几类高阶时滞系统的动力学与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于高维的时滞系统而言,其对应的特征方程是含有指数的超越方程,具有很高的阶数.一般情形下,分析多时滞系统“所有的特征根都具有负实部”这样的稳定性条件几乎是不可能的,甚至给出稳定性的边界条件也是困难的.现有的非线性动力学理论处理低维系统是有效的,但许多的理论难以应用于高维系统,特别是高维时滞系统.事实上,一个切实有效的降维方法将使得复杂系统的稳定性、分岔与混沌的研究变得容易进行,如何将大型、复杂的高维系统进行降维处理已经成为现代非线性动力学研究的热点问题之一.
     另外,高维时滞系统的动力学控制是否有新的特点?工程实践中常用的位移反馈控制,速度反馈控制等方法,是否还能有效控制高维时滞系统?这些都是值得探讨的新问题.针对上述几个问题,本文分析了几类高阶时滞系统的动力学与控制,包括高维小世界网络的动力学与控制,具有记忆的小世界网络的动力学与控制,粘弹性振动系统的动力学与控制,参数与时滞相关的振动系统的动力学与控制,以及参数与时滞相关的两个神经元系统的动力学.本文具体的研究内容如下.
     (1)详细分析了具有时滞的3-D小世界网络的动力学性质与控制.首先对系统的平衡点进行了研究并指出系统存在复杂的无界动力学行为.然后提出三种动力学控制方法:位移反馈控制,速度反馈控制,速度和加速度反馈控制,文中指出,这三种控制方法中,只有速度和加速度混合反馈控制才能镇定3-D小世界网络.适当的选择控制时滞和控制增益,控制系统可能有稳定的平衡点、由Hopf分岔产生的周期解、或者由倍周期分岔导致的奇怪混沌吸引子.本章的结果可推广至任意的“d”维系统.研究表明,控制“d”维时滞小世界网络,至少需要“d-1”阶微分反馈控制.此工作为高维时滞系统的动力学控制提供了新思路.
     (2)提出了一个具有记忆的小世界网络群体动力学模型,分析了分布时滞对小世界网络动力学性质的影响.稳定性分析指出模型的影响总量是无界的,因此导致信息在网络的传播呈指数形式增长.我们还讨论了有限尺寸对网络动力学的影响,给出了所有节点都受到感染的饱和时间.此外,研究了时滞反馈对网络系统动力学的影响,对于适当的反馈增益和时滞,控制模型有稳定的平衡点,周期解,拟周期解以及由倍周期分岔导致的混沌.文中指出,时滞反馈控制可以作为系统管理和动力学控制的重要研究手段,将会促进复杂网络在实际中应用.
     (3)详细分析了具有粘弹性项的Duffing系统动力学性质与控制.首先未控系统具有复杂的无界动力学行为,然后引入时滞速度反馈控制来镇定这样的系统.研究结果表明适当的选择控制增益和控制时滞,系统可产生复杂的动力学行为,包括稳定的平衡点、由Hopf分岔产生的周期解、拟周期解及余维2分岔和混沌解.数值模拟证明了结论的正确性.
     (4)分析了参数与时滞相关的延迟振子的动力学.应用稳定性切换准则,研究了平衡点的稳定区间,以及由Hopf分岔产生的周期解.结果指出,当时滞从零增加到无穷大,振子可能经历有限次稳定性切换,系统的平衡点最终可能是稳定的或不稳定的,这个结论与参数和时滞无关的系统有很大的不同.另外,数值模拟结果表明,对于非常简单的双曲正切激活函数,系统也会产生复杂的动力学行为,并发现了两条通往混沌的路径:倍周期分岔导致混沌和拟周期分岔导致混沌.研究进一步指出记忆函数显著影响系统的稳定性,因此可以通过选择合适的记忆函数来控制系统的动力学行为.
     (5)应用稳定性切换准则分析了参数与时滞相关的具有惯性项的两个神经元系统的稳定性.研究表明,随着时滞的增加,系统会发生有限次的稳定性切换,但系统最终可能是稳定的,不稳定的或者在稳定和不稳定间切换.另外,文中还通过数值模拟分析了系统独特的动力学行为,包括复杂的周期运动与混沌解.
     在结束语中,对全文进行了总结,并提出了可能存在的问题和进一步的研究方向.
     本文的创新点为:(1)提出了一个具有记忆的小世界网络的群体动力学模型,分析了其动力学与控制;(2)提出了一种有效控制高维小世界网络群体动力学的方法;(3)对于参数与时滞相关的系统,提出了将记忆函数作为系统动力学控制的有效方法.
It is well known that the characteristic equation of higher order delayed systems istranscendental equation which has very high orders. Normally, for the system with multipledelays, it is impossible to get the stability condition that all the eigenvaues have negative realparts; it is also difficult to give the stability boundary conditions for such systems. Existingtheories of nonlinear dynamics are effective for low-dimensional systems, but many of themare difficult to apply to higher order systems, especially higher order delayed systems. In fact,an effective dimension reduction method can make the analysis of stability, bifurcation andchaos of complex system easier. How to reduce the dimension of large, complexhigh-dimensional systems has become one of the hot research of nonlinear dynamics.
     In addition, whether the dynamics control of the higher order delayed systems has newproperties? If the displacement feedback control and velocity feedback control methodswhich is used in the engineering practice can effectively control the higher order delayedsystems? These are new problems worthy to be discussed. For the above problems, thispaper analyzes the dynamics and control of several kind of higher order delayed systems,including the dynamics and control of the small-world networks, the small world networkwith memory, dynamics and control of the viscoelastic vibration system, dynamics andcontrol of the vibration system with delay dependent parameters and dynamics of two neuronsystem with delay dependent parameters. This dissertation focuses on the followingproblems.
     (1) A detailed analysis on the collective dynamics and delayed state feedback control ofa three-dimensional delayed small-world network is presented. The trivial equilibrium of themodel is first investigated and shows that uncontrolled model exhibits unbounded behavior.Then presente three control strategies, namely a position feedback control, a velocityfeedback control, and a hybrid control combined velocity with acceleration feedback. Itshows in these three control schemes only the hybrid control can easily stabilize the3-Dnetwork system. And with properly chosen delay and gain in the delayed feedback path, thehybrid controlled model may have stable equilibrium, or periodic solutions resulted from theHopf bifurcation, or complex stranger attractor from the period-doubling bifurcation. Theresults of this paper are further extended to any “d” dimensional network. It shows that tostabilize a “d” dimensional delayed small world network, at least a “d-1” order completeddifferential feedback is needed. This work provides a new thought for the high dimensionaldelayed systems.
     (2) A nonlinear small-world network model with memory is presented to investigate the effects of the distribution delays on the dynamical properties of small-world networks.Stability analysis shows that the total infected volume of this model are unbounded whichresult in the exponential growth of an infection in networks. We also discuss the effect offinite size on the network dynamics, and give the saturate time which all the nodes areinfected by the initial infection. The dynamical control is also investigated by introducing thedelayed feedback to the small-world networks. For the appropriate feedback gain and timedelay, controlled model may have stable equilibrium, periodic solution, quasi-periodicsolution, or chaos from a sequence of period-doubling bifurcations. It shows delayedfeedback control may find important applications in the management and dynamical control.This shall be the motivations of some further studies of the dynamics of real networks.
     (3) The dynamics and delayed state feedback control of oscillator with generalizedviscoelastic item is discussed. It shows that uncontrolled model exhibits complicatedunbounded behavior. It shows that with properly chosen delay and gain in the delayedfeedback path, the velocity controlled model may have stable equilibrium, or periodicsolutions resulted from the Hopf bifurcation, codimension2bifurcation or complex strangerattractor.
     (4) The dynamics of a delayed oscillator with delay-dependent parameter is presented.On the basis of stability switch criteria, the equilibrium is studied, and the stabilityconditions and the periodic solutions bifurcating from the equilibrium are determined. Theresults show that as the delay varies from zero to infinity, the oscillator may undergo anumber of stability switches, it could be eventual stable or unstable. This is very differentfrom that in the system without delay-dependent parameters. In addition, the numericalstudies show there are two routes to chaos for this oscillator even with the very simplehyperbolic tangent nonlinear function: period-doubling bifurcations process to Chaos andquasi-periodic solutions bifurcation to Chaos. It shows that appropriate memory function canbe used as a promising scheme to control the system dynamics.
     (5) A detailed analysis on the stability switches of an inertial two neurons model withdelay-dependent parameter are presented. It shows that system will undergo a finite numberof stability switches with an increase of time delay. The system finally will be stable orunstable. Moreover, the paper also analyzed the unique dynamics of the system by numericalsimulation, including complex periodic motions and chaotic solutions.
     Finally, a summary of this dissertation is given. The further studies on sytems with timedelays are discussed.
     The innovations of this dissertation are as follows:(1) A collective model of asmall-world network with memory is proposed, and a dynamical control scheme is given forthe effective control.(2) An effective delayed control scheme is proposed for the higher order system control.(3) For the sysems with delay-dependent parameters, memory functioncould be one of the promising schemes for system control.
引文
[1] Hassard B D, Kazarinoff N D, Wan Y H. Theory and Applications of Hopf Bifurcation
    [M]. Cambridge: Cambridge University Press,1981.
    [2] Hu H Y, Wang Z H. Dynamics of Controlled Mechanical Systems with DelayedFeedback [M]. Heidelberg: Springer-Verlag,2002.
    [3] Kuang Y. Delay Differential equations with Applications to Population Dynamics [M].New York: Academic Press,1993.
    [4] Hale J K. Theory of Functional Differential Equations [M]. New York: Springer-Verlag,1977.
    [5]秦元勋,王联,刘永清,郑祖庥.带有时滞的动力系统的稳定性[M].北京:科学出版社,1989.
    [6] Pyragas K. Continuous control of chaos by self-controlling feedback [J]. Physics LettersA,1992,170:421-428.
    [7] Liu K, Chen L X and Cai G P. Experimental study of delayed positive feedback controlfor a flexible beam [J]. Theoretical and Applied Mechanics Letters,2011,1:063003.
    [8] Xu X, Hu H Y, Wang H L. Dynamics of a two dimensional delayed small-world networkunder delayed feedback control [J]. International Journal of Bifurcation and Chaos,2006,16(11):3257-3273.
    [9] Xu X, Hu H Y, Wang H L. Stability, bifurcation and chaos of a delayed oscillator withnegative damping and delayed feedback control [J]. Nonlinear Dynamics,2007,49(1-2):117-129.
    [10] Olgac N, Elmali H, Vijayan S. Introduction to the Dual Frequency Fixed DelayedResonator [J]. Journal of sound and vibration,1996,189(3):355-367.
    [11] Stepan G. Modeling nonlinear regenerative effects in metal cutting [J]. PhilosophicalTransactions of the Royal Society of London A,2001,359:739-757.
    [12]王在华,胡海岩,王怀磊.一个时滞反馈受控机电系统中的暂态混沌[J].动力学与控制学报,2004,2(4):24-28.
    [13] Liu B, Hu H Y. Group delay induced instabilities and Hopf bifurcations of a controlleddouble pendulum [M]. International Journal of Non-Linear Mechanics,2010,45(4):442-452.
    [14]刘博,胡海岩.群时延引起的受控小车二级摆失稳及其抑制[J].振动工程学报,2009,22(5):443-448.
    [15] Moiola J L, Chen G. Hopf bifurcation analysis: A frequency domain Approach [M].Singapore: World Scientific,1997.
    [16] Liao X F, Li S W, Wong K W. Hopf bifurcation on a two-neuron system withdistributed delays: a frequency domain approach [J]. Nonlinear Dynamics,2003,31(3),299-326.
    [17]阮炯,顾凡及,蔡场杰.神经动力学模型方法和应用[M].北京:科学出版社,2002.
    [18] Xu X, Hu H Y and Wang H L. Stability Switches, Hopf Bifurcation and Chaos of aNeuron Model with Delay-dependent Parameters [J]. Physics Letters A,2006,354:126-136.
    [19] Xu X. Complicated dynamics of a ring neural network with time delays [J]. Journal ofPhysics A: Mathematical and Theoretical,2008,41(3):035102.
    [20]马知恩,周义仓,吴建宏,传染病的建模与动力学,高等教育出版社,2009.
    [21] Perioux D, Erneux T, Gavrielides A, Kovanis V. Hopf bifurcation subject to a largedelay in a laser system [J]. SIAM Journal of Applied Mathematics,2000,61(3):966-982.
    [22]毕桥,方锦清.网络科学与统计物理方法[M].北京:北京大学出版社,2011.
    [23]汪小帆,李翔,陈关荣.复杂网络理论及其应用[M].北京:清华大学出版社,2006.
    [24] Liu Z H, Zhu W Q. Asymptotic Lyapunov stability with probability one ofquasi-integrable Hamiltonian systems with delayed feedback control [J]. Automatica,2008,44(7):1923-1928.
    [25] Zhu W Q, Liu Z H. Response of quasi-integrable Hamiltonian systems with delayedfeedback bang-bang control [J]. Nonlinear Dynamics,2007,49(1-2):31-47.
    [26] Zhang H Q, Xu W, Xu Y, Zhou B C. Delay induced transitions in an asymmetrybistable system and stochastic resonance [J]. Science China: Physics, Mechanics&Astronomy,2010,53(4):745-750.
    [27] Sun Z K, Xu W, Yang X L. Influence of time delay and noise on the chaotic motion of abistable system [J]. Physics Letters A,2006,353(1-2):21-25.
    [28] Li D X, Xu W, Guo Y F, Li G J. Transient properties of a bistable system with delaytime driven by non-Gaussian and Gaussian noises: mean first-passage time [J].Communications in Theoretical Physics,2008,50(3):669-673.
    [29] Wang Q Y, Lu Q S. Time delay-enhanced synchronization and regularization in twocoupled chaotic neurons [J]. Chinese Physics Letters,2005,22(3):543-546.
    [30] Wang Q Y, Lu Q S, Duan Z S. Adaptive lag synchronization in coupled chaotic systemswith unidirectional delay feedback [J]. International Journal of Non-Linear Mechanics,2010,45(6):640-646.
    [31] Duan L X, Lu Q S, Wang Q Y. Two-parameter bifurcation analysis of firing activity inthe Chay neural model [J]. Neurocomputing,2008,72(1-3):341-351.
    [32] Zhen B, Xu J. Bautin bifurcation analysis for synchronous solution of a coupled FHNneural system with delay [J]. Communications in Nonlinear Science and NumericalSimulation,2010,15(2):442-458.
    [33] Ge J H, Xu J. Computation of synchronized periodic solution in a BAM network withtwo delays [J]. IEEE Transactions on Neural Networks,2010,21(3):439-450.
    [34] Ge J H, Xu J. Synchronization and synchronized periodic solution in a simplifiedfive-neuron BAM neural network with delays [J]. Neurocomputing,2011,74(6):993-999.
    [35] Zhou J, Chen T P. Synchronization in general complex delayed dynamical networks [J].IEEE Transactions on Circuits and Systems I,2006,53(3):733-744.
    [36] Zhou J, Xiang L, Liu Z R. Synchronization in complex delayed dynamical systems withimpulsive effects [J]. Physcica A: Statistical Mechanics and Its Applications,2007,384(2):684-692.
    [37] Cai S M, Zhou J, Xiang L, Liu Z R. Robust impulsive synchronization of complexdelayed dynamical networks [J]. Physics Letters A,2008,372(12):4990-4995.
    [38] Li C P, Sun W G, Kurths J. Synchronization between two coupled complex networks [J].Physical Review E,2007,76(3):046204.
    [39] Li C P, Xu C X, Sun W G, Xu J, Kurths J. Outer synchronization of coupleddiscrete-time networks [J]. Chaos,2009,19(1):013106.
    [40]胡海岩,王在华.非线性时滞动力系统的研究进展[J].力学进展,1999,29(4),501-512.
    [41]王在华,胡海岩.时滞动力系统的稳定性与分岔:从理论走向应用[J].力学进展,2013,43(1),4-20.
    [42]徐鉴,裴利军.时滞系统动力学近期研究进展与展望[J].力学进展,2006,36(1):17-30.
    [43] Han Q, Yu X, Gu K.On computing the maximum time-delay bound for stability oflinear neutral systems [J]. IEEE Transactions on Automatic Control,2004,49:2281-2285.
    [44] Han Q. A new delay-dependent stability criterion for linear neutral systems withnorm-bounded uncertainties in all systems matrices [J]. International Joumal of SystemsScience,2005,36:469-475.
    [45] Han Q. A new delay-dependent absolute stability criterion for a class of nonlinearneutral systems [J]. Automatica,2008,44:272-277.
    [46] Xu X, Wang Z H. Effects of small world connection on the dynamics of a delayed ringnetwork [J]. Nonlinear Dynamics,2009,56(1-2):127-144.
    [47] Hu H Y, Wang Z H. Stability analysis of damped SDOF systems with two time delaysin state feedback [J]. Journal of Sound and Vibration,1998,214(2),213-225.
    [48] Stepan G. Retarded Dynamical Systems: Stability and Characteristic Functions [M].Essex: Longman Scientific&Technical,1989.
    [49] Beretta E and Kuang Y. Geometric stability switch criteria in delay differential systemswith delay dependent parameters [J]. SIAM on Journal of Mathematical Analysis,2002,33:1144-1165.
    [50] Wang Z H, Hu H Y. Delay-independent stability of retarded dynamic systems ofmultiple degrees of freedom [J]. Journal of Sound and vibration,1999,226(1):57-81.
    [51] Hu H Y, Dowell E H, Virgin L N. Stability estimation of linear dynamical systemsunder state delay feedback control [J]. Journal of Sound and Vibration,1998,214(3),497-511.
    [52] Li J Y, Zhang L, Wang Z H. Two effective stability criteria for linear time-delaysystems with complex coefficients [J]. Journal of System Science and Complexity,2011,24(5):835-849.
    [53] Marshall J E, Gorecki H, Korytowski A, Walton K. Time-delay systems: Stability andPerformance Criteria with Applications [M]. New York: Prentice Hall,1992.
    [54] Yang X S, Yang I F Y. A rigorous verification of chaos in an inertial two-neuron system[J]. Chaos, Solitons and Fractals,2004,20:587-591.
    [55] Li C G, Chen G R, Liao X, Yu J. Hopf bifurcation and chaos in a single inertial neuronmodel with time delay [J]. The European Physical Journal B,2004,41:337-343.
    [56] Liao X F, Cheng G R.Local stability,Hopf and resonant codimension-two bifurcation ina harmonic oscillator with two time delays [J].International Journal of Bifurcation andChaos,2001,11(8):2105-2121.
    [57] Xu J, Chung K W.Effects of time delayed position feedback on a van der Pol-Duffingoscillator [J]. Physica D,2003,180:7-39.
    [58]廖晓昕.稳定性的数学理论及应用[M].武汉:华中师范大学出版社,2001
    [59] Hong T, Hughes P C. Effect of time delay on the stability of flexible structers with ratefeedback control [J]. Journal of Vibration and Control,2001,7:33-49.
    [60] Azuma T, Ikeda K, Kondo T, Uchida K. Memory state feedback control synthesis forlinear systems with time delay via afinite number of linear matrix inequalities [J].Computers and Electrical Engineering,2002,28:217-228.
    [61] Olgac N, Sipahi R. An exact method for the stability analysis of time-delayed lineartime-invariant(LTI)systems [J].IEEE Transactions on Automatic Control,2002,47(5):793-797.
    [62] Mao X C, Hu H Y. Stability and bifurcation analysis of a network of four neurons withtime delays [J]. ASME Journal of Computational and Nonlinear Dynamics,2010,5(4):041001.
    [63]茅晓晨,胡海岩.四神经元时滞网络的稳定性与分岔[J].力学,季刊,2009,30(1):1-7.
    [64] Xu J, Lu Q S. Hopf bifurcation of time-delay Liénard equations [J]. InternationalJournal of Bifurcation and Chaos,1999,9(5),939-951.
    [65]徐鉴,陆启韶,黄玉盈. Van der Pol型时滞系统的两参数余维一Hopf分岔及其稳定性[J].固体力学学报,1999,20(4),297-302.
    [66] Zhang L, Wang H L, Hu H Y. Symbolic computation ofnormal form for Hopfbifurcation in a retarded functional differential equation with unknown parameters [J].Communications in Nonlinear Science and Numerical Simulation,2012,17(8):3328-3344.
    [67]王怀磊.时滞状态反馈下Duffing系统动力学研究[D].南京:南京航空航天大学力学系,2003.
    [68]王万永.时滞耦合系统共振双Hopf分岔奇异性及其分类[D].上海:同济大学航空航天与力学学院,2011.
    [69] Nayfeh A H. Order reduction of retarded nonlinear systems: the method of multiplescales versus center-manifold reduction [J]. Nonlinear Dynamics,2008,51(4):483-500.
    [70] Zheng Y G, Wang Z H. Stability and Hopf bifurcation of a class of TCP/AQM networks[J]. Nonlinear Analysis: Real World Applications,2010,11(3):1552-1559.
    [71] Zheng Y G, Wang Z H. Stability and Hopf bifurcations of an optoelectronic time-delayfeedback system [J]. Nonlinear Dynamics,2009,57(1-2):125-134.
    [72] Hu H Y, Wang Z H. Singular perturbation methods for nonlinear dynamic systems withtime delay [J]. Chaos, Solitons and Fractals,2009,40(1):13-27.
    [73] Jin Y F, Hu H Y. Principal resonance of a Duffing oscillator with delayed statefeedback under narrow-band random parametric excitation [J]. Nonlinear Dynamics,2007,50(1-2):213-227.
    [74] Li J Y, Zhang L, Wang Z H. A simple algorithm for testing the stability of periodicsolutions of some nonlinear oscillators with large time delay [J]. Science China:Technological Sciences,2011,54(8):2033-2043.
    [75] Wang Z H, Hu H Y. A modified averaging scheme with application to secondary Hopfbifurcation of a delayed van der Pol oscillator [J]. Acta Mechanica Sinica,2008,24(4):449-454.
    [76] Campbell S A, Belair J. Resonant codimension two bifurcation in the harmonicoscillator with delayed forcing [J]. Canadian Applied Mathematics Quarterly,1999,7(3):217-238.
    [77] Redmond B F, et al. Bifurcation analysis of a class of first-order nonlineardelay-differential equations with reflectional symmetry [J]. Physica D,2002,166:131-146.
    [78] Yu P, Yuan Y, Xu J. Study of double Hopf bifurcation and chaos for an oscillator withtime delayed feedback [J]. Communications in Nonlinear Science and NumericalSimulation,2002,7(1),69-91.
    [79] Xu J, Chung K W. Double Hopf bifurcation with strong resonances in delayed systemswith nonlinearities [J]. Mathematical Problems in Engineering,2009,2009:16pages.
    [80] Ma S Q, Lu Q S, Feng Z S. Double Hopf bifurcation for van der Pol-Duffing oscillatorwith parametric delay feedback control [J]. Journal of Mathematical Analysis andApplications,2008,338(2):993-1007.
    [81] Ma S Q, Feng Z S, Lu Q S. Dynamics and double-Hopf bifurcations of theRose-Hindmarsh model with time delay [J]. International Journal of Bifurcation andChaos,2009,19(11):3733-3751.
    [82] Wang H L, Hu H Y, Wang Z H. Global dynamics of a Duffing oscillator with delayeddisplacement feedback [J]. International Journal of Bifurcation and Chaos,2004,14(8):2753-2775.
    [83] Wang Z H, Hu H Y. Pseudo-oscillator analysis of scalar nonlinear time-delay systemsnear a Hopf bifurcation [J]. International Journal of Bifurcation and Chaos,2007,17(8):2805-2814.
    [84] Li J Y, Wang Z H. Local Hopf bifurcation of complex nonlinear systems withtime-delay [J]. International Journal of Bifurcation and Chaos,2009,19(3):1069-1079.
    [85]俞亚娟,王在华.伪振子分析法的证明及其在高阶Hopf分岔中的应用[J].动力学与控制学报,2012,已录用.
    [86] Wang Z H. An iteration method for calculating the periodic solution of time-delaysystems after a Hopf bifurcation [J]. Nonlinear Dynamics,2008,53(1-2):1-11.
    [87] Luzyanina T. Computation, continuation and bifurcation analysis of periodic solutions ofdelay differential equations [J]. International Journal of Bifurcation and Chaos,1997,7(11):2547-2560.
    [88]冯兰,徐旭.最优化方法计算时滞微分方程的周期解[J].吉林大学学报[理学版],2013,接收发表.
    [89] Pyragas K. Control of chaos via extended delay feedback [J]. Physics Letters A,1995,206:323-330.
    [90]王在华,李俊余.时滞状态正反馈在振动控制中的新特征[J].力学学报,2010,42(5):933-942.
    [91] Wang Z H, Xu Q. Vibration control via positive delayed feedback [C]. In: VibrationProblems ICoVP2011-The10th International Conference on Vibration Problems,Dordrecht: Springer,2011,385-391.
    [92] Sun Z, Xu W, Yang X, etal. Inducing or suppressing chaos in a double-well Duffingoscillator by time delay feedback [J]. Chaos, Solitons and Fractals,2006,27(3):705-714.
    [93] Wang Z H, Hu H Y, Stabilization of vibration systems via delayed state differencefeedback [J]. Journal of Sound and Vibration,2006,296(1-2):117-129.
    [94] Liu B, Hu H Y, Stabilization of linear undamped systems via positive and delayedposition feedbacks [J]. Journal of Sound and Vibration,2008,312(3):509-522.
    [95] Jnifene A. Active vibration control of flexible structures using delayed positivefeedback [J]. Systems and Control Letters,2007,56(3):215-222.
    [96] Yu M L, Hu H Y. Flutter control based on ultrasonic motor for a two-dimensionalairfoil section [J]. Journal of Fluids and Structures,2012,28(1):89-102.
    [97] Mao X C, Hu H Y. Hopf bifurcation analysis of a four-neuron network with multipletime delays [J]. Nonlinear Dynamics,2009,55(1-2):95-112.
    [98] Mao X C, Hu H Y. Stability and Hopf bifurcation of a delayed network of four neuronswith ashort-cut connection [J]. International Journal of Bifurcation and Chaos,2008,18(10):3053-3072.
    [99] Watts D J, Strogatz S H. Collective dynamics of ‘small-world’ networks [J]. Nature,1998,393:440-442.
    [100] Albert R, Barabási A L. Energence of scaling in random networks [J]. Science,1999,286:509-512.
    [101]何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009.
    [102] Lewis T G.网络科学原理与应用[M].北京:机械工业出版社,2011
    [103]汪小帆,苏厚胜.复杂动态网络控制研究进展[J].力学进展,2008,38(6):751-765.
    [104] Liu Y Y, Slotine J J, Barabási A L. Controllability of complex networks [J]. Nature,2011,473:167-173.
    [105]郭世泽,陆哲明.复杂网络基础理论[M].北京:科学出版社,2012.
    [106] Yang D G, Hu C Y. Novel delay-dependent global asymptotic stability condition ofHopfield neural networks with delays [J]. Computers&Mathematics withApplications,2009,57(12):1978-1984.
    [107] Xu B J, Liu X, Teo K L. Global exponential stability of impulsive high-order Hopfieldtype neural networks with delays [J]. Computers&Mathematics with Applications,2009,57(12):1959-1967.
    [108] Wang Y F, Lin P, Wang L S. Exponential stability of reaction-diffusion high-orderMarkovian jump Hopfield neural networks with time-varying delays [J]. NonlinearAnalysis: Real World Applications,2012,13(3):1353-1361.
    [109] Wang Z Y, Huang L H. Robust decentralized adaptive control for stochastic delayedHopfield neural networks [J]. Neurocomputing,2011,74(17):3695-3699.
    [110] Gonzalez M, Dominguez D, Sanchez A. Learning sequences of sparse correlatedpatterns using small-world attractor neural networks: An application to traffic videos[J]. Neurocomputing,2011,74(14-15):2361-2367.
    [111] Herrero C P. Ising model in small-world networks [J]. Physical Review E,2002,65:066110-066116.
    [112] Huang J Y, Jin X G. Preventing rumor spreading on small-world networks [J]. Journalof Systems Science&complexity,2011,24(3):449-456.
    [113] Newman M E J, Jensen I, Ziff R M. Percolation and epidemics in a two-dimensionalsmall-world [J]. Physical Review E,2002,65:021904.
    [114] Tang J, Ma J, Yi M, Xia H, Yang X Q. Delay and diversity-induced synchronizationtransitions in a small-world neuronal network [J]. Physical Review E,2011,83(4):046207.
    [115] Verma C K, Tamma B R, Manoj B S, Rao R. A Realistic Small-World Model forWireless Mesh Networks [J]. IEEE Communications Letters,2011,15(4):455-457.
    [116] Atay F M, Jost J, Wende A. Delays, connection topology, and synchronization ofcoupled chaotic maps [J]. Physical Review Letters,2004,92:144101-144104.
    [117] Li C G, Chen G R. Local stability and Hopf bifurcation in small-world delayednetworks [J]. Chaos, Solitons&Fractals,2004,20:353-361.
    [118] Huang J Y, Jin X G. Preventing rumor spreading on small-world networks [J]. Journalof Systems Science&complexity,2011,24(3):449-456.
    [119] Zou W, Zheng X, Tang Y, Zhang C J, Kurths J. Control of delay-induced oscillationdeath by coupling phase in coupled oscillators [J]. Physical Review E,2011,84:066208.
    [120] Zou W, Zheng X, Zhan M. Insensitive dependence of delay-induced oscillation deathon complex networks [J]. CHAOS,2011,21:02313
    [121] Newman M E J, Morre C, Watts D J. Mean-field solution of the small-world networkmodel [J]. Physical Review Letter,2000,84:3201-3204.
    [122] Moukarzel C F. Spreading and shortest paths in systems with sparse long-rangeconnection [J]. Physical Review E,1999,60:6263-6266.
    [123] Yang X S. Chaos in small-world networks [J]. Physical Review E,2001,63:046206.
    [124] Xiao M, Daniel W C, Cao J D. Time-delayed feedback control of dynamicalsmall-world networks at Hopf bifurcation [J]. Nonlinear Dynamics,2009,58:319-344.
    [125] Wang Z H, Hu H Y. Stability switches of time-delayed dynamic systems with unknownparameters [J]. Journal of Sound and Vibration,2000,233:215-233.
    [126] Ermentrout B. XPPAUT3.0--The Differential Equations Tool [M]. Pittsburgh:University of Pittsburgh,1997.
    [127] Watts D J. Six Degrees: The Science of A Connected Age [M]. New York: W.W.Norton and Company,2004.
    [128] Watts D J. Small worlds: the Dynamics of Networks between Order and Randomness
    [M]. Princeton University Press,1999.
    [129] Barabási A-L. Linked: How Everything Is Connected to Everything Else and What ItMeans [M]. Penguin Group,2003.
    [130] Boccaletti S, Latora V, Motreno Y, Chavez M, Hwang D U. Complex networks:structure and dynamics [J]. Physics Reports,2006,424:175-308.
    [131] Gangyly N, Deutsch A, Mukherjee A. Dynamics On and Of Complex Networks:Application to Biology, Computer Science, and the Social Sciences [M]. Birkh user,Berlin:2009.
    [132] Bornholdt S, Schuster H G. Handbook of Graphs and Networks: From the Genome tothe Internet [M]. Weinheim: Wiley-VCH Gmbh&Co. KGaA,2003.
    [133] Koonin E V, Wolf Y I, Karev G P. Power Laws, Scale-Free Networks and GenomeBiology [M]. New York: Springer,2006.
    [134] Caldarelli G, Vespignani A. Large Scale Structure and Dynamics of Complex Networks[M]. World Scientific,2007
    [135] Zekri N, Porterie B, Clerc J P, Loraud J C. Propagation in a two-dimensional weightedlocal small-world network [J]. Physical Review E,2005,71:046121-046125.
    [136] Wang Q Y, Shi X, Chen G R. Delay-induced synchronization transition in small-worldHodgkin-Huxley neuronal networks with channel blocking [J]. Discrete andContinuous Dynamical System-Series B,2011,16(2):607-621.
    [137] Newman M E J, Watts D J. Scaling and percolation in the small-world network model[J]. Physical Review E,1999,60:7332-7342.
    [138] Moukarzel C F. Spreading and shortest paths in systems with sparse long-rangeconnections [J]. Physical Review E,1999,60:6263-6266.
    [139] Wang X F, Chen R R. Complex networks: small-world, scale-Free and Beyond [J].IEEE Circuits and Systems Magazine, First Quarter,2003,6-20.
    [140] Albert R, and Barabási A L. Statistical mechanics of complex networks [J]. Reviews ofModern Physics,2002,74(1):47-97.
    [141] Bondy J A, Murty U S R. Graph Theory with Applications [M]. ElsevierNorth-Holland,1976.
    [142] Bronshtein N, Semendyayev K A, Mudhlig G M H. Handbook of Mathematics [M].Springer,2005
    [143] Huang S C, Inman D J, Austin E M. Some design considerations for active and passiveconstrained layer damping treatments [J]. J Smart Mater Struct,1995,5:301-313
    [144] Muravyov A and Hutton S G. Free vibration response characteristics of a simpleelasto-hereditary system [J]. Journal of Vibration and Acoustics,1998,120:628-632.
    [145] Borg T, P kk nen E J. Linear viscoelastic models: Part I. Relaxation modulus andmelt calibration [J]. J. Non-Newtonian Fluid Mech.,2009,156:121–128.
    [146] Menon S, Tang J. A stste-space approach for the dynamic analysis of viscoelasticsystems [J]. Computers and Structures,2004,82:1123-1130.
    [147]潘志,贺祖琪.数学手册,江苏:中国矿业大学出版社,1995.
    [148] Xu X. Studies on the nonlinear dynamics for some systems with time delays [R].Postdoctoral Report: Nanjing University of Aeronautics and Astronautics,2006.
    [149] Angelaki D E, Correia M J. Models of membrane resonance in pigeon semicircularcanal type hair cells [J]. Biological Cybernetics,1991,65:1-10.
    [150] Mauro A, Conti F, Dodge F, Schor R. Subthreshold behavior and phenomenologicalimpedance of the squid giant axon [J]. The Journal of General Physiology,1970,55:497-523.
    [151] Koch C. Cable theory in neurons with active, Linearized membranes [J]. BiologicalCybernetics,1984,55:15-33.
    [152] Badcock L, Westervelt R M. Dynamics and adiabatic elimination [J]. Physica D,1993,67:224-236.
    [153] Erneux T. Applied Delay differential Equations [M]. LLC: Springer Science, BusinessMedia,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700