera, N. N., Letoffe, J. M., Putaux, J. L., David, L., Bourgeat-Lami, E. Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites[J]. Langmuir, 2004, 20(5): 1564-1571
    [41] Fossum, J. O. Physical phenomena in clays[J]. Physica A: Statistical Mechanics and its Applications, 1999, 270(1-2): 270-277
    [42] Mongondry, P., Nicolai, T., Tassin, J.-F. Influence of pyrophosphate or polyethylene oxide on the aggregation and gelation of aqueous laponite dispersions[J]. J Colloid Interf Sci, 2004, 275(1): 191-196
    [43] Kroon, M., Vos, W. L., Wegdam, G. H. Structure and formation of a gel of colloidal disks[J]. Phys Rev E, 1998, 57(2): 1962
    [44] Gabriel, J.-C. P., Sanchez, C., Davidson, P. Observation of Nematic Liquid-Crystal Textures in Aqueous Gels of Smectite Clays[J]. The Journal of Physical Chemistry, 1996, 100(26): 11139-11143
    [45] Labanda, J., Llorens, J. A structural model for thixotropy of colloidal dispersions[J]. Rheol Acta, 2006, 45(3): 305-314
    [46] Pignon, F., Magnin, A., Piau, J. M. Thixotropic behavior of clay dispersions: Combinations of scattering and rheometric techniques[J]. J Rheol, 1998, 42(6): 1349-1373
    [47] Strachan, D. R., Kalur, G. C., Raghavan, S. R. Size-dependent diffusion in an aging colloidal glass[J]. Phys Rev E, 2006, 73(4): 041509
    [48] Nicolai, T., Cocard, S. Dynamic Light-Scattering Study of Aggregating and Gelling Colloidal Disks[J]. J Colloid Interf Sci, 2001, 244(1): 51-57
    [49] Mongondry, P., Tassin, J. F., Nicolai, T. Revised state diagram of Laponite dispersions[J]. J Colloid Interf Sci, 2005, 283(2): 397-405
    [50] Ruzicka, B., Zulian, L., Ruocco, G. Routes to Gelation in a Clay Suspension[J]. Phys Rev Lett, 2004, 93(25): 258301-258305
    [51] Ruzicka B; Zulian L; Ruocco G.. Ergodic to Non-ergodic Transition in Low Concentration Laponite [J]. J. Phys. Condens. Matter, 2004, 16(42): S4993—S5002
    [52] Tanaka H; Meunier J; Bonn D. Nonergodic states of charged colloidal suspensions: Repulsive and attractive glasses and gels [J]. Phys. Rev. E, 2004, 69(3): art. No. 031404
    [53] Tanaka, H., Jabbari-Farouji, S., Meunier, J., Bonn, D. Kinetics of ergodic-to-nonergodic transitions in charged colloidal suspensions: Aging and gelation[J]. Phys Rev E, 2005, 71(2): 021402
    [54] Mourchid, A., Delville, A., Lambard, J., LeColier, E., Levitz, P. Phase Diagram of Colloidal Dispersions of Anisotropic Charged Particles: Equilibrium Properties, Structure, and Rheology of Laponite Suspensions[J]. Langmuir, 1995, 11(6): 1942-1950
    [55] Ruzicka, B., Zulian, L., Ruocco, G. More on the phase diagram of laponite[J]. Langmuir, 2006, 22(3): 1106-1111
    [56] Nicolai, T., Cocard, S. Light scattering study of the dispersion of laponite[J]. Langmuir, 2000, 16(21): 8189-8193
    [57] Nicolai T; Cocard S. Structure of Gels and Aggregates of Disk-like Colloids [J]. Eur. Phys. J. E, 2001, 5(2): 221-227
    [58] Li, L., Harnau, L., Rosenfeldt, S., Ballauff, M. Effective interaction of charged platelets in aqueous solution: Investigations of colloid laponite suspensions by static light scattering and small-angle x-ray scattering[J]. Phys Rev E, 2005, 72(5): 051504
    [59] K, N. The swelling of montmorillonite[J]. Discuss. Faraday Soc., 1954(18): 120-133
    [60] Van Olphen, H. Unit layer interaction in hydrous montmorillonite systems[J]. Journal of Colloid Science, 1962, 17(7): 660-667
    [61] Willenbacher, N. Unusual Thixotropic Properties of Aqueous Dispersions of Laponite RD[J]. J Colloid Interf Sci, 1996, 182(2): 501-510
    [62] Haraguchi, K., Taniguchi, S., Takehisa, T. Reversible Force Generation in a Temperature-Responsive Nanocomposite Hydrogel Consisting of Poly(N-isopropylacrylamide) and Clay[J]. Chemphyschem, 2005, 6(2): 238-241
    [63] Haraguchi, K., Li, H. J., Matsuda, K., Takehisa, T., Elliott, E. Mechanism of Forming Organic/Inorganic Network Structures during In-situ Free-Radical Polymerization in PNIPA-clay Nanocomposite Hydrogels[J]. Macromolecules, 2005, 38(8): 3482-3490
    [64] Nie, J., Du, B., Oppermann, W. Swelling, Elasticity, and Spatial Inhomogeneity of Poly(N-isopropylacrylamide)/Clay Nanocomposite Hydrogels[J]. Macromolecules, 2005, 38(13): 5729-5736
    [65] Shibayama, M., Karino, T., Miyazaki, S., Okabe, S., Takehisa, T., Haraguchi, K. Small-Angle Neutron Scattering Study on Uniaxially Stretched Poly(N-isopropylacrylamide)-clay Nanocomposite Gels[J]. Macromolecules, 2005, 38(26): 10772-10781
    [66] Nie, J., Du, B., Oppermann, W. Dynamic Fluctuations and Spatial Inhomogeneities in Poly(N-isopropylacrylamide)/Clay Nanocomposite Hydrogels Studied by Dynamic LightScattering[J]. The Journal of Physical Chemistry B, 2006, 110(23): 11167-11175
    [67] Haraguchi, K., Takada, T. Characteristic Sliding Frictional Behavior on the Surface of Nanocomposite Hydrogels Consisting of Organic-Inorganic Network Structure[J]. Macromol Chem Phys, 2005, 206(15): 1530-1540
    [68] Haraguchi, K., Li, H. J. Control of the Coil-to-Globule Transition and Ultrahigh Mechanical Properties of PNIPA in Nanocomposite Hydrogels13[J]. Angewandte Chemie International Edition, 2005, 44(40): 6500-6504
    [69] Xiong, L. J., Hu, X. B., Liu, X. X., Tong, Z. Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility[J]. Polymer, 2008, 49(23): 5064-5071
    [70] Song, L., Zhu, M., Chen, Y., Haraguchi, K. Temperature- and pH-Sensitive Nanocomposite Gels with Semi-Interpenetrating Organic/Inorganic Networks[J]. Macromol Chem Phys, 2008, 209(15): 1564-1575
    [71] Mujumdar, S. K., Siegel, R. A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(19): 6630-6640
    [72] Hu, X. B., Xiong, L. J., Wang, T., Lin, Z. M., Liu, X. X., Tong, Z. Synthesis and dual response of ionic nanocomposite hydrogels with ultrahigh tensibility and transparence[J]. Polymer, 2009, 50(8): 1933-1938
    [73] Xiong, L. J., Zhu, M. N., Hu, X. B., Liu, X. X., Tong, Z. Ultrahigh Deformability and Transparence of Hectorite Clay Nanocomposite Hydrogels with Nimble pH Response[J]. Macromolecules, 2009, 42(11): 3811-3817
    [74] Haraguchi, K., Matsuda, K. Spontaneous Formation of Characteristic Layered Morphologies in Porous Nanocomposites Prepared from Nanocomposite Hydrogels[J]. Chem Mater, 2005, 17(5): 931-934
    [75] Haraguchi, K., Li, H. J., Okumura, N. Hydrogels with Hydrophobic Surfaces: Abnormally High Contact Angles for Water on PNIPA Nanocomposite Hydrogels[J].Macromolecules, 2007, 40(7): 2299-2302
    [76] Miyazaki, S., Karino, T., Endo, H., Haraguchi, K., Shibayama, M. Clay Concentration Dependence of Microstructure in Deformed Poly(N-isopropylacrylamide)-clay Nanocomposite Gels[J]. Macromolecules, 2006, 39(23): 8112-8120
    [77] Haraguchi, K., Xu, Y., Li, G. Molecular Characteristics of Poly(N-isopropylacrylamide) Separated from Nanocomposite Gels by Removal of Clay from the Polymer/Clay Network[J]. Macromol Rapid Comm, 2010, 31(8): 718-723
    [78] Haraguchi, K., Li, H. J. Mechanical properties and structure of polymer-clay nanocomposite gels with high clay content[J]. Macromolecules, 2006, 39(5): 1898-1905
    [79] Haraguchi, K., Li, H.-j., Ren, H.-y., Zhu, M. Modification of Nancomposite Gels by Irreversible Rearrangement of Polymer/Clay Network Structure through Drying[J]. Macromolecules, 43(23): 9848-9853
    [80] Murata, K., Haraguchi, K. Optical anisotropy in polymer-clay nanocomposite hydrogel and its change on uniaxial deformation[J]. J Mater Chem, 2007, 17(32): 3385-3388
    [81] Nishida, T., Endo, H., Osaka, N., Li, H.-j., Haraguchi, K., Shibayama, M. Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering[J]. Phys Rev E, 2009, 80(3): 030801
    [82] Na, Y.-H., Tanaka, Y., Kawauchi, Y., Furukawa, H., Sumiyoshi, T., Gong, J. P., Osada, Y. Necking Phenomenon of Double-Network Gels[J]. Macromolecules, 2006, 39(14): 4641-4645
    [83]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社, 1990
    [84] Nishida, T., Endo, H., Osaka, N., Huan Jun, L., Haraguchi, K., Shibayama, M. Deformation mechanism of nanocomposite gels studied by contrast variation small-angle neutron scattering[J]. Phys. Rev. E, Stat. Nonlinear Soft Matter Phys., 2009, 80(3): 030801 (030804 pp.)-030801 (030804 pp.)
    [85] Wang, B., Xu, X. D., Wang, Z. C., Cheng, S. X., Zhang, X. Z., Zhuo, R. X. Synthesis and properties of pH and temperature sensitive P(NIPAAm-co-DMAEMA) hydrogels[J]. Colloidsand Surfaces B: Biointerfaces, 2008, 64(1): 34-41
    [86] Zhang, J., Xie, R., Zhang, S. B., Cheng, C. J., Ju, X. J., Chu, L. Y. Rapid pH/temperature-responsive cationic hydrogels with dual stimuli-sensitive grafted side chains[J]. Polymer, 2009, 50(11): 2516-2525
    [87] Chen, Y. F., Yi, M. Swelling kinetics and stimuli-responsiveness of poly(DMAEMA) hydrogels prepared by UV-irradiation[J]. Radiat Phys Chem, 2001, 61(1): 65-68
    [88] Wang, Z.-C., Xu, X.-D., Chen, C.-S., Wang, G.-R., Wang, B., Zhang, X.-Z., Zhuo, R.-X. Study on novel hydrogels based on thermosensitive PNIPAAm with pH sensitive PDMAEMA grafts[J]. Colloids and Surfaces B: Biointerfaces, 2008, 67(2): 245-252
    [89] Deng, L. D., Zhai, Y. L., Lin, X. N., Jin, F. M., He, X. H., Dong, A. J. Investigation on properties of re-dispersible cationic hydrogel nanoparticles[J]. Eur Polym J, 2008, 44(4): 978-986
    [90] Emileh, A., Vasheghani-Farahani, E., Imani, M. Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate)[J]. Eur Polym J, 2007, 43(5): 1986-1995
    [91] Delville, A. (N,V,T) Monte Carlo Simulations of the Electrostatic Interaction between Charged Colloids:Finite Size Effects[J]. The Journal of Physical Chemistry B, 1999, 103(39): 8296-8300
    [92] Dijkstra, M., Hansen, J. P., Madden, P. A. Gelation of a Clay Colloid Suspension[J]. Phys Rev Lett, 1995, 75(11): 2236
    [93] Ramsay, J. D. F. Colloidal properties of synthetic hectorite clay dispersions : I. Rheology[J]. J Colloid Interf Sci, 1986, 109(2): 441-447
    [94] Saunders, J. M., Goodwin, J. W., Richardson, R. M., Vincent, B. A Small-Angle X-ray Scattering Study of the Structure of Aqueous Laponite Dispersions[J]. The Journal of Physical Chemistry B, 1999, 103(43): 9211-9218
    [95] Mujumdar, S. K., Siegel, R. A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide[J]. Journal of PolymerScience Part A: Polymer Chemistry, 2008, 46(19): 6630-6640
    [96] Zhu, M., Xiong, L., Wang, T., Liu, X., Wang, C., Tong, Z. High tensibility and pH-responsive swelling of nanocomposite hydrogels containing the positively chargeable 2-(dimethylamino)ethyl methacrylate monomer[J]. React Funct Polym, 70(5): 267-271
    [97] Y?ld?z, B., I??k, B., K??, M., Birgül, ?. pH-sensitive dimethylaminoethyl methacrylate (DMAEMA)/acrylamide (AAm) hydrogels: Synthesis and adsorption from uranyl acetate solutions[J]. J Appl Polym Sci, 2003, 88(8): 2028-2031
    [98] Brahim, S., Narinesingh, D., Guiseppi-Elie, A. Release Characteristics of Novel pH-Sensitive p(HEMA-DMAEMA) Hydrogels Containing 3-(Trimethoxy-silyl) Propyl Methacrylate[J]. Biomacromolecules, 2003, 4(5): 1224-1231
    [99] Haraguchi, K., Song, L. Microstructures Formed in Co-Cross-Linked Networks and Their Relationships to the Optical and Mechanical Properties of PNIPA/Clay Nanocomposite Gels[J]. Macromolecules, 2007, 40(15): 5526-5536
    [100] Maekawa, E., Mancke, R. G., Ferry, J. D. Dynamic Mechanical Properties of Cross-Linked Rubbers. II. Effects of Cross-Link Spacing and Initial Molecular Weight in Polybutadiene1[J]. The Journal of Physical Chemistry, 1965, 69(9): 2811-2817

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700