节杆菌黄嘌呤氧化酶的发酵、纯化、特性及基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黄嘌呤氧化酶(xanthine oxidase,EC1.2.3.22)是嘌呤代谢途径的关键酶,广泛分布于各种生物体的组织和细胞中,主要催化次黄嘌呤氧化生成黄嘌呤,进一步氧化黄嘌呤生成尿酸。临床上可用于制备免疫抗体、肿瘤抑制剂和细胞缺血性再灌注损伤等疾病的检测。
     根据辣根过氧化物酶和黄嘌呤氧化酶的催化反应特性,本文提出了以偶联辣根过氧化物酶-苯酚-4-氨基安替比林反应显色,检测黄嘌呤氧化酶活力的新方法。最佳测定条件为:辣根过氧化物酶7000U·L~(-1),4-氨基安替比林1 mmol·L~(-1),苯酚6 mmol·L~(-1),黄嘌呤1 mmol·L~(-1)溶于50 mmol·L~(-1)Tris-HCL缓冲液(pH8.4);反应温度为37℃,保温时间为20min;检测波长为508nm。本方法测定XOD酶活的线性范围为5.0~100.0U·L~(-1),线性关系良好(r=0.9992),检出限为1.3U·L~(-1)。
     以黄嘌呤为唯一碳氮源,采用富集分离培养方法,在国内首次筛选获得一株产黄嘌呤氧化酶细菌。经生理生化鉴定和16S rDNA序列同源分析,确定其属于微球菌科节杆菌属,命名为Arthrobactersp.XL26,GenBank接受号为EF532600。此菌在种子培养基和发酵基本培养基中的生长情况表明,达到最高菌体生长量的培养时间分别为24h和42h,发酵培养45h可达最高产酶活力,表明该菌发酵合成黄嘌呤氧化酶基本属于生长偶联型。
     通过单因素扫描、Plackett-Burman、Box-Benken试验设计和响应面分析法优化了产酶发酵条件和培养基组成。最适发酵条件为:初始培养基pH8.5,培养温度32℃,接种量10%,摇瓶培养基装液比例30%,转速210 r·min~(-1);最适培养基组成为(g·L~(-1)):乳糖:葡萄糖(3:1)12.0,(NH_4)_2SO_4 4.0,酵母粉2.13,黄嘌呤2.57,FeSO_4·7H_2O 0.5×10~(-3),MgSO_4·7H_2O 0.2×10~(-3),CaCl_2 5.33×10~(-3),KH_2PO_4 0.94,Na_2HPO_4 5.92。优化后每升发酵液产XOD可达409.6U,而且比酶活比初始基本发酵提高了15倍。进一步采用间歇补料,产酶量又增加了35%。
     经过超声破碎、硫酸铵分级盐析、PEG6000/(NH_4)_2SO_4双水相萃取、Butyl-Sepharose 4B疏水层析、DEAE Sepharose CL-6B FF离子交换、Phenyl Sepharose CL-4B疏水层析和Sephacryl S-200 HR凝胶过滤,从Arthrobacter sp.XL26中分离得到黄嘌呤氧化酶,其比酶活提高了270倍,达24 U·mg~(-1),回收率为11%。SDS-PAGE确定此蛋白含有两个大小不等的亚基,相对分子量分别约为55.48kDa和85.67 kDa。推断该酶为两个不同亚基构成的二聚体分子(α_2β_2)。
     酶学性质研究表明,来源于Arthrobacter sp.XL26的黄嘌呤氧化酶最适反应pH为8.0,最适温度为55℃;在pH7.0-9.0 Tris-HCl缓冲液中于25℃保温16h,剩余相对酶活高于80%;在35℃以下保温30min,酶活保持100%。以黄嘌呤和次黄嘌呤为底物的表观米氏常数分别为0.032mmol·L~(-1)和0.133mmol·L~(-1)。金属离子Cu~(2+)和pb~(2+)对XOD有强烈的抑制作用,Ag~+和Hg~(2+)完全抑制了酶活性;而Mn~(2+)、Co~(2+)和Ba~(2+)对XOD的酶活性略有激活作用。化学物质中水杨酸钠、组胺、酒石酸钾钠、甘露醇、丙三醇、二硫苏糖醇、聚乙烯吡咯烷酮(PVP)、聚乙二醇(PEG)6000及表面活性剂Triton X-114对XOD酶均为XOD的激活剂,可显著提高酶反应的速率;叠氮钠和尿素可强烈抑制XOD酶活性;山梨醇和甘氨酸可以极大地提高酶热稳定作用。
     根据GenBank、EMBL和SWISS-PROT报导的黄嘌呤氧化酶蛋白保守序列,设计简并引物,以Arthrobacter sp.XL26基因组为模板,采用简并PCR、反向PCR和巢式PCR技术扩增获得编码黄嘌呤氧化酶A、B亚基基因的全长序列分别为1542bp和2355bp,Genbank上的登录号分别为EF648005和EF648204,推测其各编码513个氨基酸残基的A亚基肽链和784个氨基酸残基的B亚基肽链。同源性比对显示,xodA和xodB推导的氨基酸序列分别与来源于Acinetobacter baumannii ATCC 17978的黄嘌呤脱氢酶小亚基和大亚基同源性达到了92%和84%。蛋白质结构在线分析表明,Arthrobactersp.XL26黄嘌呤氧化酶的A、B亚基均属于(α+β)型蛋白,其中[2Fe-2S]结合位点和FAD结合域位于XODA肽链,而XODB肽链则含有钼蝶呤结合域及醛氧化酶/黄嘌呤脱氢酶特有的a/b锤头结合域。
Xanthine oxidase (XOD, EC 1.2.3.22) is a complex molybdoflavoenzyme that exists in as an available oxidoreductase in all kinds of organisms. It is also a key enzyme in the catabolism of purines path way, which mainly catalyzes the conversion of hypoxanthine and xanthine to xanthine and uric acid, respectively. The enzyme has broad substrate specificity, except catalyzing the oxidation of purine, pyrimidine, pterine, and aldehyde, it catalyses 7,8-dihydropterin to 7,8-dihydroxanthopterin, xanthopterin to leucopterin, and pterin to isoxanthopterin or drosopterin as well. It has been clinically used as anti-tumor and clinical diagnosis of reperfusion injury.
     A novel method to determine the activity of xanthine oxidase through the chromogenic reaction of 4 -aminoantipyrine (AAP), phenicacid (PA) and hydrogen peroxide, which was produced via the oxidation of xanthine catalyzed by XOD, under the help of horseradish peroxidase (HRP), was proposed. The influences of temperature、pH and amount of substrate on the activity of XOD were investigated. The optimal conditions for XOD activity assay were obtained as follows: HRP (7000U·L~(-1)), AAP (1mmol·L~(-1)), PA (6mmol·L~(-1)) and xanthine (1mmol·L~(-1)) were dissolved in 50 mmol·L~(-1) Tris-HCl buffer solution (pH8.4), the reaction temperature was 37℃, the reaction time was 20 min, the detective wavelength was 508nm. Under the conditions mentioned above, the linear range of calibration was between 5.0 U·L~(-1) and 100.0 U·L~(-1), and the detection limit was 1.3 U·L~(-1). The above system is a potential alternative method to determine the activity of XOD in the areas either for laboratory assay or clinical diagnosis.
     Using xanthine as sole carbon, nitrogen, energy sources and inductor, a xanthine oxidase producer was isolated from the soil. The strain was characterized not only by morphologic and biochemiccal properties, but also by clone and sequence of its 16S rDNA. As a result, the organism has been identified as Arthrobacter and named Arthrobacter sp.XL26 whose GenBank acceptor number is EF532600.
     The effects of inductor, carbon and nitrogen sources on XOD production by Arthrobacter sp. XL26 were investigated. The medium required for XOD production was optimized with statistics based experimental designs. The important medium components, identified by initial screening method of Plackett-Burman, were xanthine, yeast extract and CaCl_2. Box-Behnken and response surface methodology were then employed to further optimize XOD production. The optimal compositions for higher production of XOD were (g·L~(-1)): glucose 12.0, yeast extract 2.13, xanthine 2.57, (NH_4)_2SO_4 4.0, KH_2PO_4.3H_2O 0.94, Na_2HPO_4 5.92; CaCl_2 5.33×10~(-3), MgSO_4.7H_2O 0.2×10~(-3), FeSO_4.7H_2O 0.5×10~(-3). Using this statistical optimization method, the XOD was found to increase from 27.4 U·L~(-1) to 409.6 U·L~(-1).
     XOD has been purified to a single protein band from cell-free extracts of Arthrobacter sp. XL26 via procedures of ultrasonication, ammonium sulfate fractionation, Butyl-Sepharose 4B chromatography, DEAE Sepharose CL-6B FF chromatography, Phenyl Sepharose CL-4B chromatography and Sephacryl S-200 HR gel filtration. The enzyme specific activity was found to increase to 270-fold and reache 24 U·mg~(-1) with a final recovery rate of 11%. The native PAGE and SDS-PAGE show that the enzyme has a molecular weight of 260,000 and consists of two heterogeneous subunits, xodA and xodB, with a molecular weight of 55,480 and 85,670, repectively.
     The enzyme shows the highest activity at 55℃and pH 8.0. And it is still stable between pH 7 and 9 at 25℃for 16h or below 35℃at pH 8 for 30 min. K_m values of the enzyme for hypoxanthine and xanthine are0.133 and 0.032 mM, respectively. The activity can be stimulated by Mn~(2+), Co~(2+)and Ba~(2+), and inhibited by Fe~(2+), Cu~(2+), Pb~(2+), Ag~+and Hg~(2+) at a concentration of 2mM or more. Among the compounds tested, sodium salicylate, histamine, triton, tween 80, rochelle salt, mannitol, sorbitol, glycerine, PVP, DTT and PEG6000 are activity stimulator. The activity can be strongly inhibited by NaN_3 and urea as well.
     The xodA and xodB from Arthrobacter sp. XL26, encoding the heterodimeric molybdo-iron-sulfur-protein xanthine oxidase, were cloned and sequenced by the technology of inverse PCR and nest PCR. The results show these two genes consist of 1542 bp and 2355 bp and encode two peptides with 513 and 784 amino acids, whose sequences acceptor number in GenBank are EF648005 and EF648204 respectively. The deduced amino acid sequences of xodA and xodB show homologies of 92% and 84% comparing to the small and large subunits of Acinetobacter baumannii ATCC 17978 xanthine dehydrogenases, respectively. Two-dimensional structure models indicate its [2Fe-2S] and FAD-binding domains locate in xodA, whereas Mo-binding and a/b hammer-head domain of aldehyde oxidase or xanthine dehydrogenase seat in xodB.
引文
[1] Hille R. The mononuclear molybdenum enzymes. Chem Rev, 1996,96: 2757 - 2816.
    
    [2] Woolfolk C A, Downard J S. Distribution of Xanthine Oxidase and Xanthine Dehydrogenase Specificity Types AmongBacteria. Journal of Bacteriology, 1977,130:1175 -1191.
    
    [3] Motonaka J, Miyata K, Fauliner L R. Micro Enzyme-Sensor with Osimium Complex and a Porous Carbon forMeasuring Uric Acid. Anal Lett, 1994,27:189-201.
    
    [4] Chei M, Mihailescu M, Levinson D. Pathogenesis of hyperuricemia: recent advances. Curr RheumatolRep. 2002,4(3): 270-274.
    
    [5] Muraoka S, Miura T. Inhibition by uric acid of free radicals that damage biological molecules. Pharmacol Toxicol,2003,93(6): 284-289.
    
    [6] Vogels G D, Van der Drift C. Degradation of purines and pyrimidines by microorganisms. Bacteriology Rev,1976,40(2): 403-468.
    
    [7] Margolin Y, Behrman H R. Xanthine oxidase and dehydrogenase activities in rat ovarian tissues. Am J PhysiolEndocrinol Metab, 1992,262: E173 - E178.
    
    [8] Chris A P. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system.Chemico-Biological Interactions 129 (2000) 195 - 208.
    
    [9] Dupont G P, Huecksteadt T P, Marshall B C, et al. Regulation of xanthine dehydrogenase and xanthine oxidaseactivity and gene expression in cultured rat pulmonary endothelial cells. J Clin Invest, 1992,89(1): 197- 202.
    
    [10] Pfeffer K D, Huecksteadt T P, Hoidal J R, Xanthine dehydrogenase and xanthine oxidase activity and geneexpression in renal epithelial cells. Cytokine and steroid regulation. Immunol, 1994,153:1789-1795.
    
    [11] Masao N, Hideo K, Isao Y. One-Electron and Two-Electron Reductions of Acceptors by Xanthine Oxidase andXanthine Dehydrogenase. J. Biochem. (Tokyo), 1978; 83:9-17.
    
    [12] Tomoko N, Ken 0, Yuko K, et al. Mechanism of the Conversion of Xanthine Dehydrogenase to Xanthine Oxidase:Identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthinedehydrogenase mutant. J Biol Chem, 2005,280:24888 - 24894.
    
    [13] Poss W B, Huecksteadt T P, Panus P C, et al. Regulation of xanthine dehydrogenase and xanthine oxidase activityby hypoxia. Am J Physiol Lung Cell Mol Physiol, 1996,270:941 - 950.
    
    [14] Takeshi N. The Conversion of Xanthine Dehydrogenase to Xanthine Oxidase and the Role of the Enzyme inReperfusion Injury. J Biochem (Tokyo), 1994; 116:1 -6.
    
    [15] McKelvey T G, Hollwarth M E, Granger D N, et al. Mechanisms of conversion of xanthine dehydrogenase to xanthineoxidase in ischemic rat liver and kidney. Am J Physiol Gastrointest Liver Physiol, 1988,254:753 - 761.
    
    [16] Lindsay S, Liu T H, Xu J A, et al. Role of xanthine dehydrogenase and oxidase in focal cerebral ischemic injury to rat.Am J Physiol Heart Circ Physiol, 1991, 261:2051.
    
    [17] Schimpl G, Pabst M A, G Feierl, et al. A tungsten supplemented diet attenuates bacterial translocation in chronicportal hypertensive and cholestatic rats: role of xanthine dehydrogenase and xanthine oxidase. Gut, 1999, 45: 904 -910.
    
    [18] Maia L, Vala A, Mira L. NADH oxidase activity of rat liver xanthine dehydrogenase and xanthine oxidase-contributionfor damage mechanisms. Free Radic Res, 2005; 39(9): 979 - 986.
    
    [19] Paolo M. Purification and some properties of xanthine dehydrogenase from wheat leaves. Plant Science, 1998,134:89-102.
    
    [20] Eric W T. Intercellular Nodule Localization and Nodule Specificity of Xanthine Dehydrogenase in Soybean. PlantPhysiology, 1985, 77:1004-1009.
    
    [21] Pavel S, Jitka F, Marek S, et al. Xanthine dehydrogenase of pea seedlings: a member of the plant molybdenumoxidoreductase family. Plant Physiol Biochem, 2002,40:393 - 400.
    
    [22] Christine H, Robert H, Ralf R M, et al. Tandem Orientation of Duplicated Xanthine Dehydrogenase Genes fromArabidopsis thaliana: differential gene expression and enzyme activities. J Biol Chem, 2004,279:13547 -13554.
    
    [23] Rafael P V, Josefa M A, Jacobo C, et al. Purification and substrate inactivation of xanthine dehydrogenase fromChlamydomonas reinhardtii. Biochimica et Biophysica Acta, 1992,1117(2): 159 -166.
    
    [24] Andres R Y Aldehyde oxidase and xanthine dehydrogenase from wild-type Drosophila melanogaster andimmunologically cross-reacting material from ma-1 mutants. European Journal of Biochemistry, 1976,62:591-600.
    
    [25] Thomas J H, Edward J D. Purification and characterization of xanthine dehydrogenase from Locusta migratoria L.Insect Biochemistry, 1979,9(6): 583 - 588.
    
    [26] Gene R N, Kirby H E P. Bovine milk xanthine oxidase. Biochimica et Biophysica Acta, 1978,526(2): 328 - 344
    
    [27] Sarnesto A, Linder N, Raivio KO. Organ distribution and molecular forms of human xanthine dehydrogenase/xanthineoxidase protein. Lab Invest, 1996,74(1): 48 - 56.
    
    [28] McManaman J L, Neville M C, Wright R M. Mouse Mammary Gland Xanthine Oxidoreductase. Archives ofBiochemistry and Biophysics, 1999, 371(2): 308-316.
    
    [29] McManaman J L, Shellman V, Wright R M, et al. Purification of Rat Liver Xanthine Oxidase and XanthineDehydrogenase by Affinity Chromatography on Benzamidine-Sepharose. Archives of Biochemistry and Biophysics.1996, 332(1): 135-141.
    
    [30] Lyon E S, Garrett R H. Regulation, purification, and properties of xanthine dehydrogenase in Neurospora crassa. JBiol Chem, 1978,253: 2604 - 2614.
    
    [31] Kerstin k, Jan R A. Xanthine Dehydrogenase and A 2-Furoyl-Coenzyme Dehydrogenase from Pseudomonas putidaFul. Journal of bacteriology, 172(10): 5999 - 6009.
    
    [32] Katja P, Christoph C, Jiirgen H, et al. Xanthine dehydrogenase from Pseudomonas putida 86. Biochimics etBiophysics Acts, 2001,1544:151 -165.
    
    [33] Woolfolk C A. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonasputida 40. J Bacteriol, 1985,163:600 - 609.
    
    [34] Thomas S, Annette R, Jan R A. Selenium-containing xanthine dehydrogenase from Eubacterium barken. Eur JBiochem, 1999,264:862 - 871.
    
    [35] Gremer L, Meyer O. Characterization of xanthine dehydrogenase from the anaerobic bacterium Veillonella atypicaand identification of a molybdopterin-cytosine- dinucleotide-containing molybdenum cofactor, Eur J Biochem, 1996,238: 862.
    
    [36] Silke L, Amy L S, Kiyohiko I, et al. The Role of Active Site Glutamate Residues in Catalysis of Rhodobactercapsulatus Xanthine Dehydrogenase. J Biol Chem, 2004,279:40437 - 40444.
    
    [37] William T S. Regulation of Purine Hydroxylase and Xanthine Dehydrogenase from Clostridium purinolyticum inResponse to Purines, Selenium, and Molybdenum. J Bacteriol, 2002,184:2039 - 2044.
    
    [38] Nikolai V I, Frantisek H, Manuela T, et al. Factors involved in the assembly of a functional molybdopyranopterincenter in recombinant Comamonas acidovorans xanthine dehydrogenase. Eur J Biochem, 2003,270:4744 - 4751.
    
    [39] Woolfolk C A, Downard J S. Bacterial xanthine oxidase from Arthrobacter S-2. J Bacteriol, 1978,135:422 - 428.
    
    [40] Tatsuhiko O, Yasuto W. Purification and Properties of Xanthine Dehydrogenase from Streptomyces cyanogenus. JBiochem, 1979,86(1): 45-53.
    
    [41] Susan T S, Rajagopalan K V, Philip H. Purification and Properties of Xanthine Dehydrogenase from M/crococcuslactilyticus. J Biol Chem, 1967,242:4108 - 4117.
    
    [42] Woolfolk C A, Downard J S. Distribution of xanthine oxidase and xanthine dehydrogenase specificity types amongbacteria. J Bacteriol, 1977,130:1175-1191.
    
    [43] Sin I L. Purification and properties of xanthine dehydrogenase from Pseudomonas acidovorans. Biochim BiophysActa, 1975,410:12-20.
    
    [44] Tatsuhiko O, Yasuto W. Purification and Properties of Xanthine Dehydrogenase from Pseudomonas synxantha. JBiochem, 1979, 86:45-53.
    
    [45] Woolfolk C A, Woolfolk B S, Whiteley H R. 2-Oxypurine Dehydrogenase from Micrococcus aerogenes. I. isolation,specificity, and some chemical and physical properties. J Biol Chem, 1970,245:3167 - 3178.
    
    [46] Eric G B. Xanthine oxidase: purification and properties. J Biol Chem, 1939,128:51 - 67.
    
    [47] Herman M K. Differential spectrophotometry of purine compounds by means of specific enzymes. I. determinationof hydroxypurine compounds. J Biol Chem, 1947,167:429 - 443.
    
    [48] Horecker B L, Leon A H. The reduction of cytochrome c by xanthine oxidase. J Bio Chem, 1949,178: 683 - 690.
    
    [49] Dixon J M, Paulley J W. Bacteriological and histological studies of the small intestine of rats treated withmecamylamine. Gut, 1963,4:169 -173.
    
    [50] Fried R. Enzymatic oxidation of diethyldithiocarbamate by xanthine oxidase and its colorimetric assay. Ann NY AcadSci, 1976,273:212-218.
    
    [51] Oliver H. L, Otto A B, Elizabeth J C. Pterine oxidase. J Biol Chem, 1949,180:399 - 410.
    
    [52] Guilbault G G. Symposium on bioelectrochemistry of microorganisms. 3. Electrochemical analysis of enzymaticreactions. Microbiol Mol Biol Rev, 1966,30:94 -100.
    
    [53] Charles R, Dan A. R, Westerfeld W W. The determination of xanthine dehydrogenase in chicken tissues. J Biol Chem,1951,193:649-657.
    
    [54] Weinstein A, Medes G, Litwack G. Isotopic method fortyrosine transaminase activity. Anal Biochem, 1967, 21(1): 86-97.
    
    [55] Guilbault G G, Brignac P, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analyticalapplications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal Chem, 1968,40(1): 190 -196.
    
    [56] Heinz F, Reckel S, Kalden J R. A new spectrophotometric assay for enzymes of purine metabolism. I. Determinationof xanthine oxidase activity. Enzyme, 1979,24(4): 239-246.
    
    [57] Cascante M, Lopez-Cabrera A, Canela E I. Experimental strategy to study the pH dependence of the kinetic behaviorof enzymes: practical application to chicken liver xanthine dehydrogenase. Arch Biochem Biophys, 1993,300(1): 42-48.
    
    [58] Battelli M G, Abbondanza A, Musiani S, et al. Determination of xanthine oxidase in human serum by a competitiveenzyme-linked immunosorbent assay (ELISA). Clin Chim Acta, 1999,281(1-2): 147 -158.
    
    [59] Atlante A, Valenti D, Gagliardi S, et al. A sensitive method to assay the xanthine oxidase activity in primary cultures ofcerebellar granule cells. Brain Res Brain Res Protoc, 2000,6(1-2): 1 - 5.
    
    [60]吴晓生,李龙官.比色法测定黄嘌呤氧化酶[J].生物化学与生物物理进展,1986,5:65-67.
    
    [61]梁毅,汪存信,屈松生等.微量热法研究黄嘌呤氧化酶反应[J].化学世界.1996,164-166.
    
    [62]闻平.MTS/PMS比色法测定血清黄嘌呤氧化酶[J].陕西医学检验,2000,15(1):10-11.
    
    [63] Battelli M G, Lorenzoni E, Stripe F. Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase). Purification,interconversion and some properties. Biochem J, 1973,131(2): 191 -198.
    
    [64] Waud W R, Brady F O, Wiley R D, et al. A new purification procedure for bovine milk xanthine oxidase: effect ofproteolysis on the subunit structure. Arch Biochem Biophys, 1975,169(2): 695 - 701.
    
    [65] Nathans G R, Hade E P. Bovine milk xanthine oxidase: purification by ultrafiltration and conventional methods whichomit addition of proteases: some criteria for homogeneity of native xanthine oxidase. Biochim Biophys Acta, 1978,526(2): 328-344.
    
    [66] Nishino T, Nishino T, Tsushima K. Purification of highly active milk xanthine oxidase by affinity chromatography onSepharose 4B/folate gel. FEBS Lett, 1981,131(2): 369 - 372.
    
    [67] Sullivan C H, Mathe I H, Greenwalt D E, et al. Purification of xanthine oxidase from the fat-globule membrane ofbovine milk by electrofocusing. Mol Cell Biochem, 1982,44(1): 13-22.
    
    [68] Spanning-van R J, Wansell-Bettenhaussen C W, Oltmann L F, et al. Extraction and purification of molybdenumcofactorfrom milk xanthine oxidase. Eur. J. Biochem., 1987,169:349-356.
    
    [69] Spitsberg V L, Gorewit R C. Solubilization and purification of xanthine oxidase from bovine milk fat globulemembrane. Protein Expr Purif, 1998,13(2): 229 - 234.
    
    [70] Ozer N, Muftuoglu M, Ataman D, et al. Simple, high-yield purification of xanthine oxidase from bovine milk. J BiochemBiophys Methods, 1999,39(3): 153 -159.
    
    [71] Eger B T, Okamoto K, Enroth C, et al. Purification, crystallization and preliminary X-ray diffraction studies of xanthinedehydrogenase and xanthine oxidase isolated from bovine milk. Acta Crystallogr D Biol Crystallogr, 2000, 56(Pt 12):1656-1658.
    
    [72]张尔贤,林文华,俞丽君等.牛奶黄嘌呤氧化酶的纯化及性质研究[J].汕头大学学报(自然科学版), 1998,13(1):25-31.
    
    [73] Vincent M, Philip E. B, Hirochika K, et al. Studies on Milk Xanthine Oxidase. Some spectral and kinetic properties. JBiol Chem, 1969, 244:1682 -1691.
    
    [74] Carrasco E, Martin-Esteve J, Calvet F. Hepatic xanthine dehydrogenase. I. Purification and properties of the humanand pig hepatic xanthine dehydrogenase. Rev Esp Fisiol, 1968,24(4): 193 - 202.
    
    [75] Krenitsky T A, Spector T, Hall W W. Xanthine oxidase from human liver: purification and characterization. ArchBiochem Biophys, 1986, 247(1): 108-119.
    
    [76] Graham K, Fleming J E, Young R, Bensch K G. Preparation of antibodies against xanthine oxidase from human milk.Int J Biochem, 1989,21(7): 715 - 722.
    
    [77] Harrison R, Abadah S, Benboubetra M. Purification of xanthine oxidase from human milk. Biochem Soc Trans, 1991,19(3): 332S.
    
    [78] Abadeh S, Killacky J, Benboubetra M, et al. Purification and partial characterization of xanthine oxidase from humanmilk. Biochim Biophys Acta, 1992,1117(1): 25-32.
    
    [79] Moriwaki Y, Yamamoto T, Suda M, et al. Purification and immunohistochemical tissue localization of human xanthineoxidase. Biochim Biophys Acta, 1993,1164(3): 327 - 330.
    
    [80] Abadeh S, Case P C, Harrison R. Purification of xanthine oxidase from human heart. Biochem Soc Trans, 1993;21(2): 99S.
    
    [81] Atmani D, Benboubetra M, Harrison R. Goats' milk xanthine oxidoreductase is grossly deficient in molybdenum. JDairy Res, 2004,71(1): 7-13.
    
    [82] Rajagopalan K V, Philip H. Purification and Properties of Chicken Liver Xanthine Dehydrogenase. J Biol Chem, 1967,242:4097-4107.
    
    [83] Charles N R, Dan A R, Richard J D, et al. Purification and characterization of chicken liver xanthine dehydrogenase. JBiol Chem, 1955,217:293-306.
    
    [84] Ratnam K, Brody M S, Hille R. Purification of xanthine dehydrogenase and sulfite oxidase from chicken liver. PrepBiochem Biotechnol, 1996,26(2): 143 -154.
    
    [85] Corte E D, Stirpe F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of theenzyme activity from dehydrogenase (type D) into oxidase (type D) and purification of the enzyme. Biochem J, 1972,126(3): 739-745.
    
    [86] Waud W R, Rajagopalan K V. Purification and properties of the NAD~+-dependent (type D) and O_2-dependent (type O)forms of rat liver xanthine dehydrogenase. Arch Biochem Biophys, 1976,172(2): 354 - 364.
    
    [87] Suleiman S A, Stevens J B. Purification of xanthine dehydrogenase from rat liver: a rapid procedure with highenzyme yields. Arch Biochem Biophys, 1987, 258(1): 219 - 225.
    
    [88] McManaman J L, Shellman V, Wright R M, et al. Purification of rat liver xanthine oxidase and xanthinedehydrogenase by affinity chromatography on benzamidine-sepharose. Arch Biochem Biophys, 1996, 332(1): 135 -141.
    
    [89] Tomoko N, Yoshihiro A, Susumu K, et al. Purification and Characterization of Multiple Forms of Rat Liver XanthineOxidoreductase Expressed in Baculovirus-lnsect Cell System. J. Biochem. (Tokyo), 2002,132:597 - 606.
    
    [90] Carpani G, Racchi M, Ghezzi P, et al. Purification and characterization of mouse liver xanthine oxidase. ArchBiochem Biophys, 1990, 279(2): 237 - 241.
    
    [91] McManaman J L, Neville M C, Wright R M. Mouse mammary gland xanthine oxidoreductase: purification,characterization, and regulation. Arch Biochem Biophys, 1999; 371(2): 308-316.
    
    [92] Parzen S D, Fox A S. Purification of xanthine dehydrogenase from drosophila melanogaster. Biochim Biophys Acta,1964,92,465-471.
    
    [93] Andres R Y. Aldehyde oxidase and xanthine dehydrogenase from wild-type Drosophila melanogaster andimmunologically cross-reacting material from ma-1 mutants. Purification by immunoadsorption and characterization.Eur J Biochem, 1976, 62:591.
    
    [94] Hughes R K. Xanthine dehydrogenase from Drosophila melanogaster: purification and properties of the wild-typeenzyme and of a variant lacking iron-sulfur centers. Biochemistry, 1992,31(12): 3073-3083.
    
    [95] Doyle W A, Burke J F, Chovnick A, et al. Properties of xanthine dehydrogenase variants from rosy mutant strains ofDrosophila melanogaster and their relevance to the enzyme's structure and mechanism. Eur J Biochem, 1996, 239:782.
    
    [96] Triplett E W, Blevins D G, Randall D D. Purification and properties of soybean nodule xanthine dehydrogenase. ArchBiochem Biophys, 1982,219(1): 39-46.
    
    [97] Lyon E S, Garrett R H. Regulation, purification, and properties of xanthine dehydrogenase in Neurospora crassa. JBiol Chem, 1978,253:2604-2614.
    
    [98] Tatsuhiko 0 H E, Yasuto W. Purification and Properties of Xanthine Dehydrogenase from Streptomyces cyanogenus.J Biochem (Tokyo), 1979; 86:45 - 53.
    
    [99] C A Woolfolk. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonasputida 40. J. Bacteriol., 1985,163:600 - 609.
    
    [100] K Koenig, J R Andreesen. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonasputida Fu1: two molybdenum-containing dehydrogenases of novel structural composition. J. Bacteriol., 1990, 172:5999-6009.
    
    [101] Sin I L. Purification and properties of xanthine dehydrogenase from Pseudomonas acidovorans. Biochim BiophysActa, 1975,410(1): 12-20.
    
    [102]Xiang Q, Edmondson D E. Purification and characterization of a prokaryotic xanthine dehydrogenase fromComamonas acidovorans. Biochemistry, 1996,35(17): 5441-5450.
    
    [103] Thomas S, Annette R, Jan R A. Selenium-containing xanthine dehydrogenase from Eubacterium barkeri. Eur JBiochem, 1999,264:862.
    
    [104] Bradshaw W H, Barker H A. Purification and Properties of Xanthine Dehydrogenase from Clostridium cylindrosporum.J Biol Chem, 1960,235:3620 - 3629.
    
    [105] William T S, Thressa C S. Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylaseand xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. PNAS, 2000,97:7208.
    
    [106] Susan T S, Rajagopalan K V, Philip H. Purification and Properties of Xanthine Dehydrogenase from Micrococcuslactilyticus. J Biol Chem, 1967; 242:4108 - 4117.
    
    [107]秦尤文.黄嘌呤脱氢酶研究进展[J].国外医学临床生物化学与检验学分册,2002,23(4):218-222.
    
    [108]李丽书,陈献华,邵叶波等.黄嘌呤氧化还原酶的结构、功能和作用[J].细胞生物学杂志,2004.26: 381-384.
    
    [109] Chris A P. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system.Chemico-Biological Interactions, 2000,129:195-208.
    
    [110]McManaman J L, Neville M C, Wright R M. Mouse Mammary Gland Xanthine Oxidoreductase: Purification,Characterization, and Regulation. Archives of Biochemistry and Biophysics, 1999,371(2): 308 - 316.
    
    [111] Massey V. Studies on Milk Xanthine Oxidase. The Journal of Biological Chemistry. 1969, 244(7): 1682-1691.
    
    [112] Spitsberg V L, Gorewit R C. Solubilization and Purification of Xanthine Oxidase from Bovine Milk Fat GlobuleMembrane, protein expression and purification, 1998,13: 229-234.
    [113] Nazmi O, Meltem M, Demet A, et al. Simple, high-yield purification of xanthine oxidase from bovine milk. J Biochem Biophys, 1999,39:153-159.
    [114] Battelli M G, Lorenzoni E, Stripe F. Milk xanthine oxidase type D (dehydrogenase) and type 0 (oxidase). Purification, interconversion and some properties. Biochem J, 1973,131(2): 191 -198.
    [115] Barber M J, Siegel L M. Electron paramagnetic resonance and potentiometric studies of arsenite interaction with the molybdenum centers of xanthine oxidase, xanthine dehydrogenase, and aldehyde oxidase: a specific stabilization of the molybdenum(V) oxidation state. Biochemistry, 1983,22(3): 618 - 624.
    [116] Hille R, Nishino T. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. FASEB J, 1995, 9:995.
    [117] Matthew G R, Kapila R, Russ H. The Molybdenum Centers of Xanthine Oxidase and Xanthine Dehydrogenase. J Biol Chem, 1995,270:19209.
    [118] Cristofer E, Bryan T E, Ken O, et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. PNAS, 2000,97:10723.
    [119] Massey V, Schopfer L M, Nishino T. Differences in protein structure of xanthine dehydrogenase and xanthine oxidase revealed by reconstitution with flavin active site probes. J Biol Chem, 1989,264:10567 -10573.
    [120] John J R, Barbara C P, Mallory C S B, et al . 12-O-Tetradecanoylphorbol-13-acetate- dependent Induction of Xanthine Dehydrogenase and Conversion to Xanthine Oxidase in Murine Epidermis. Cancer Res., 1987,47:1775 - 1779.
    [121] James L, McManaman D, Bain L. Structural and Conformational Analysis of the Oxidase to Dehydrogenase Conversion of Xanthine Oxidoreductase. J. Biol. Chem., 2002,277:21261 - 21268.
    [122] Rasmussen J T, Rasmussen M S, Petersen T E. Cysteines Involved in the Interconversion Between Dehydrogenase and Oxidase Forms of Bovine Xanthine Oxidoreductase. J Dairy Sci, 2000, 83:499 - 506.
    [123] Russ H, Robert F A. Coupled electron/proton transfer in complex flavoproteins. solvent kinetic isotope effect studies of electron transfer in xanthine oxidase and trimethylamine dehydrogenase. J Biol Chem, 2001,276:31193 - 31201.
    [124]Canela E, Bozal J. Comparative study of chicken liver xanthine dehydrogenase and bovine liver xanthine oxidase. dehydrogenase activity of xanthine oxidase. Rev Esp.Fisiol, 1979,35(1): 51 - 62.
    [125]Tomoko N, Ken O, Yuko K, et al. Mechanism of the Conversion of Xanthine Dehydrogenase to Xanthine Oxidase. J Biol Chem, 2005, 280: 24888 - 24894.
    [126] James L M, David L B. Structural and Conformational Analysis of the Oxidase to Dehydrogenase Conversion of Xanthine Oxidoreductase. J Biol Chem, 2002,277:21261 - 21268.
    [127] Cristofer E, Bryan T E, Ken O, et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: Structure-based mechanism of conversion. Proc Natl Acad Sci USA, 2000, 97:10723.
    [128] Takeshi N, Ken O. The role of the [2Fe-2S] cluster centers in xanthine oxidoreductase. Journal of Inorganic Biochemistry, 2000,82:43 - 49.
    [129] Rolf A L. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation of ascorbate. BioMetals, 2003,16:435-439.
    [130]Tetsuya Y, Yuji M, Yuichi S, et al. Human xanthine dehydrogenase cDNA sequence and protein in an atypical case of type I xanthinuria in comparison with normal subjects. Clinica Chimica Acta, 2001,304:153 -158.
    [131] Houde, M, Tiveron M C, Bregegere F. Divergence of the nucleotide sequences encoding xanthine dehydrogenase in Calliphora vicina and Drosophila melanogaster. Gene, 1989, 85:391 - 402.
    [132] Pitts R J, Zwiebel L J. Isolation and Characterization of the Xanthine Dehydrogenase Gene of the Mediterranean Fruit Fly, Ceratitis capitata. Genetics, 2001,158:1645 -1655.
    
    
    
    [133] Keith T P, Riley M A, Kreitman M, et al., Sequence of the structural gene for xanthine dehydrogenase (rosy locus) inDrosophila melanogaster. Genetics, 1987,116:67-73.
    
    [134] Xu P, Huecksteadt T P, Brothman A R, et al. Assignment of human xanthine dehydrogenase gene to chromosome2p22. Genomics, 1994,23(1): 289-291.
    
    [135] Ping X, Thomas P. H, John R. H. Molecular cloning and characterization of the human xanthine dehydrogenase gene(XDH). Genomics, 1996, 34(2): 173 -180.
    
    [136] Minoshima S, Wang Y, Ichida K, et al. Mapping of the gene for human xanthine dehydrogenase (oxidase) (XDH) toband p23 of chromosome 2. Cytogenet Cell Genet, 1995,68(1-2): 52 - 53.
    
    [137] Ichida K, Amaya Y, Noda K, et al. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase):structural analysis of the protein and chromosomal location of the gene. Gene, 1993,133(2): 279 - 284.
    
    [138]Cazzaniga G, Terao M, Lo S P, et al. Chromosomal mapping, isolation, and characterization of the mouse xanthinedehydrogenase gene. Genomics, 1994,23(2): 390-402.
    
    [139] Yoshihiro A, Ken-ichi Y, Misako S, et al. Proteolytic Conversion of Xanthine Dehydrogenase fromthe NAD-dependent Type to the O_2-dependent Type. 1990,265(24): 14170-14175.
    
    [140]Chi-Wing C, Melissa C, Jean R, et al. Identification of the rat xanthine dehydrogenase/oxidase promoter. NucleicAcids Research, 1994,22(10): 1846 -1854.
    
    [141] Christine H, Robert H, Ralf R M, et al. Tandem Orientation of Duplicated Xanthine Dehydrogenase Genes fromArabidopsis thaliana. J Biological Chemistry, 2004,279(14): 13547 -13554.
    
    [142] Annie G, Claudio S. Cloning and Molecular Characterization of hxA, the Gene Coding for the XanthineDehydrogenase (Purine Hydroxylase I) of Aspergillus nidulans. J Biol Chem, Feb 1995,270:3534.
    
    [143] Nikolai V. I, Frantisek H, Manuela T, et al. Factors involved in the assembly of a functional molybdopyranopterincenter in recombinant Comamonas acidovorans xanthirie dehydrogenase. Eur J Biochem, 2003,270:4744 - 4754.
    
    [144] Leimkuhier S, Klipp W. Role of XDHC in Molybdenum Cofactor Insertion into Xanthine Dehydrogenase ofRhodobacter capsulatus. J Bacteriology, 1999,181(9): 2745-2751.
    
    [145]Meina N, Marc S, Nora J, et al. Rhodobacter capsulatus XdhC is Involved in Molybdenum Cofactor Binding andInsertion into Xanthine Dehydrogenase. The journal of biological chemistry, 2006,281(23): 15701 -15708.
    
    [146] Nishino T, Saito T, Amaya Y, et al. Overexpression and characterization of xanthine dehydrogenase in abaculovirus-insect cell system, in: K. Yagi (Ed.) Flavins Flavoproteins 1993, Proc Int Symp, 11th. Berlin: de Gruyter,1994,711-714.
    
    [147] Nishino T, Kashima Y, Okamoto K, et al. The monomeric form of xanthine dehydrogenase expresses in baculovirus-insect cell system, in: K.J. Stevenson, V. Massey, C.H.J. Williams (Eds.), Flavins and Flavoproteins 1996, Universityof Calgary Press, Calgary, 1997,843 - 846.
    
    [148] Iwasaki T, Okamoto K, Nishino T, et al. Sequence motif-speciwc assignment of two [2Fe-2S] clusters in rat xanthineoxidoreductase studied by site-directed mutagenesis, J Biochem (Tokyo) 2000,127(5): 771 - 778.
    
    [149] Doyle W A, Burke J F, Chovnick A, et al. Engineering and expression in Drosophila melanogaster of a xanthinedehydrogenase (rosy) variant, Biochem Soc Trans. 1996,24(1): 31S.
    
    [150] Adams B, Smith A T, Doyle W A, et al. Expression of wild-type and mutated Drosophila melanogaster xanthinedehydrogenases in Aspergillus nidulans, Biochem Soc Trans, 1997,25(3): 520S.
    
    [151] Adams B, Lowe D J, Smith AT, et al. Expression of Drosophila melanogaster xanthine dehydrogenase in Aspergillusnidulans and some properties of the recombinant enzyme, Biochem J, 2002,362 (Pt. 1): 223 - 229.
    
    [152] Wright R M, Vaitaitis G M, Wilson C M, et al. cDNA Cloning, Characterization, and Tissue-Specific Expression ofHuman Xanthine Dehydrogenase/Xanthine Oxidase. PNAS, 1993,90:10690.
    
    [153] Silke L, Werner K. Role of XDHC in Molybdenum Cofactor Insertion into Xanthine Dehydrogenase of Rhodobactercapsulatus. J Bacteriol, 1999,181:2745 - 2751.
    
    [154] Silke L, Rachael H, Graham N. G, et al. Recombinant Rhodobacter capsulatus Xanthine Dehydrogenase, a UsefulModel System for the Characterization of Protein Variants Leading to Xanthinuria I in Humans. J Biol Chem, 2003,278:20802-20811.
    
    [155] Nikolai V I, Frantisek H, Manuela T, et al. Factors involved in the assembly of a functional molybdopyranopterincenter in recombinant Comamonas acidovorans xanthine dehydrogenase. Eur J Biochem, 2003,270:4744.
    
    [156] Ivanov N V, Trani M, Edmondson D E. High-level expression and characterization of a highly functional Comamonasacidovorans xanthine dehydrogenase in Pseudomonas aeruginosa. Protein Expr Purif, 2004,37(1): 72 - 82.
    
    [157] Massey V. Studies on Milk Xanthine Oxidase. The Journal of Biological Chemistry. 1969,244(7): 1682 -1691.
    
    [158] Steven B Y, Chris A. Comparison of Oxygen Radical Generation from the Reductive Activation of Doxorubicin,Streptonigrin, and Menadione by Xanthine Oxidase and Xanthine Dehydrogenase. ARCHIVES OF BIOCHEMISTRYAND BIOPHYSICS 1997,347(2): 235-241.
    
    [159] Nazmi O, Meltem M, Demet A, et al. Simple high-yield purification of xanthine oxidase from bovine milk. J BiochemBiophys. Methods, 1999,39:153 -159.
    
    [160] Heinz F, Pilz R, Reckel S, et al. A new spectrophotometric method for the determination of 5'-nucleotidase. J ClinChem Clin Biochem, 1980,18(11): 781-788.
    
    [161]Groot H D, Noll T. Enzymic determination of inorganic phosphates, organic phosphates and phosphate-liberatingenzymes by use of nucleoside phosphorylase-xanthine oxidase (dehydrogenase)-coupled reactions. Biochem J,1985, 230(1): 255-260.
    
    [162]胡红焱,崔云龙.黄嘌呤氧化酶比色法测定血清无机磷[J].中华医学检验杂志.1998,2I(4):214-216.
    
    [163]张凤翔.黄嘌呤氧化酶法测定血清中超氧化物歧化酶活力的影响因素[J].云南医药,2001,22(6): 75-79.
    
    [164]张尔贤.应用XOD-X-Luminol发光体系检测SOD活性.植物生理学通讯.1992.28(3):214-216.
    
    [165] Hannah M M, John T H, Roger H, et al. Role of Xanthine Oxidoreductase as an Antimicrobial Agent. Infection and immunity, 2004,72(9): 4933 - 4939.
    
    [166]罗颖华,王立红.黄嘌呤氧化酶电极的研制和鱼的鲜度测定[J].化学传感器,1990,10(2):35-40.
    
    [167]孟疆辉,陈蔚梅.利用黄嘌呤氧化酶提高病毒唑转化率[J].武汉大学学报(自然科学版),1999,45(6): 838-840.
    
    [168]Yamada Y, Saito H, Tomioka H, et al. Susceptibility of micro-organisms to active oxygen species: sensitivity to thexanthine-oxidase-mediated antimicrobial system. J Gen Microbiol, 1987,133(8): 2007 - 2014.
    
    [169] Tatsuhiko O H E, Yasuto W. Purification and Properties of Xanthine Dehydrogenase from Streptomyces cyanogenus.J Biochem. (Tokyo), 1979, 86:45 - 53.
    
    [170] Saksela M, Raivio K O. Cloning and expression in vitro of human xanthine dehydrogenase/oxidase. Biochem J, 1996,315:235-239.
    
    [171] Tim P K, Margaret A. R, Martin K, et al. Sequence of the Structural Gene for Xanthine Dehydrogenase (rosy Locus)in Drosophila melanogaster. Genetics, 1987,116: 67.
    
    [172]Rocher-Chambonnet C, Berreur P, Houde M, et al. Cloning and partial characterization of the xanthinedehydrogenase gene of Calliphora vicina, a distant relative of Drosophila melanogaster. Gene, 1987, 59(2-3): 201 -212.
    
    [173]Meina N, Marc S, Nora J, et al. Rhodobacter capsulatus XdhC Is Involved in Molybdenum Cofactor Binding andInsertion into Xanthine Dehydrogenase. J Biol Chem, 2006, 281:15701 -15708.
    
    [174] Silke L, Sieglinde A, Gunter S, et al. Activity of the Molybdopterin-Containing Xanthine Dehydrogenase ofRhodobacter capsulatus Can Be Restored by High Molybdenum Concentrations in a moeA Mutant Defective inMolybdenum Cofactor Biosynthesis. J Bacteriol., 1999,181:5930-5939.
    
    [175] Silke L, Amy L S, Kiyohiko I, et al. The Role of Active Site Glutamate Residues in Catalysis of Rhodobactercapsulatus Xanthine Dehydrogenase. J Biol Chem, 2004,279:40437 - 40444.
    
    [176] James M P, Craig F H, Nora J, et al. The Role of Arginine 310 in Catalysis and Substrate Specificity in XanthineDehydrogenase from Rhodobacter capsulatus. J Biol Chem, 2007,282:12785 -12790.
    
    [1]吴晓生,李龙官.比色法测定黄嘌呤氧化酶[J].生物化学与生物物理进展,1986,5:65-67.
    
    [2]Fried R. Enzymatic oxidation of diethyldithiocarbamate by xanthine oxidase and its colorimetric assay. Ann NY Acad Sci, 1976,273:212-218
    
    [3]闻平.MTS/PMS比色法测定血清黄嘌呤氧化酶[J].陕西医学检验,2000,15(1):10-11.
    
    [4] Herman M K. Differential spectrophotometry of purine compounds by means of specific enzymes. I. determination ofhydroxypurine compounds. J Biol Chem, 1947,167:429 - 443.
    
    [5] Guilbault G G. Symposium on bioelectrochemistry of microorganisms. 3. Electrochemical analysis of enzymaticreactions. Microbiol Mol Biol Rev, 1966,30: 94 -100.
    
    [6] Weinstein A, Medes G, Litwack G. Isotopic method for tyrosine transaminase activity. Anal Biochem, 1967, 21(1): 86 -97.
    
    [7] Lowry O H, Bessey O, Crawford E. Pterine oxidase. J Biol Chem, 1949,180: 399 - 410.
    
    [8]Guilbault G G, Brignac P, Zimmer M. Homovanillic acid as a fluorometric substrate for oxidative enzymes. Analyticalapplications of the peroxidase, glucose oxidase, and xanthine oxidase systems. Anal Chem, 1968,40(1): 190 -196.
    
    [9] Gall E G, Xanthine oxidase: purification and properties. J Biol Chem, 1939,128:51 - 67.
    
    [10]陈海明,李通化,陈开.辣根过氧化物酶反应的化学动力学分析[J].分析化学,2002,30(6):654-657.
    
    [11]韩爱霞,吴国是,梁强等.偶联酶法分光光度直接测定血液中的葡萄糖含量[J].分析化学,2003,31(12):1417-1420.
    
    [12]George G G.Handbook of Enzymatic Methods[M].上海:上海科学技术出版社,1976:25-26.
    
    1 Chris A. P. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chemico-Biological Interactions, 2000,129,195-208.
    
    2 Harrison R. Structure and function of Xanthine oxidoreductase. Free Radical Biology & Medicine, 2002, 33, 774 -797.
    
    3 李丽书,陈献华,邵叶波等.黄嘌呤氧化酶的结构、功能和作用[J].细胞生物学杂志,2004,26:381- 384.
    
    4 黎瑞珍,杨庆建,陈贻锐.超氧化物歧化酶活性的测定及其应用研究[J].琼州大学学报,2004,11,34- 37.
    
    5 Pei J H, Li X Y. Xanthine and hypoxanthine sensors based on xanthine oxidase immobilized on a CuPtCI6 chemicallymodified electrode and liquid chromatography electro-chemical detection. Anal. Chim Acta, 2000,414, 205 - 211
    
    6 Hu H Y, Chui Y L, Zhou D Y, et al. A enzymatic method for the determination of inorganic phosphate in serum, ChineseJ Medical lab Science, 1998,21 (4): 214-216.
    
    7 Nobuaki H, Kyouko U, Yoichi M. Effects of xanthine oxidase on synthesis of 5-Methyluridine by ribosyl transferreaction. Agric Biol Chem, 1991,55 (4): 1071 -1074.
    
    8 Bharat B, Louise P, Annamaria H, et al. Mechanism of xanthine oxidase catalyzed biotransformation of HMX underanaerobic conditions. Biochem &Biophy Res Commun. 2003,306:509 - 515.
    
    9 孟疆辉,陈蔚梅.利用黄嘌呤氧化酶提高病毒唑转化率[J].武汉大学学报(自然科学版),1999,45(6): 838-840.
    
    10 Hannah M. M, John T H, Vyv Salisbury, et al. Role of Xanthine Oxidoreductase as an Antimicrobial Agent. Infection and immunity, 2004,72(9): 4934-4939.
    
    11 Nazmi O, Meltem M, Demet A, et al. Simple, high-yield purification of xanthine oxidase from bovine milk. J. Biochem. Biophys. Methods,1999, 39:154-159.
    
    12 Takeshi N, Tomoko N, Keizo T. Purification of highly active milk xanthine oxidase by affinity chromatography on sepharase 4B/Folate gel. FEBS Letters, 131:369 - 372.
    
    13 Woolfolk C A, Downard J S. Bacterial Xanthine Oxidase from Arthrobacter S-2, J Bacteriology, 1978,135,422-428.
    
    14 Ramon M, Encarna V, Carles P, et al. Determination of xanthine oxidoreductase forms: influence of reaction conditions. Clinica Chimica Acta, 2001,303:117-125.
    
    15布坎南,吉本斯.伯杰细菌鉴定手册[M],第八版,科学出版社,1984.
    
    1 叶勤.发酵过程原理[M],北京:化学工业出版社,2005.
    
    2 俞俊棠,唐孝宣.生物工艺学[M].上海:华东理工大学出版社,1992.
    
    3 陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,2002.
    
    4 姚汝华.微生物工程工艺原理[M].华北工业学院,2001.
    
    5 陈坚,堵国成,李寅等.发酵工程实验技术[M].北京:化学工业出版社,2004.
    
    6 Thomas S, Annette R, Jan R A. Selenium-dontaining xanthine dehydrogenase from Eubacterium barken [J]. Eur J Biochem, 1999,264:862-871.
    
    7 Katja P, Christoph C, Reinhard K, et al. Xanthine dehydrogenase from Pseudomonas putida 86[J]. Biochimica et Biophysica Acta. 2001,1544:151 -165.
    
    8 Silke L, Monika K, Peter S S, et al. Xanthine dehydrogenase from the phototrophic purple bacterium Rhodobacter capsulantus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes[J]. Mol Micro 1998, 27(4): 855-869.
    
    9 Woolfolk C A, Downard J S. Bacteria! Xanthine oxidase from Arthrobacter S-2[J]. J Bacteriology, 1978,135(2): 422 -428.
    
    10 Woolfolk C A, Downard J S. Distribution of xanthine oxidase arid xanthine dehydrogenase specificity types among bacteria[J]. 1977,130(3):1175 -1191.
    
    11 William T S, Thressa C S. A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized [J]. PNAS, 2000,97:7208 - 7213.
    
    12易福明,吴显辉,冯胜彦等.黄嘌呤氧化酶产生菌的离子注入诱变及其二步发酵的研究[J].激光生物 学报,2002,11(2):137-141.
    
    13无锡轻工大学.微生物学[M].江苏:无锡轻工大学,1990.
    
    14吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社,2003,85-109.
    
    15 Woolfolk C A, Downard J S. Metabolism of N-methylpurines by a Pseudomonas putida strain isolated by entichment on caffeine as the sole source of carbon and nitrogen[J]. J. Bacteriol. 1975,123:1088 -1106.
    
    16 Woolfolk C A, Woolfolk B S, Whiteley H R. 2-Oxyprine dehydrogenase from Micrococcus aerogenes[J]. J Biol Chem. 1970,245:3167-3178.
    
    17 Thompson D R. Response surface experimentation[J]. J Food Proc Pres,1982 (6):155 -161.
    
    18 Lee J, Lee S Y, Park S, et al. Control of fed-batch fermentations. Biotech Adv, 1999,17: 29 - 48.
    
    [1]Parzen S D, Fox A S. Purification of xanthine dehydrogenase from drosophila meianogaster. Biochim Biophys Acta, 1964,92:466-471.
    
    [2] Andres R Y. Aldehyde oxidase and xanthine dehydrogenase from wild-type Drosophila meianogaster andimmunologically cross-reacting material from ma-1 mutants. Purification by immunoadsorption and characterization.Eur J Biochem, 1976, 62:591 -611.
    
    [3] Hughes R K. Xanthine dehydrogenase from Drosophila meianogaster: purification and properties of the wild-typeenzyme and of a variant lacking iron-sulfur centers. Biochemistry, 1992,31(12): 3073 - 3083.
    
    [4] Doyle W A, Burke J F, Chovnick A, et al. Properties of xanthine dehydrogenase variants from rosy mutant strains ofDrosophila meianogaster and their relevance to the enzyme's structure and mechanism. Eur J Biochem, 1996, 239:782-791.
    
    [5] Corte E D, Stirpe F. The regulation of rat liver xanthine oxidase. Involvement of thiol groups in the conversion of theenzyme activity from dehydrogenase (type D) into oxidase (type 0) and purification of the enzyme. Biochem J, 1972,126(3): 739-745.
    
    [6] Waud W R, Rajagopalan K V. Purification and properties of the NAD~+-dependent (type D) and 02-dependent (type 0)forms of rat liver xanthine dehydrogenase. Arch Biochem Biophys, 1976,172(2): 354 - 364.
    
    [7] Suleiman S A, Stevens J B. Purification of xanthine dehydrogenase from rat liver: a rapid procedure with highenzyme yields. Arch Biochem Biophys, 1987,258(1): 219 - 225.
    
    [8] McManaman J L, Shellman V, Wright R M, et al. Purification of rat liver xanthine oxidase and xanthine dehydrogenase by affinity chromatography on benzamidine-sepharose. Arch Biochem Biophys, 1996,332(1): 136 -141.
    
    [9] Tomoko N, Yoshihiro A, Susumu K, et al. Purification and Characterization of Multiple Forms of Rat Liver XanthineOxidoreductase Expressed in Baculovirus-lnsect Cell System. J Biochem (Tokyo), 2002,132:597 - 606.
    
    [10] Carpani G, Racchi M, Ghezzi P, et al. Purification and characterization of mouse liver xanthine oxidase. ArchBiochem Biophys, 1990,279(2): 237 - 241.
    
    [11] McManaman J L, Neville M C, Wright R M. Mouse mammary gland xanthine oxidoreductase: purification, characterization, and regulation. Arch Biochem Biophys, 1999,371(2): 308-316.
    
    [12] Polonovski M, Robert L, Robert M. New method of extraction and purification of xanthine dehydrogenase from milk.Bull Soc Chim Biol (Paris), 1950,32(11-12): 868 - 871.
    
    [13] Battelli M G, Lorenzoni E, Stripe F. Milk xanthine oxidase type D (dehydrogenase) and type O (oxidase). Purification,interconversion and some properties. Biochem J, 1973,131(2): 191 -198.
    
    [14] Nathans G R, Hade E P. Bovine milk xanthine oxidase: purification by ultrafiltration and conventional methods whichomit addition of proteases: some criteria for homogeneity of native xanthine oxidase. Biochim Biophys Acta, 1978,526(2): 328-344.
    
    [15] Sullivan C H, Mather I H, Greenwalt D E, et al. Purification of xanthine oxidase from the fat-globule membrane ofbovine milk by electrofocusing. Mol Cell Biochem, 1982,44(1): 13-22.
    
    [16] Van-spanning R J, Wansell-Bettenhaussen C W, Oltmann L F, et al. Extraction and purification of molybdenumcofactor from milk xanthine oxidase. Eur J Biochem, 1987,169:349.
    
    [17] Hunt J, Massey V. Purification and properties of milk xanthine dehydrogenase. J Biol Chem, 1992, 267: 21479 -21485.
    
    [18] Spitsberg V L, Gorewit R C. Solubilization and purification of xanthine oxidase from bovine milk fat globulemembrane. Protein Expr Purif, 1998,13(2): 229 - 234.
    
    [19] Ozer N, Muftuoglu M, Ataman D, et al. Simple, high-yield purification of xanthine oxidase from bovine milk. J BiochemBiophys Methods, 1999, 39(3): 153 -159.
    
    [20] Eger B T, Kamoto K O, Enroth C, et al. Purification, crystallization and preliminary X-ray diffraction studies of xanthinedehydrogenase and xanthine oxidase isolated from bovine milk. Acta Crystallogr D Biol Crystallogr, 2000, 56(Pt 12): 1656-1658.
    [21] Atmani D, Benboubetra M, Harrison R. Goats' milk xanthine oxidoreductase is grossly deficient in molybdenum. J Dairy Res, 2004,71(1): 7-13.
    [22] Rajagopalan K V, Philip H. Purification and Properties of Chicken Liver Xanthine Dehydrogenase. J Biol Chem, 1967,242:4097-4107.
    [23] Charles N R, Dan A R, Richard J D, et al. Purification and characterization of chicken liver xanthine dehydrogenase. J Biol Chem, 1955,217:293-306.
    [24] Ratnam K, Brody M S, Hille R. Purification of xanthine dehydrogenase and sulfite oxidase from chicken liver. Prep Biochem Biotechnol, 1996,26(2): 143 -154.
    [25] Carrasco E, Martin-Esteve J, Calvet F. Hepatic xanthine dehydrogenase. I. Purification and properties of the human and pig hepatic xanthine dehydrogenase. Rev Esp Fisiol, 1968,24(4): 193 - 202.
    [26] Krenitsky T A, Spector T, Hall W W. Xanthine oxidase from human liver: purification and characterization. Arch Biochem Biophys, 1986,247(1): 108-119.
    [27] Graham K, Fleming J E, Young R, et al. Preparation of antibodies against xanthine oxidase from human milk. Int J Biochem, 1989,21(7): 716-722.
    [28] Harrison R, Abadah S, Benboubetra M. Purification of xanthine oxidase from human milk. Biochem Soc Trans, 1991, 19(3): 332S.
    [29] Abadeh S, Killacky J, Benboubetra M, et al. Purification and partial characterization of xanthine oxidase from human milk. Biochim Biophys Acta, 1992,1117(1): 26 - 32.
    [30] Moriwaki Y, Yamamoto T, Suda M, et al. Purification and immunohistochemical tissue localization of human xanthineoxidase. Biochim Biophys Acta, 1993,1164(3): 327 - 330.
    [31] Abadeh S, Case P C, Harrison R. Purification of xanthine oxidase from human heart. Biochem Soc Trans, 1993, 21(2): 99S.
    [32] Triplett E W, Blevins D G, Randall D D. Purification and properties of soybean nodule xanthine dehydrogenase. Arch Biochem Biophys, 1982,219(1): 39-46.
    [33] Lyon E S, Garrett R H. Regulation, purification, and properties of xanthine dehydrogenase in Neurospora crassa. J Biol Chem, 1978,253:2604-2614.
    [34] Tatsuhiko O H E, Yasuto W. Purification and Properties of Xanthine Dehydrogenase from Streptomyces cyanogenus. J Biochem. (Tokyo), 1979,86:45 - 53.
    [35] Woolfolk C A. Purification and properties of a novel ferricyanide-linked xanthine dehydrogenase from Pseudomonas putida 40. J Bacteriol, 1985,163:600 - 609.
    [36] Koenig K, Andreesen J R. Xanthine dehydrogenase and 2-furoyl-coenzyme A dehydrogenase from Pseudomonas putida Fu1: two molybdenum-containing dehydrogenases of novel structural composition. J Bacteriol, 1990, 172: 5999-6009.
    [37] Sin I L. Purification and properties of xanthine dehydrogenase from Pseudomonas acidovorans. Biochim Biophys Acta, 1975, 410(1): 12-20.
    [38] Xiang Q, Edmondson D E. Purification and characterization of a prokaryotic xanthine dehydrogenase from Comamonas acidovorans. Biochemistry, 1996,35(17): 5441 -5450.
    [39] Thomas S, Annette R, Jan R A. Selenium-containing xanthine dehydrogenase from Eubacterium barkeri. Eur J Biochem, 1999, 264:862.
    [40] Bradshaw W H, Barker H A. Purification and Properties of Xanthine Dehydrogenase from Clostridium cylindrosporum. J Biol Chem, 1960, 235: 3620-3629.
    [41] William T S, Thressa C S. Selenium-dependent metabolism of purines: A selenium-dependent purine hydroxylase and xanthine dehydrogenase were purified from Clostridium purinolyticum and characterized. PNAS, 2000,97:7208.
    [42] Susan T S, Rajagopalan K V, Philip H. Purification and Properties of Xanthine Dehydrogenase from Micrococcus lactilyticus. J Biol Chem, 1967,242:4108-4117.
    
    
    
    [43]李校堏,袁辉.药物蛋白质分离纯化技术[M].北京:化学工业出版社,2005.
    
    [44] Thompson D R. Response surface experimentation. J Food Proc Pres.1982 (6):156 -161.
    
    [45]吴有炜.试验设计与数据处理[M].苏州:苏州大学出版社.2003,86-109.
    
    [46]李忠琴,杨海麟,王武等.辣根过氧化物酶法分光光度直接测定黄嘌呤氧化酶.分析化学,2006,34(6): 821-824
    
    [47] Bradford M M. A rapid and sensitive method for the quantitation of microgram qua ntities of protein using the principle of protein-dye binding. Anal Biochem, 1976,72:248 - 254.
    
    [48]赵亚华,高向阳.生物化学实验技术教程[M].华南理工大学出版社,2000,40-41,46-53.
    
    [49]张树政,孟广震,何忠效等.酶学研究技术(上册)[M].北京:科学出版社,1987,86-98,277-280.
    
    [50]胡松青,李琳,郭祀远等.双水相萃取技术研究新进展[J].现代化工,2004,24(6):22-25.
    
    [51]邓静,吴华昌,赵树进.双水相技术在酶分离纯化中的运用[J].氨基酸和生物资源,2004,26(1):72- 75.
    
    [52]王碧.阮尚全,覃松等.聚乙二醇-硫酸铵体系双水相萃取光度法测定钯[J].四川大学学报(自然科学 版),2003,41(1):108-111.
    
    [53] Chen J B, Li Z Q, Huang X H, et al. STUDY ON PARTITION OF D(-)-MANDELIC ACID IN AQUEOUS TWO-PHASE SYSTEMS. World Scientific Press(ISBN 981-238-916-4), Singapore, 2004:49 - 54.
    
    [54]方北曙,李翠莲,黄中培等.牛乳中黄嘌呤氧化酶研究综述[J].食品与机械,2006,22(1):93-96.
    
    [1]Chris A. P. Cellular distribution, metabolism and regulation of the xanthine oxidoreductase enzyme system. Chemico-Biological Interactions, 2000129:195-208.
    
    [2] McManaman J L, Neville M C, Wright R M. Mouse Mammary Gland Xanthine Oxidoreductase: Purification,Characterization, and Regulation1. Archives of Biochemistry and Biophysics, 1999,371(2): 308-316.
    
    [3] Massey V. Studies on Milk Xanthine Oxidase. The Journal of Biological Chemistry, 1969,244(7): 1682 -1691.
    
    [4] Spitsberg V L, Gorewit R C. Solubilization and Purification of Xanthine Oxidase from Bovine Milk Fat GlobuleMembrane. Protein expression and purification, 1998,13:229 - 234.
    
    [5] Nazmi O, Meltem M, Demet A, et al. Simple, high-yield purification of xanthine oxidase from bovine milk. J BiochemBiophys, 1999,39:153-159.
    
    [6] Cristofer E, Bryan T E, Ken O, et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase:Structure-based mechanism of conversion. Proc Natl Acad Sci. USA, 2000,97:10723.
    
    [7] Takeshi N, Ken O. The role of the [2Fe-2S] cluster centers in xanthine oxidoreductase. Journal of InorganicBiochemistry, 2000, 82:43 - 49.
    
    [8] Rolf A L. A kinetic study on iron stimulation of the xanthine oxidase dependent oxidation of ascorbate. BioMetals,2003,16:435-439.
    
    [9] Tetsuya Y, Yuji M, Yuichi S, et al. Human xanthine dehydrogenase cDNA sequence and protein in an atypical case oftype I xanthinuria in comparison with normal subjects. Clinica Chimica Acta, 2001,304:153 -158.
    
    [10] Houde M, Tiveron M C, Bregegere F. Divergence of the nucleotide sequences encoding xanthine dehydrogenase inCalliphora vicina and Drosophiia melanogaster. Gene, 1989,85:391 -402.
    
    [11] Pitts R J, Zwiebel L J. Isolation and Characterization of the Xanthine Dehydrogenase Gene of the Mediterranean Fruit Fly, Ceratitis capitata. Genetics, 2001,158:1645 -1655.
    
    [12] Keith T P, Riley M A, Kreitman M, et al. Sequence of the structural gene for xanthine dehydrogenase (rosy locus) inDrosophiia melanogaster. Genetics, 1987,116:67 - 73.
    
    [13] Xu P, Zhu X L, Huecksteadt T P, et al. Assignment of human xanthine dehydrogenase gene to chromosome 2p22.Genomics, 1994, 23(1): 289-291.
    
    [14] Ping X, Thomas P H, John R H. Molecular cloning and characterization of the human xanthine dehydrogenase gene(XDH). Genomics, 1996, 34(2): 173 -180.
    
    [15] Minoshima S, Wang Y, Ichida K, et al. Mapping of the gene for human xanthine dehydrogenase (oxidase) (XDH) toband p23 of chromosome 2. Cytogenet Cell Genet, 1995,68(1-2): 52 - 53.
    
    [16] Annie G, Peter H, Maria J R, et al. Altered Specificity Mutations Define Residues Essential for Substrate Positioningin Xanthine Dehydrogenase. J Mol Biol, 1998,278:431 -438.
    
    [17] Jin B, Tit M L, Violet P E P, et al. Cloning and Tissue Expression of 6-Pyruvoyl Tetrahydropterin Synthase andXanthine Dehydrogenase from Poecilia reticulata. Mar Biotechnol. 2003,5:568 - 578.
    
    [18] Claudia V, Alistair S, Mario R C. The housekeeping gene xanthine oxidoreductase is necessary for milk fat dropletenveloping and secretion: gene sharing in the lactating mammary gland. Genes & Dev, 2002,16:3223 - 3235.
    
    [19] Kimiyoshi I, Yoshihiro A, Kumi N, et al. Cloning of the cDNA encoding human xanthine dehydrogenase (oxidase):Structural analysis of the protein and chromosomal location of the gene. Gene, 1993,133(2):279 - 284.
    
    [20] Mineko T, Mami K, Giuliana S, et al. Cloning of the cDNAs Coding for Two Novel Molybdo-flavoproteins ShowingHigh Similarity with Aldehyde Oxidase and Xanthine Oxidoreductase. The journal of biological chemistry, 2000,275(39): 30690 - 30700.
    
    [21] Silke L, Rachael H, Graham N G, et al. Recombinant Rhodobacter capsulatus Xanthine Dehydrogenase, a UsefulModel System for the Characterization of Protein Variants Leading to Xanthinuria I in Humans. J Biol Chem, 2003,278:20802-20811.
    
    [22] Silke L, Sieglinde A, Gunter S, et al. Activity of the Molybdopterin-Containing Xanthine Dehydrogenase ofRhodobacter capsulatus Can Be Restored by High Molybdenum Concentrations in a moeA Mutant Defective inMolybdenum Cofactor Biosynthesis. J Bacteriol, 1999,181:5930 - 5939.
    
    [23] Silke L, Werner K. Role of XDHC in Molybdenum Cofactor Insertion into Xanthine Dehydrogenase of Rhodobactercapsulatus. J Bacteriol, 1999,181:2745 - 2751.
    
    [24] Meina N, Marc S, Nora J, et al. Rhodobacter capsulatus XdhC Is Involved in Molybdenum Cofactor Binding andInsertion into Xanthine Dehydrogenase. J Biol Chem, 2006,281:15701 -15708.
    
    [25] Leimkuhler S, Kern M, Solomon P S, et al. Xanthine dehydrogenase from the phototrophic purple bacteriumRhodobacter capsulatus is more similar to its eukaryotic counterparts than to prokaryotic molybdenum enzymes. MolMicrobiol, 1998, 27(4): 853-869.
    
    [26] Leimkuhler S, Klipp W. The molybdenum cofactor biosynthesis protein MobA from Rhodobacter capsulatus isrequired for the activity of molybdenum enzymes containing MGD, but not for xanthine dehydrogenase harboring theMPT cofactor. FEMS Microbiol Lett, 1999,174(2): 239 - 246.
    
    [27] James M P, Craig F H, Nora J, et al. The Role of Arginine 310 in Catalysis and Substrate Specificity in XanthineDehydrogenase from Rhodobacter capsulatus. J. Biol Chem, 2007,282:12785 -12790.
    
    [28] Truglio J J, Theis K, Leimkuhler S, et al. Crystal structures of the active and alloxanthine-inhibited forms of xanthinedehydrogenase from Rhodobacter capsulatus. Structure, 2002,10(1): 115 -125.
    
    [29] Nikolai V I, Frantisek H, Manuela T, et al. Factors involved in the assembly of a functional molybdopyranopterincenter in recombinant Comamonas acidovorans xanthine dehydrogenase. Eur J Biochem, 2003,270:4744.
    
    [30] Xiang Q, Edmondson D E. Purification and characterization of a prokaryotic xanthine dehydrogenase fromComamonas acidovorans. Biochemistry, 1996,35(17): 5441 -5450.
    
    [31] Ivanov N V, Trani M, Edmondson D E. High-level expression and characterization of a highly functional Comamonasacidovorans xanthine dehydrogenase in Pseudomonas aeruginosa. Protein Expr Purif, 2004, 37(1): 72 - 82.
    
    [32] Joe S, David R. Molecular Cloning: A Laboratry Manual. Cold Spring Harbor Lab(CSHL) Press, 2001.
    
    [33]黄培堂.分子克隆实验指南(第三版,中译版)[M].北京:科学出版社,2002.
    
    [34] Baker W, Broek A, Camon E, et al. The EMBL Nucleotide Sequence Database, Nucleic Acids Res, 2000,28 :19 - 23.
    
    [35] Benson D A. GenBank. Nucleic Acids Res, 2002,30:17 - 30
    
    [36] Barker W C, Garavelli J S, Huang H, et al. The Protein Information Resource (PIR), Nucleic Acids Res, 2000, 28:41-44.
    
    [37] Bairoch A, Apweiler R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000, NucleicAcids Res, 2000,28:45 - 48.
    
    [38]乔纳森 佩夫斯纳 著,孙之荣主译.生物信息学与功能基因组学[M].北京:化学工业出版社,2006.1
    
    [39] Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool. J Mol. Biol. 1990,215:403 - 410.
    
    [40] Zhang J, Madden T L. Power BLAST. A new network BLAST application for interactive or automated sequenceanalysis and annotation. Genome Res. 1997,7:649 - 656.
    
    [41] Madden T L, Tatusov R L, Zhang J. Applications of network BLAST server. Meth Enrymol. 1996,266:131 -141.
    
    [42] Julie D T, Desmond G H, Toby J G. et al. improving the sensitivity of progressive multiple sequence alignmentthrough sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res, 1994, 22:4673-4680.
    
    [43] Ramu C, Hideaki S, Tadashi K, et al. Thompson. Multiple sequence alignment with the Clustal series of programs.Nucleic Acids Res, 2003,31: 3497 - 3500.
    
    [44] Thompson J D, Gibson T J, Plewniak F, et al. The CLUSTAL_X windows interface: flexible strategies for multiplesequence alignment aided by quality analysis tools. Nucleic Acids Res., 1997,25:4876 - 4882.
    
    [45] Thompson J D, Plewniak F, Poch O. A comprehensive comparison of multiple sequence alignment programs. NucleicAcids Res, 1999,27: 2682-2690.
    
    [46] Thompson J D, Thierry J C, Poch O. R. rapid scanning and correction of multiple sequence alignments.Bioinformatics, 2003,19:1155 -1161.
    
    [47] Altschul S F, Madden T L, Schaffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein databasesearch programs. NucleicAcids Res, 1997, 25:3389 - 3402.
    
    [48] Kyte J, Doolittle R F. A simple method for displaying the hydropathic character of a protein. J Mol Biol,1982,157:105-132.
    
    [49] Brendel V, Bucher P, Nourbakhsh I, et al. Methods and algorithms for statistical analysis of protein sequences. ProcNatl Acad Sci, 1992,89: 2002 - 2006.
    
    [50] Geourjon C, Deleage G. SOPM: a self-optimised method for secondary structure prediction. Prot Eng, 1994, 7:157 -164.
    
    [51] Deleage G, Blanchet C, Geourjon C. Protein structure prediction Implications for the biologist. Biochimie1997, 79 (11): 681-686.
    
    [52] Deleage G, Roux B. An algorithm for protein secondary structure prediction based on class prediction. Prot Eng,1987,1:289-294.
    
    [53] Levin J M, Robson B, Gamier J. An algorithm for secondary structure determination in proteins based on sequencesimilarity, FEBS Lett. 1986, 205:303 - 308.
    
    [54] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: 'an automated protein homology-modeling server. Nucleic AcidsRes. 2003, 31:3381-3385.
    
    [55] Peitsch M C. Protein modeling by E-mail, Bio/Technology 1995,13: 658 - 660.
    
    [56] Deleage G, Clerc F F, Roux B, et al. ANTHEPROT: A package for protein sequence analysis using a microcomputer.Cabios. 1988,4:351-356.
    
    [57] Enroth C, Eger B T, Okamoto K, et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthineoxidase: structure-based mechanism of conversion. Proc Natl Acad Sci. USA 2000,97:10723 -10728.
    
    [58] Nishino T, Okamoto K, Kawaguchi Y, et al. Mechanism of the Conversion of Xanthine Dehydrogenase to XanthineOxidase: Identification of the two cysteine disulfide bonds and crystal structure of a non-convertible rat liver xanthinedehydrogenase mutant J Biol Chem. 2005,280:24888 - 24894.
    
    [59] Pearson A R, Godber B L J, Eisenthal R, et al. Human Milk Xanthine Dehydrogenase is Incompletely Converted tothe Oxidase Form in the Absence of Proteolysis. A Structural Explanation. To be Published.
    
    [60] Fukunari A, Okamoto K, Nishino T, et al. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy) phenyl]-1H-pyrazole-4-carboxylic acid]: a potent xanthine oxidoreductase inhibitor with hepatic excretion J Pharmacol Exp Ther. 2004,311:519-528.
    
    [61] Okamoto K, Matsumoto K, Hille R, et al. The crystal structure of xanthine oxidoreductase during catalysis:Implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci. USA 2004,101: 7931 - 7936.
    
    [62] Okamoto K, Eger B T, Nishino T, et al. An Extremely Potent Inhibitor of Xanthine Oxidoreductase: Crystal Structureof the Enzyme-Inhibitor Complex and Mechanism of Inhibition J Biol Chem, 2003,278:1848 -1855.
    
    [63] Carl W D, Gabriela S D. PCR primer: A laboratory manual. Cold spring harbor laboratory press. USA, 2003.
    
    [64]黄留玉,王恒粱,史兆兴等.PCR最新技术原理、方法及应用[M].北京:化学工业出版社,2005,87-67.
    
    [65] Bryson K, McGuffin L J, Marsden R L, et al. Protein structure prediction servers at University College London. NuclAcids Res. 2005,33(Web Server issue): W37 -38.
    
    [66] McGuffin L J, Bryson K, Jones D T. The PSIPRED protein structure prediction server. Bioinformatics. 2000,16:404 -405.
    
    [67] Jones D T. Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 1999, 292:195-202.
    
    [68] Rost B, Sander C. PROF: Improved Prediction of Protein Secondary Structure by Use of Sequence Profiles andNeural Networks. J Mol Biol, 1993, 232:584 - 599.
    
    [69] Rost B, Fariselli P, Casadio R. PROFhtm: Topology prediction for helical transmembrane proteins at 86% accuracy.Protein Science, 1996,7:1704-1718.
    
    [70] Lund O, Nielsen M, Lundegaard C, et al. CPHmodels 2.0: X3M a Computer Program to Extract 3D Models. Abstractat the CASP5 conferenceA102,2002.
    
    [71] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: an automated protein homology-modeling server. Nucleic AcidsResearch. 2003,31:3381 - 3385.
    
    [72] Guex N, Peitsch M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modelling.Electrophoresis, 1997,18: 2714-2723.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700