生物质热裂解实验研究及热裂解产物利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物质能源的开发利用是缓解我国能源和环境压力,建立可持续发展能源系统的有效措施,其中,生物质热裂解技术由于可以将低品位的生物质能转化为高品质的液体燃料或者高附加值的化工原料而受到广泛关注,它不仅有利于改善我国目前广大农村地区商品能源紧张的局面,提高农村生物质能的利用效率,为农村地区因地制宜地提供清洁方便能源,而且有利于改善我国目前以化石燃料为主的能源生产和消费结构。基于此目的,本文对生物质热解机理以及生物质热解产物的综合利用进行了系统的研究。
     本文首先对生物质利用意义、利用方式以及国内外生物质能利用现状和未来的发展趋势进行了归纳总结,并对生物质热裂解领域的研究进展进行了详细阐述。
     然后在热辐射加热机理反应器上,全面研究了片状白松热裂解气体、生物油和焦炭产物随辐射源温度、气相停留时间、物料厚度等反应条件的影响规律;同时对比研究了生物质主要组分纤维素的热解规律,为深入了解生物质热裂解的机理提供了坚实的基础。
     本文采用气相色谱与红外光谱仪联用(GC-FTIR)对以生物质为原料的生物油成分进行了分析,同时使用色质联机(GC-MS)分析以纤维素为原料的生物油组分,分析了工况参数对生物油特性的影响规律,指出生物油因其组分繁多复杂、含氧量高,需进一步改性后才可使用。并分析得出生物质的不同组分对于生物油成分的贡献各不相同。
     生物质热解固体产物焦炭的产量在20%左右,本文对不同工况下焦炭特性进行了分析,并对通过活化处理使热解炭孔隙结构得到充分发展以获得附加值更高的产品进行了试验研究,结果发现CO_2活化后焦炭的比表面积由原来的7.449m~2/g增加到768.3m~2/g,具有作为制备吸附活性炭的原料的潜力。
     在改进的机理试验台上研究了生物质的另一主要组分木质素的热解规律,着重研究了温度对其热解规律的影响;采用GC-FTIR分析了木质素热解油的主要组分及其相对含量;对比纤维素热裂解试验结果,纤维素对裂解油的生成贡献最大,而木质素主要是生成轻质气体和焦碳。
     本文最后考虑到生物质热解气体产物的深层次利用,提出了利用热解气体中的H_2和CO采用一步法来合成制取具有多种用途的可燃性气体二甲醚(DME);对合成气制取二甲醚进行了初步的经济性分析发现DME在替代动力燃料方面具有很大潜力;并在自行开发的浆态床合成二甲醚试验台上进行了初步的试验研究,为以后进一步的试验研究提供了参考。
The exploit and utilization of biomass energy is an effective method for relieving the pressures of conventional energy resources shortage and environment pollution in China. Biomass pyrolysis technology which can convert low-quality biomass to higher quality liquid fuel or high add-value chemical material have been pay great attention. It can not only relieve the demand press of power fuel and improve the using efficiency of biomass energy in China rural area, but also can improve the structure of china energy. According to this purpose, a systemic mechanism research on the biomass pyrolysis and the utilization of the pyrolysis products has been carried out.
    First of all, an introduction of current state of biomass utilization and the future development trend was given., then the development and current research of biomass pyrolysis were introduced.
    A series of experiments about white-pine pyrolysis were carried out in a glass reactor. The effect of temperature, residence time and the height of sample on the pyrolysis products distributions was investigated. This research results provided the foundation for the mechanism analysis of biomass pyrolysis.
    The determination of the chemical composition of bio-oil from white-pine was performed according to GC-FTIR analysis, on the other hand, the compositon of bio-oil from cellulose pyrolysis was analyzed by GC-MS. The effect of the process parameters on the character of bio-oil was investigated. The results showed that the further upgrading of bio-oil was necessary because of some undesired characteristics such as high oxygen content.
    The char yield of biomass pyrolysis was about 20wt%, and the characteristic of the char was analyzed. Char activations were studied in this paper, the BET of the char was increased from 7.449m2/g to 768.3m2/g after the activation process with CO2 activating agent, so the char with the activation process has the potential as the raw material of the active carbon production.
    Experimental research on lignin flash pyrolysis was carried out on our bench unit, whose heat was supplied by infrared radiation. The effect of temperature on the pyrolysis product yield was investigated. The components of the tar, which was produced from lignin, were determined by GC-FTIR.Compared with experimental result based on cellulose pyrolysis, cellulose contributed the most part into tar production from biomass, however, lignin would produce gas and char rather than tar.
    Considering the further utilization of the gas product of biomass pyrolysis, the paper put forward that the production of DME was achieved through the one-step method using the hydrogen and carbon monoxide, which were obtained from the gas products. The economic . analysis of the production of DME by synthesis gas was studied. The experiment on the production of DME using synthesis gas were carried out, and the results provided reference material for the further research.
引文
1.生物质能简介.http://www.newenergy.org.cn/energy/biomass/overview/jianjie.htm
    2.世界能源理事会编.新的可再生能源—未来发展指南.北京:海洋出版社,1998.
    3. NREL. Renewable Data Overview Renewable Energy Annual 1997,Volume 1,October 1997
    4.可再生能源网.www.crein.org.cn
    5.中华人民共和国国家发展计划委员会基础产业发展司编.中国新能源与可再生能源 1999白皮书.中国计划出版社,2000.4
    6.中国农业部/美国能源部项目专家组.中国生物质资源可获得性评价.北京:中国环境科学出版社,1998
    7.中国农业部/美国能源部项目专家组.中国生物质能转换技术发展与评价.北京:中国环境科学出版社,1998
    8.杨立忠,杨钧锡,别义勋.新能源技术.北京:中国科学技术出版社,1994
    9.胡宏义.联合国开发计划署(UNDP)/全球环境基金(GEF)加速中国可再生能源商业化能力建设项目启动.中国能源,1999,4:44
    10.张无敌,字尚斌,周长平.生物质能—未来能源的希望,能源研究和利用,1995,4:3~6
    11.顾树华,段茂盛.中国生物质资源概况及其能源利用.吉林:小型生物质发电技术研讨会,1998,1:1~5
    12.陈文七.中国新能源和可再生能源投资市场及其发展.中国能源,1997,3:45~48
    13. D. G. Streets, S. T. Waldhoeff. Biofuel use in asia and acidifying emissions. Energy, 1998, 23(12):1029~1042
    14.W.Palz.新能源与可再生能源在未来能源系统中的地位.能源工程,1997,1:35~38
    15.周北驹.发展新能源和可再生能源对可持续发展战略具有重大现实意义.中国能源,1997,3:16~18
    16.国家经贸委资源司.“九五”新能源和可再生能源产业化发展计划.农村能源,1996,66(2):3~6
    17.中国21世纪议程.可持续的能源生产与消费(第13章)http://www.xj.cei.gov.cn/xjhbj/china21-13.html,1999
    18. R. Hellgren, M. Lindblom, L. Andersson, I. Bjerle. High-temperature pyrolysis of biomass. In: Energy from biornass and waste xv, edited by D. L. Klass, institute of gas technology, Chicago, 1991
    19. J. Reina, E. Velo, L. Puigjaner. Kinetic study of the pyrolysis of waste wood. Ind. Eng. Chem. Res. 1998,37:4290~4295
    20. Macolm Slesser, Chris Lewis. Biological energy resources. London:E. & F. N. Spon Ltd.,1982
    21.陈贵烽,曲思建,庞雁原.煤炭加工与综合利用.生物质工业型煤的技术特点及问题探讨,1994(2):13~17
    22. Kleisa K, Lehmann J, Verfuss F, et al, Development of environmentally friendly briquettes.Glueckauf-Forschungshefte, 1994,55(4/5): 117~122
    23. Beker U. G. Briquettting of Afsin-Elbistan lignite of Turkey using different waste materials. Fuel
    
    Processing Technology,1997,51 (1/2): 137~144
    24.王方,韩觉民.生物质工业型煤的性能及成型机.煤炭加工与综合利用,1996(4):26~28
    25.朱杰.工业锅炉的新型燃料—植物质型煤.煤矿环境保护,1997,11(3):16~18
    26.毛玉如,骆仲泱,蒋林等.生物质型煤技术研究.煤炭转化,2001,24(1):21~25
    27.吴创之,罗曾凡,阴秀丽.农业生物质气化发电技术应用分析.新能源,1995,17(5):5~11
    28.张无敌,刘士清,周斌等.我国农业有机废弃物资源及沼气潜力.自然资源,1997,1:67~71
    29.方真,曾德超.生物能源利用技术的研究和发展.中国能源,1991,11:9~11
    30.李文,李保庆.生物质的热解与液体产物的精制.新能源,1997,19(10):22~28
    31.何方,王华,金会心.生物质液化制取液体燃料和化学品.能源工程,1999,5:14~17
    32. Burkhard Klopries et al.Catalytic hydroliquefaction of biomass.Fuel, 1990, 69 (4): 448~455
    33.别如山,鲍亦令,杨励丹,陆慧林,李炳熙,刘满.燃生物质流化床锅炉.节能技术,1997,2:5~7.
    34.丁素珍,王孟杰.生物质能的开发与利用,农业工程学报,1993,9(4):51~57
    35. A.V. Bridgewaster, G. V. C. Peacocke. Fast pyrolysis processes for biomass. Renewable & Sustainable Energy Reviews, 2000, 4:1~73
    36.别如山,李炳熙,陆慧琳等.燃生物废料流化床锅炉.动力工程增刊,1999,19:236~240
    37.刘石彩,蒋剑春,陶渊源等.环保型生物质成型炭制造技术研究.2002中国生物质能技术研讨会.2002年十月,广州,P159~162
    38.袁振宏,李学凤等.我国生物质能技术产业化基础的研究.2002中国生物质能技术研讨会.2002年十月,广州,P1~18
    39.董良杰.生物质热裂解技术及其反应动力学研究.沈阳农业大学博士学位论文,1997
    40.王树荣.生物质热裂解制油的试验与机理研究浙江大学博士论文,1999
    41.中国21世纪议程优先项目计划,4-5C生物质能开发利用及示范工程WWW.acca21.org.cn
    42.廖艳芬.纤维素热裂解机理试验研究.浙江大学博士论文,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700