糖原合成酶激酶-3β信号通路介导海马CA1区长时程增强的氧化性调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分氧化还原剂对海马CA1区长时程增强的调节作用
     目的:阿尔茨海默病(Alzheimer disease, AD)是年龄相关性的神经退行性疾病,伴随着进行性的记忆和认知功能障碍。细胞中大量的氧自由基(reactive oxygen species, ROS)所致的氧化性损伤被认为是AD最重要的发病机制之一。目前大量的研究证据表明AD大脑存在氧化性损伤并伴有突触的丧失,特别重要的是Aβ和ROS导致的突触可塑性的功能紊乱是引起早期记忆减退的重要因素。长时程增强(long-term potentiation, LTP)是突触可塑性最重要的一种表现形式,一直以来都被认为是解释记忆和学习的分子和细胞基础的重要模型之一。ROS特别是过氧化氢与LTP的调节有重要的关系,微摩尔浓度的过氧化氢能可逆性的抑制突触传递和可塑性,而毫摩尔的过氧化氢则可以增强LTP。因此,深入研究海马CA1区突触可塑性的氧化调节作用对于进一步理解AD的发病机制和寻找有效的治疗方法具有重要的理论和实际意义。方法:采用细胞外场电位记录的方法研究氧化还原剂对海马CA1区LTP的影响。结果:膜透性的氧化剂氯胺-T(CH-T)可抑制海马CA1区LTP,这种抑制作用可被膜透性的还原剂二硫苏糖醇(DTT)所拮抗,但膜难透性的还原剂TCEP(磷酸三(2-氯乙基)酯)则无此作用。与之不同的是,膜透性的还原剂DTT能够增强海马CA1区LTP,这种增强作用能够被CH-T所逆转,但DTNB(5’-二硫代-2-(2-硝基苯甲酸))对其没有作用。膜难透性的氧化剂DTNB或还原剂TCEP对海马CA1区LTP无作用。在这些氧化还原剂所用的浓度下,这些药物对突触的基础传递和双波易化都没有影响。结论:氧化性调节作用对海马CA1区LTP起重要作用,氧化还原剂对细胞膜通透性难易特性可能是其对LTP作用不同的原因之一。这些结果还提示膜透性的氧化还原剂作用位点可能不在细胞膜表面而是位于细胞内结构或细胞膜深层。
     第二部分GSK-3β信号通路参与海马CA1区长时程增强的氧化性调节
     目的:糖原合成酶激酶-3β(glycogen synthase kinase-3, GSK-3β)是一种多功能的丝氨酸/苏氨酸蛋白激酶,在氧化应激所致的神经退行性疾病如AD中起着重要的作用;并且GSK-3β参与了海马CA1区突触可塑性的调节。本实验是在第一部分研究氧化还原剂对海马CA1区LTP影响的基础上,进一步阐明GSK-3β这种AD相关的丝氨酸-苏氨酸激酶是否参与这种氧化调节过程。方法:采用细胞外场电位记录和Western Blot的方法研究GSK-3β在氧化还原剂调节海马CA1区LTP中的作用。结果:高频刺激能够引起GSK-3β位点中ser9的磷酸化增加,但总的GSK-3β不变。在CH-T的作用下,高频刺激后GSK-3β中ser9的磷酸化与总的GSK-3β比值和高频刺激组相比降低,与之相反,在DTT作用下,高频刺激后GSK-3β中ser9的磷酸化与总的GSK-3β比值和高频刺激组相比升高。而DTNB或TCEP对高频刺激后GSK-3β中ser9的磷酸化与总的GSK-3β比值无明显影响。为进一步研究GSK-3β的失活是否参与氧化还原剂对LTP的调节,采用电生理记录的方法研究GSK-3β抑制剂氯化锂(LiCl)对氧化还原剂调节LTP的影响。LiCl能够完全逆转CH-T对LTP的抑制作用,而预先孵育LiCl能够增加LTP的强度,与单独给予DTT的结果很相似。进一步分析发现预先孵育LiCl后再给予DTT所导致LTP的增加与单独给予LiCl后LTP的增加间无明显差异。采用Western Blot的方法研究单独给予LiCl或同时给予LiCl和氧化还原剂时GSK-3β活性的变化。结果发现LiCl可逆转CH-T所致的GSK-3β磷酸化减少;LiCl和DTT都能够增加GSK-3β磷酸化的水平,两组之间无明显差异;也发现同时给予LiCl和DTT与单独给予LiCl相比,GSK-3β磷酸化的水平无明显差异。结论:GSK-3β参与氧化还原剂对海马CA1区LTP的调节作用,本研究结果为进一步了解氧化调节在AD记忆损伤发病机制中的作用提供新的依据和治疗靶点。
PartⅠRedox modulation of long-term potentiation in the hippocampus
     Background:Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, characterized by a progressive loss of memory and cognitive functions. There is now considerable evidence that impaired redox regulation is implicated in AD with a synaptic failure, and in particular, that amyloid beta (Aβ) and ROS induced dysfunction of synaptic plasticity contributes to early memory loss that precedes neuronal degeneration. A prominent form of synaptic plasticity known as long-term potentiation (LTP) has consolidated its status as the preeminent synaptic model for investigating the molecular and cellular basis of learning and memory. ROS particularly hydrogen peroxide (H2O2) and modulation of LTP has been proposed. Millimolar concentrations of H2O2 irreversibly suppress synaptic transmission and plasticity, whereas micromolar concentrations enhance LTP. Methods:Field potentials were evoked by a constant stimulation in the Schaffer collaterals with a bipolar electrode and recorded in the stratum radiatum layer of CA1 with a glass micropipette. Results:In the present study, we find that membrane-permeable oxidizing agent CH-T inhibits the induction of LTP in CA1 region of hippocampus in vitro, which can be restored by pretreatment with DTT but not by TCEP. In contrast, membrane-permeable reducing agent DTT enhanced the induction of LTP in CA1 region of hippocampus, which can be reversed by pretreatment with CH-T but not by DTNB. However, neither membrane-impermeable oxidizing agent DTNB nor membrane-impermeable reducing agent TCEP can affect the induction of LTP. The concentrations of redox agents used did not affect the basic synaptic transmission and PPF. Conclusion:The characteristics of their membrane-permeable or membrane-impermeable ability may contribute to explain their different effects on LTP. These results also demonstrated that the targets of redox regulation are not on the surface of cell membrane, but located in the intracellular structures or internal surface of cell membrane.
     PartⅡRedox modulation of long-term potentiation in the hippocampus via regulation of GSK-3βpathway
     Background:GSK-3βis well known to play critical roles in oxidative stress-induced neurodegenerative disease such as AD. Recent study shows that phosphorylation at the inhibitory Ser9 site on GSK-3βis increased upon induction of LTP in both hippocampal CA1 and dentate gyrus (DG). In order to explore a role for GSK-3βin redox modulation of LTP, we investigated the phosphorylation status of GSK-3βin CA1 area of hippocampal slices after HFS. Methods:Field potentials recordings and Western Blot were used to evaluate the effects of GSK-3β. Results:HFS induction caused an increase in the phosphorylation of GSK-3βser9, but with no change in total GSK-3β. Treatment with CH-T decreased the ratio of pGSK-3βto total GSK-3β. In contrast, the ratio of pGSK-3βto total GSK-3βwas increased markedly in DTT-treated slices. No significant changes were found in relative ratio of pGSK-3βto total GSK-3βin DTNB or TCEP-treated slices. To directly examine the possibility that GSK-3βinactivity may be required for the redox modulation of LTP, we then determined the effects of LiCl, an inhibitor of GSK-3β, on LTP modulation by CH-T. LiCl (10 mM) completely blocked the inhibitory effects of CH-T on LTP. There were no significant differences of LTP magnitudes between control group and LiCl combined CH-T group. Next, we sought to determine whether LiCl mimicked the effects of DTT on the induction of LTP. We found that preincubation of LiCl increased the magnitudes of LTP similar to that of DTT alone. Furthermore, after incubation of LiCl, application of DTT produced a significant increase in LTP magnitude, which was similar to that of LiCl alone. We then measured the phosphorylation of GSK-3β in presence of LiCl alone or LiCl plus redox agents. Preincubation with LiCl before CH-T reversed the decrease ratio of pGSK-3βto total GSK-3βas found in CH-T group. There was no difference in the ratio of pGSK-3βto total GSK-3βbetween LiCl group and DTT group. Preincubation of LiCl increased the ratio of pGSK-3βto total GSK-3βsimilar to that of LiCl plus DTT group. Conclusion:The effects of these membrane-permeable redox agents are at least partially attributed to the modification of GSK-3β. These findings are benefit for understanding of redox contribution to mechanisms underlying AD pathogenesis and its promising therapeutic target.
引文
1. Collie, A.; Maruff, P. The neuropsychology of preclinical Alzheimer's disease and mild cognitive impairment. Neurosci Biobehav Rev 24:365-374; 2000.
    2. Bamberger, M. E.; Landreth, G. E. Inflammation, apoptosis, and Alzheimer's disease.Neuroscientist 8:276-283; 2002.
    3. Butterfield, D. A.; Drake, J.; Pocernich, C.; Castegna, A. Evidence of oxidative damage in Alzheimer's disease brain: central role for amyloid beta-peptide. Trends Mol Med 7:548-554; 2001.
    4. Hynd, M. R.; Scott, H. L.; Dodd, P. R. Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer's disease. Neurochem Int 45:583-595; 2004.
    5. Markesbery, W. R. Oxidative stress hypothesis in Alzheimer's disease. Free Radic Biol Med 23:134-147; 1997.
    6. Summers, W. K. Alzheimer's disease, oxidative injury, and cytokines. J Alzheimers Dis 6:651-657; discussion 673-681; 2004.
    7. Butterfield, D. A.; Lauderback, C. M. Lipid peroxidation and protein oxidation in Alzheimer's disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic Biol Med 32:1050-1060; 2002.
    8. Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 298:789-791; 2002.
    9. Small, D. H.; Mok, S. S.; Bornstein, J. C. Alzheimer's disease and Abeta toxicity: from top to bottom. Nat Rev Neurosci 2:595-598; 2001.
    10. Kamsler, A.; Segal, M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23:269-276; 2003.
    11. Gozlan, H.; Khazipov, R.; Diabira, D.; Ben-Ari, Y. In CA1 hippocampal neurons, the redox state of NMDA receptors determines LTP expressed by NMDA but not by AMPA receptors. J Neurophysiol 73:2612-2617; 1995.
    12. Bliss, T. V.; Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39; 1993.
    13. Ferkey, D. M.; Kimelman, D. GSK-3: new thoughts on an old enzyme. Dev Biol 225:471-479; 2000.
    14. Frame, S.; Cohen, P. GSK3 takes centre stage more than 20 years after its discovery.Biochem J 359:1-16; 2001.
    15. Mussmann, R.; Geese, M.; Harder, F.; Kegel, S.; Andag, U.; Lomow, A.; Burk, U.; Onichtchouk, D.; Dohrmann, C.; Austen, M. Inhibition of GSK3 promotes replication and survival of pancreatic beta cells. J Biol Chem 282:12030-12037; 2007.
    16. Huang, M.; Kamasani, U.; Prendergast, G. C. RhoB facilitates c-Myc turnover by supporting efficient nuclear accumulation of GSK-3. Oncogene 25:1281-1289; 2006.
    17. Kockeritz, L.; Doble, B.; Patel, S.; Woodgett, J. R. Glycogen synthase kinase-3--an overview of an over-achieving protein kinase. Curr Drug Targets 7:1377-1388; 2006.
    18. Goold, R. G.; Gordon-Weeks, P. R. Glycogen synthase kinase 3beta and the regulation of axon growth. Biochem Soc Trans 32:809-811; 2004.
    19. Bhat, R. V.; Budd, S. L. GSK3beta signalling: casting a wide net in Alzheimer's disease. Neurosignals 11:251-261; 2002.
    20. Balaraman, Y.; Limaye, A. R.; Levey, A. I.; Srinivasan, S. Glycogen synthase kinase 3beta and Alzheimer's disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63:1226-1235; 2006.
    21. De Ferrari, G. V.; Inestrosa, N. C. Wnt signaling function in Alzheimer's disease. Brain Res Brain Res Rev 33:1-12; 2000.
    22. Niewiadomska, G.; Baksalerska-Pazera, M.; Lenarcik, I.; Riedel, G. Compartmental protein expression of Tau, GSK-3beta and TrkA in cholinergic neurons of aged rats. J Neural Transm 113:1733-1746; 2006.
    23. Inestrosa, N. C.; Varela-Nallar, L.; Grabowski, C. P.; Colombres, M. Synaptotoxicity in Alzheimer's disease: the Wnt signaling pathway as a molecular target. IUBMB Life 59:316-321; 2007.
    24. Hernandez, F.; Borrell, J.; Guaza, C.; Avila, J.; Lucas, J. J. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 83:1529-1533; 2002.
    25. Feyt, C.; Kienlen-Campard, P.; Leroy, K.; N'Kuli, F.; Courtoy, P. J.; Brion, J. P.; Octave,J. N. Lithium chloride increases the production of amyloid-beta peptide independently from its inhibition of glycogen synthase kinase 3. J Biol Chem 280:33220-33227; 2005.
    26. Hooper, C.; Markevich, V.; Plattner, F.; Killick, R.; Schofield, E.; Engel, T.; Hernandez, F.; Anderton, B.; Rosenblum, K.; Bliss, T.; Cooke, S. F.; Avila, J.; Lucas, J. J.; Giese, K. P.; Stephenson, J.; Lovestone, S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25:81-86; 2007.
    27. Shin, S. Y.; Chin, B. R.; Lee, Y. H.; Kim, J. H. Involvement of glycogen synthase kinase-3beta in hydrogen peroxide-induced suppression of Tcf/Lef-dependent transcriptional activity. Cell Signal 18:601-607; 2006.
    28. Yu, Y.; Wang, J. R.; Sun, P. H.; Guo, Y.; Zhang, Z. J.; Jin, G. Z.; Zhen, X. Neuroprotective effects of atypical D1 receptor agonist SKF83959 are mediated via D1 receptor-dependent inhibition of glycogen synthase kinase-3 beta and a receptor-independent anti-oxidative action. J Neurochem 104:946-956; 2008.
    1. Santarelli, L. C.; Chen, J.; Heinemann, S. H.; Hoshi, T. The beta1 subunit enhances oxidative regulation of large-conductance calcium-activated K+ channels. J Gen Physiol 124:357-370; 2004.
    2. Susankova, K.; Tousova, K.; Vyklicky, L.; Teisinger, J.; Vlachova, V. Reducing and oxidizing agents sensitize heat-activated vanilloid receptor (TRPV1) current. Mol Pharmacol 70:383-394; 2006.
    3. Lauriault, V. V.; O'Brien, P. J. Molecular mechanism for prevention of N-acetyl-p-benzoquinoneimine cytotoxicity by the permeable thiol drugs diethyldithiocarbamate and dithiothreitol. Mol Pharmacol 40:125-134; 1991.
    4. Hsu, M. F.; Sun, S. P.; Chen, Y. S.; Tsai, C. R.; Huang, L. J.; Tsao, L. T.; Kuo, S. C.; Wang, J. P. Distinct effects of N-ethylmaleimide on formyl peptide- and cyclopiazonicacid-induced Ca2+ signals through thiol modification in neutrophils. Biochem Pharmacol 70:1320-1329; 2005.
    5. Bamberger, M. E.; Landreth, G. E. Inflammation, apoptosis, and Alzheimer's disease. Neuroscientist 8:276-283; 2002.
    6. Thind, K.; Sabbagh, M. N. Pathological correlates of cognitive decline in Alzheimer's disease. Panminerva Med 49:191-195; 2007.
    7. Kihara, T.; Shimohama, S. Alzheimer's disease and acetylcholine receptors. Acta Neurobiol Exp (Wars) 64:99-105; 2004.
    8. Zeeberg, B. Concerning the distribution of cerebral muscarinic acetylcholine receptors in Alzheimer's disease. Arch Neurol 48:1117-1118; 1991.
    9. Behl, C. Effects of glucocorticoids on oxidative stress-induced hippocampal cell death: implications for the pathogenesis of Alzheimer's disease. Exp Gerontol 33:689-696; 1998.
    10. Akhondzadeh, S. Hippocampal synaptic plasticity and cognition. J Clin Pharm Ther 24:241-248; 1999.
    11. Lopez-Garcia, J. C. Two different forms of long-term potentiation in the hippocampus. Neurobiology (Bp) 6:75-98; 1998.
    12. Dobrunz, L. E. Long-term potentiation and the computational synapse. Proc Natl Acad Sci U S A 95:4086-4088; 1998.
    13. Neves, G.; Cooke, S. F.; Bliss, T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nat Rev Neurosci 9:65-75; 2008.
    14. Rowan, M. J.; Klyubin, I.; Wang, Q.; Hu, N. W.; Anwyl, R. Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 35:1219-1223; 2007.
    15. Bliss, T. V.; Collingridge, G. L. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361:31-39; 1993.
    16. Bear, M. F.; Abraham, W. C. Long-term depression in hippocampus. Annu RevNeurosci 19:437-462; 1996.
    17. Kamsler, A.; Segal, M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23:269-276; 2003.
    18. Burlacu, A.; Jinga, V.; Gafencu, A. V.; Simionescu, M. Severity of oxidative stress generates different mechanisms of endothelial cell death. Cell Tissue Res 306:409-416; 2001.
    19. Datta, K.; Babbar, P.; Srivastava, T.; Sinha, S.; Chattopadhyay, P. p53 dependent apoptosis in glioma cell lines in response to hydrogen peroxide induced oxidative stress. Int J Biochem Cell Biol 34:148-157; 2002.
    20. Pellmar, T. C.; Neel, K. L. Oxidative damage in the guinea pig hippocampal slice. Free Radic Biol Med 6:467-472; 1989.
    21. Gozlan, H.; Chinestra, P.; Diabira, D.; Ben-Ari, Y. NMDA redox site modulates long-term potentiation of NMDA but not of AMPA receptors. Eur J Pharmacol 262:R3-4; 1994.
    22. Tauck, D. L.; Ashbeck, G. A. Glycine synergistically potentiates the enhancement of LTP induced by a sulfhydryl reducing agent. Brain Res 519:129-132; 1990.
    1. Kohr, G.; Eckardt, S.; Luddens, H.; Monyer, H.; Seeburg, P. H. NMDA receptor channels: subunit-specific potentiation by reducing agents. Neuron 12:1031-1040; 1994.
    2. Amato, A.; Connolly, C. N.; Moss, S. J.; Smart, T. G. Modulation of neuronal and recombinant GABAA receptors by redox reagents. J Physiol 517 ( Pt 1):35-50; 1999.
    3. Wemmie, J. A.; Chen, J.; Askwith, C. C.; Hruska-Hageman, A. M.; Price, M. P.; Nolan, B. C.; Yoder, P. G.; Lamani, E.; Hoshi, T.; Freeman, J. H., Jr.; Welsh, M. J. The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory. Neuron 34:463-477; 2002.
    4. Chu, X. P.; Close, N.; Saugstad, J. A.; Xiong, Z. G. ASIC1a-specific modulation of acid-sensing ion channels in mouse cortical neurons by redox reagents. J Neurosci 26:5329-5339; 2006.
    5. Sommer, D.; Fakata, K. L.; Swanson, S. A.; Stemmer, P. M. Modulation of the phosphatase activity of calcineurin by oxidants and antioxidants in vitro. Eur J Biochem 267:2312-2322; 2000.
    6. Hooper, C.; Markevich, V.; Plattner, F.; Killick, R.; Schofield, E.; Engel, T.; Hernandez,F.; Anderton, B.; Rosenblum, K.; Bliss, T.; Cooke, S. F.; Avila, J.; Lucas, J. J.; Giese, K. P.; Stephenson, J.; Lovestone, S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25:81-86; 2007.
    7. Lovell, M. A.; Xiong, S.; Xie, C.; Davies, P.; Markesbery, W. R. Induction of hyperphosphorylated tau in primary rat cortical neuron cultures mediated by oxidative stress and glycogen synthase kinase-3. J Alzheimers Dis 6:659-671; discussion 673-681; 2004.
    8. Embi, N.; Rylatt, D. B.; Cohen, P. Glycogen synthase kinase-3 from rabbit skeletal muscle. Separation from cyclic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem 107:519-527; 1980.
    9. Balaraman, Y.; Limaye, A. R.; Levey, A. I.; Srinivasan, S. Glycogen synthase kinase 3beta and Alzheimer's disease: pathophysiological and therapeutic significance. Cell Mol Life Sci 63:1226-1235; 2006.
    10. Doble, B. W.; Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175-1186; 2003.
    11. Cross, D. A.; Alessi, D. R.; Cohen, P.; Andjelkovich, M.; Hemmings, B. A. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785-789; 1995.
    12. Hughes, K.; Nikolakaki, E.; Plyte, S. E.; Totty, N. F.; Woodgett, J. R. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. EMBO J 12:803-808; 1993.
    13. Pap, M.; Cooper, G. M. Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273:19929-19932; 1998.
    14. Duarte, A. I.; Santos, P.; Oliveira, C. R.; Santos, M. S.; Rego, A. C. Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3beta signaling pathways and changes in protein expression. Biochim Biophys Acta; 2008.
    15. Chen, J.; Park, C. S.; Tang, S. J. Activity-dependent synaptic Wnt release regulateshippocampal long term potentiation. J Biol Chem 281:11910-11916; 2006.
    16. Peineau, S.; Taghibiglou, C.; Bradley, C.; Wong, T. P.; Liu, L.; Lu, J.; Lo, E.; Wu, D.; Saule, E.; Bouschet, T.; Matthews, P.; Isaac, J. T.; Bortolotto, Z. A.; Wang, Y. T.; Collingridge, G. L. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53:703-717; 2007.
    17. Le Floch, N.; Rivat, C.; De Wever, O.; Bruyneel, E.; Mareel, M.; Dale, T.; Gespach, C. The proinvasive activity of Wnt-2 is mediated through a noncanonical Wnt pathway coupled to GSK-3beta and c-Jun/AP-1 signaling. FASEB J 19:144-146; 2005.
    18. Jope, R. S. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24:441-443; 2003.
    1. Ferkey, D. M.; Kimelman, D. GSK-3: new thoughts on an old enzyme. Dev Biol 225:471-479; 2000.
    2. Bianchi, M. W.; Guivarc'h, D.; Thomas, M.; Woodgett, J. R.; Kreis, M. Arabidopsis homologs of the shaggy and GSK-3 protein kinases: molecular cloning and functional expression in Escherichia coli. Mol Gen Genet 242:337-345; 1994.
    3. Doble, B. W.; Woodgett, J. R. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175-1186; 2003.
    4. Hilioti, Z.; Gallagher, D. A.; Low-Nam, S. T.; Ramaswamy, P.; Gajer, P.; Kingsbury, T. J.; Birchwood, C. J.; Levchenko, A.; Cunningham, K. W. GSK-3 kinases enhancecalcineurin signaling by phosphorylation of RCNs. Genes Dev 18:35-47; 2004.
    5. Haefner, B. A model for NF-kappa B regulation by GSK-3 beta. Drug Discov Today 8:1062-1063; 2003.
    6. Wang, Q.; Wang, X.; Hernandez, A.; Hellmich, M. R.; Gatalica, Z.; Evers, B. M. Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells. J Biol Chem 277:36602-36610; 2002.
    7. Baki, L.; Shioi, J.; Wen, P.; Shao, Z.; Schwarzman, A.; Gama-Sosa, M.; Neve, R.; Robakis, N. K. PS1 activates PI3K thus inhibiting GSK-3 activity and tau overphosphorylation: effects of FAD mutations. EMBO J 23:2586-2596; 2004.
    8. Kang, U. G.; Seo, M. S.; Roh, M. S.; Kim, Y.; Yoon, S. C.; Kim, Y. S. The effects of clozapine on the GSK-3-mediated signaling pathway. FEBS Lett 560:115-119; 2004.
    9. Alonso, M.; Martinez, A. GSK-3 inhibitors: discoveries and developments. Curr Med Chem 11:755-763; 2004.
    10. Goni-Oliver, P.; Lucas, J. J.; Avila, J.; Hernandez, F. N-terminal cleavage of GSK-3 by calpain: a new form of GSK-3 regulation. J Biol Chem 282:22406-22413; 2007.
    11. Cole, A. R.; Knebel, A.; Morrice, N. A.; Robertson, L. A.; Irving, A. J.; Connolly, C. N.; Sutherland, C. GSK-3 phosphorylation of the Alzheimer epitope within collapsin response mediator proteins regulates axon elongation in primary neurons. J Biol Chem 279:50176-50180; 2004.
    12. Chen, J.; Zhou, J.; Feng, Y.; Wang, J. Effect of GSK-3 overactivation on neurofilament phosphorylation. J Huazhong Univ Sci Technolog Med Sci 25:375-377, 403; 2005.
    13. Maiese, K.; Chong, Z. Z. Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease. Restor Neurol Neurosci 22:87-104; 2004.
    14. Lovestone, S.; Killick, R.; Di Forti, M.; Murray, R. Schizophrenia as a GSK-3 dysregulation disorder. Trends Neurosci 30:142-149; 2007.
    15. Dewhurst, S.; Maggirwar, S. B.; Schifitto, G.; Gendelman, H. E.; Gelbard, H. A. Glycogen synthase kinase 3 beta (GSK-3 beta) as a therapeutic target in neuroAIDS. JNeuroimmune Pharmacol 2:93-96; 2007.
    16. Collingridge, G. L.; Kehl, S. J.; McLennan, H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol 334:33-46; 1983.
    17. Hooper, C.; Markevich, V.; Plattner, F.; Killick, R.; Schofield, E.; Engel, T.; Hernandez, F.; Anderton, B.; Rosenblum, K.; Bliss, T.; Cooke, S. F.; Avila, J.; Lucas, J. J.; Giese, K. P.; Stephenson, J.; Lovestone, S. Glycogen synthase kinase-3 inhibition is integral to long-term potentiation. Eur J Neurosci 25:81-86; 2007.
    18. Peineau, S.; Taghibiglou, C.; Bradley, C.; Wong, T. P.; Liu, L.; Lu, J.; Lo, E.; Wu, D.; Saule, E.; Bouschet, T.; Matthews, P.; Isaac, J. T.; Bortolotto, Z. A.; Wang, Y. T.; Collingridge, G. L. LTP inhibits LTD in the hippocampus via regulation of GSK3beta. Neuron 53:703-717; 2007.
    19. Etienne-Manneville, S.; Hall, A. Cdc42 regulates GSK-3beta and adenomatous polyposis coli to control cell polarity. Nature 421:753-756; 2003.
    20. Eickholt, B. J.; Walsh, F. S.; Doherty, P. An inactive pool of GSK-3 at the leading edge of growth cones is implicated in Semaphorin 3A signaling. J Cell Biol 157:211-217; 2002.
    21. Lucas, F. R.; Goold, R. G.; Gordon-Weeks, P. R.; Salinas, P. C. Inhibition of GSK-3beta leading to the loss of phosphorylated MAP-1B is an early event in axonal remodelling induced by WNT-7a or lithium. J Cell Sci 111 ( Pt 10):1351-1361; 1998.
    22. Hall, A. C.; Brennan, A.; Goold, R. G.; Cleverley, K.; Lucas, F. R.; Gordon-Weeks, P. R.; Salinas, P. C. Valproate regulates GSK-3-mediated axonal remodeling and synapsin I clustering in developing neurons. Mol Cell Neurosci 20:257-270; 2002.
    23. Hanger, D. P.; Hughes, K.; Woodgett, J. R.; Brion, J. P.; Anderton, B. H. Glycogen synthase kinase-3 induces Alzheimer's disease-like phosphorylation of tau: generation of paired helical filament epitopes and neuronal localisation of the kinase. Neurosci Lett 147:58-62; 1992.
    24. Lovestone, S.; Reynolds, C. H.; Latimer, D.; Davis, D. R.; Anderton, B. H.; Gallo, J. M.; Hanger, D.; Mulot, S.; Marquardt, B.; Stabel, S.; et al. Alzheimer's disease-like phosphorylation of the microtubule-associated protein tau by glycogen synthase kinase-3 in transfected mammalian cells. Curr Biol 4:1077-1086; 1994.
    25. Wagner, U.; Utton, M.; Gallo, J. M.; Miller, C. C. Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci 109 ( Pt 6):1537-1543; 1996.
    26. Alt, J. R.; Cleveland, J. L.; Hannink, M.; Diehl, J. A. Phosphorylation-dependent regulation of cyclin D1 nuclear export and cyclin D1-dependent cellular transformation. Genes Dev 14:3102-3114; 2000.
    27. Diehl, J. A.; Cheng, M.; Roussel, M. F.; Sherr, C. J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 12:3499-3511; 1998.
    28. D'Amico, M.; Hulit, J.; Amanatullah, D. F.; Zafonte, B. T.; Albanese, C.; Bouzahzah, B.; Fu, M.; Augenlicht, L. H.; Donehower, L. A.; Takemaru, K.; Moon, R. T.; Davis, R.; Lisanti, M. P.; Shtutman, M.; Zhurinsky, J.; Ben-Ze'ev, A.; Troussard, A. A.; Dedhar, S.; Pestell, R. G. The integrin-linked kinase regulates the cyclin D1 gene through glycogen synthase kinase 3beta and cAMP-responsive element-binding protein-dependent pathways. J Biol Chem 275:32649-32657; 2000.
    29. Stambolic, V.; Ruel, L.; Woodgett, J. R. Lithium inhibits glycogen synthase kinase-3 activity and mimics wingless signalling in intact cells. Curr Biol 6:1664-1668; 1996.
    30. Bliss, T. V.; Lomo, T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331-356; 1973.
    31. Selig, D. K.; Hjelmstad, G. O.; Herron, C.; Nicoll, R. A.; Malenka, R. C. Independent mechanisms for long-term depression of AMPA and NMDA responses. Neuron 15:417-426; 1995.
    32. Aronica, E.; Casabona, G.; Genazzani, A. A.; Catania, M. V.; Contestabile, A.; Virgili, M.; Nicoletti, F. Melittin enhances excitatory amino acid release and AMPA-stimulated 45Ca2+ influx in cultured neurons. Brain Res 586:72-77; 1992.
    33. Esteban, J. A. AMPA receptor trafficking: a road map for synaptic plasticity. Mol Interv 3:375-385; 2003.
    34. Bredt, D. S.; Nicoll, R. A. AMPA receptor trafficking at excitatory synapses. Neuron 40:361-379; 2003.
    35. Malinow, R. AMPA receptor trafficking and long-term potentiation. Philos Trans R Soc Lond B Biol Sci 358:707-714; 2003.
    36. Malinow, R.; Malenka, R. C. AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103-126; 2002.
    37. Giese, K. P.; Fedorov, N. B.; Filipkowski, R. K.; Silva, A. J. Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279:870-873; 1998.
    38. Bortolotto, Z. A.; Collingridge, G. L. Involvement of calcium/calmodulin-dependent protein kinases in the setting of a molecular switch involved in hippocampal LTP. Neuropharmacology 37:535-544; 1998.
    39. Leroy, K.; Brion, J. P. Developmental expression and localization of glycogen synthase kinase-3beta in rat brain. J Chem Neuroanat 16:279-293; 1999.
    40. Jiang, H.; Guo, W.; Liang, X.; Rao, Y. Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120:123-135; 2005.
    41. Yoshimura, T.; Kawano, Y.; Arimura, N.; Kawabata, S.; Kikuchi, A.; Kaibuchi, K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137-149; 2005.
    42. Graef, I. A.; Mermelstein, P. G.; Stankunas, K.; Neilson, J. R.; Deisseroth, K.; Tsien, R. W.; Crabtree, G. R. L-type calcium channels and GSK-3 regulate the activity ofNF-ATc4 in hippocampal neurons. Nature 401:703-708; 1999.
    43. Williams, R.; Ryves, W. J.; Dalton, E. C.; Eickholt, B.; Shaltiel, G.; Agam, G.; Harwood, A. J. A molecular cell biology of lithium. Biochem Soc Trans 32:799-802; 2004.
    44. Gould, T. D.; Manji, H. K. Glycogen synthase kinase-3: a putative molecular target for lithium mimetic drugs. Neuropsychopharmacology 30:1223-1237; 2005.
    45. Mulkey, R. M.; Endo, S.; Shenolikar, S.; Malenka, R. C. Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486-488; 1994.
    46. Mulkey, R. M.; Herron, C. E.; Malenka, R. C. An essential role for protein phosphatases in hippocampal long-term depression. Science 261:1051-1055; 1993.
    47. Morfini, G.; Szebenyi, G.; Brown, H.; Pant, H. C.; Pigino, G.; DeBoer, S.; Beffert, U.; Brady, S. T. A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J 23:2235-2245; 2004.
    48. Lee, Y. I.; Seo, M.; Kim, Y.; Kim, S. Y.; Kang, U. G.; Kim, Y. S.; Juhnn, Y. S. Membrane depolarization induces the undulating phosphorylation/dephosphorylation of glycogen synthase kinase 3beta, and this dephosphorylation involves protein phosphatases 2A and 2B in SH-SY5Y human neuroblastoma cells. J Biol Chem 280:22044-22052; 2005.
    49. Szatmari, E.; Habas, A.; Yang, P.; Zheng, J. J.; Hagg, T.; Hetman, M. A positive feedback loop between glycogen synthase kinase 3beta and protein phosphatase 1 after stimulation of NR2B NMDA receptors in forebrain neurons. J Biol Chem 280:37526-37535; 2005.
    50. Hernandez, F.; Borrell, J.; Guaza, C.; Avila, J.; Lucas, J. J. Spatial learning deficit in transgenic mice that conditionally over-express GSK-3beta in the brain but do not form tau filaments. J Neurochem 83:1529-1533; 2002.
    51. Abraham, W. C.; Bear, M. F. Metaplasticity: the plasticity of synaptic plasticity.Trends Neurosci 19:126-130; 1996.
    52. Fitzjohn, S. M.; Bortolotto, Z. A.; Palmer, M. J.; Doherty, A. J.; Ornstein, P. L.; Schoepp, D. D.; Kingston, A. E.; Lodge, D.; Collingridge, G. L. The potent mGlu receptor antagonist LY341495 identifies roles for both cloned and novel mGlu receptors in hippocampal synaptic plasticity. Neuropharmacology 37:1445-1458; 1998.
    53. Chen, P.; Gu, Z.; Liu, W.; Yan, Z. Glycogen synthase kinase 3 regulates N-methyl-D-aspartate receptor channel trafficking and function in cortical neurons. Mol Pharmacol 72:40-51; 2007.
    54. Manahan-Vaughan, D.; Kulla, A.; Frey, J. U. Requirement of translation but not transcription for the maintenance of long-term depression in the CA1 region of freely moving rats. J Neurosci 20:8572-8576; 2000.
    55. Kamsler, A.; Segal, M. Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23:269-276; 2003.
    56. Pellmar, T. C.; Neel, K. L. Oxidative damage in the guinea pig hippocampal slice. Free Radic Biol Med 6:467-472; 1989.
    57. Gozlan, H.; Chinestra, P.; Diabira, D.; Ben-Ari, Y. NMDA redox site modulates long-term potentiation of NMDA but not of AMPA receptors. Eur J Pharmacol 262:R3-4; 1994.
    58. Tauck, D. L.; Ashbeck, G. A. Glycine synergistically potentiates the enhancement of LTP induced by a sulfhydryl reducing agent. Brain Res 519:129-132; 1990.
    59. Miklossy, J.; Khalili, K.; Gern, L.; Ericson, R. L.; Darekar, P.; Bolle, L.; Hurlimann, J.; Paster, B. J. Borrelia burgdorferi persists in the brain in chronic lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimers Dis 6:639-649; discussion 673-681; 2004.
    60. Perry, G.; Nunomura, A.; Raina, A. K.; Aliev, G.; Siedlak, S. L.; Harris, P. L.; Casadesus, G.; Petersen, R. B.; Bligh-Glover, W.; Balraj, E.; Petot, G. J.; Smith, M. A. A metabolic basis for Alzheimer disease. Neurochem Res 28:1549-1552; 2003.
    61. Harper, D. G.; Stopa, E. G.; McKee, A. C.; Satlin, A.; Fish, D.; Volicer, L. Dementia severity and Lewy bodies affect circadian rhythms in Alzheimer disease. Neurobiol Aging 25:771-781; 2004.
    62. Finucane, T. E. Alzheimer disease: current concepts and emerging diagnostic and therapeutic strategies. Ann Intern Med 140:71; 2004.
    63. Selkoe, D. J. Alzheimer disease: mechanistic understanding predicts novel therapies. Ann Intern Med 140:627-638; 2004.
    64. Tiraboschi, P.; Sabbagh, M. N.; Hansen, L. A.; Salmon, D. P.; Merdes, A.; Gamst, A.; Masliah, E.; Alford, M.; Thal, L. J.; Corey-Bloom, J. Alzheimer disease without neocortical neurofibrillary tangles: "a second look". Neurology 62:1141-1147; 2004.
    65. Hampel, H.; Buerger, K.; Zinkowski, R.; Teipel, S. J.; Goernitz, A.; Andreasen, N.; Sjoegren, M.; DeBernardis, J.; Kerkman, D.; Ishiguro, K.; Ohno, H.; Vanmechelen, E.; Vanderstichele, H.; McCulloch, C.; Moller, H. J.; Davies, P.; Blennow, K. Measurement of phosphorylated tau epitopes in the differential diagnosis of Alzheimer disease: a comparative cerebrospinal fluid study. Arch Gen Psychiatry 61:95-102; 2004.
    66. Pei, J. J.; Braak, E.; Braak, H.; Grundke-Iqbal, I.; Iqbal, K.; Winblad, B.; Cowburn, R. F. Distribution of active glycogen synthase kinase 3beta (GSK-3beta) in brains staged for Alzheimer disease neurofibrillary changes. J Neuropathol Exp Neurol 58:1010-1019; 1999.
    67. Pei, J. J.; Tanaka, T.; Tung, Y. C.; Braak, E.; Iqbal, K.; Grundke-Iqbal, I. Distribution, levels, and activity of glycogen synthase kinase-3 in the Alzheimer disease brain. J Neuropathol Exp Neurol 56:70-78; 1997.
    68. Wang, J. Z.; Wu, Q.; Smith, A.; Grundke-Iqbal, I.; Iqbal, K. Tau is phosphorylated by GSK-3 at several sites found in Alzheimer disease and its biological activity markedly inhibited only after it is prephosphorylated by A-kinase. FEBS Lett 436:28-34; 1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700