扭秤周期法测G实验中的系统误差研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从1798年Cavendish的扭秤实验给出万有引力常数G的第一个值以来,过去两百多年里国际上测量出了三百多个G值,但精度仅提高不到两个数量级。国际科技数据委员会给出G的最新推荐值CODATA2010为6.67384(80)×10~(-11)m~3kg1s2,相对不确定度为120ppm。在CODATA2010推荐值收录的11个G值中声称精度小于50ppm的有6个,而它们之中最大值和最小值的差别达到了487ppm。测G的这种现状反应了对这个基本物理学常数进行精确测量的困难,以及在各种不同的测G方法中可能存在着不同的系统误差。
     在我们实验室2009年测G实验(HUST-09)的基础上,通过一系列的改进措施,我们开展了新一轮基于高Q值石英丝的周期法测G实验。主要改进措施有:1、采用Q值约为5.00×10~4的石英丝取代钨丝来降低滞弹性效应和提高扭秤周期的稳定性。在HUST-09实验中,Q值约为1.7×10~3的涂钍钨丝贡献的滞弹性效应为-211.80(18.69) ppm。采用石英扭丝之后滞弹性效应降低至-6.37(0.50) ppm,这说明滞弹性不再是周期法测G中的主要系统误差来源;2、为了解决由于石英丝不导电带来的静电问题,我们在石英丝表面依次镀了厚度为8nm的锗和8nm的铋膜。目前三天扭秤数据的周期稳定性约为0.05ms,这比HUST-09实验中的周期稳定性提高了约4倍;3、对测G实验环境的背景引力场采用偶极对称扭秤进行了测量并用约800kg铅块进行了补偿。补偿之后,背景引力场对扭秤周期的影响降低了约5倍,同时扭秤的平衡位置处在背景场最平坦的地方,这使得背景场对扭秤周期的影响极大地降低。在72天的近、远程数据中,背景场贡献的效应只有0.38ppm;4、在扭丝周围安装了导热性良好的紫铜管用于均热,实验中铜管上、下端的温度差异小于0.02C,由它引起的热弹性效应贡献给G值的不确定度小于5ppm;5、优化磁阻尼单元。在保持磁阻尼单元对单摆运动模式的抑制能力前提下,将悬挂磁阻尼的钨丝直径和长度进行相应的优化之后,整个磁阻尼贡献给G值的效应从17.54(0.31)ppm减小至0.13(0.01) ppm;6、为了减小扭秤表面镀层对测G的贡献,镀层的材料选用密度更小的铝取代HUST-09中的铜和金之后,整个镀层贡献的效应从-24.28(4.33) ppm降低至-1.81(0.91) ppm。
     目前我们已经完成了初步的测G实验,给出的G值相对不确定度为16.95ppm。其中两项主要的误差来源于Cg/I和ω2的测量精度,它们分别为9.56ppm和13.22ppm。为了使测量结果更加可靠,我们将进行重复的测G工作,因此目前暂不公布G值的测量结果。
     本课题得到973计划课题“基于精密测量物理的引力及相关物理规律研究”的子课题:万有引力常数G的精确测量(2010CB832801)的资助。
The absolute value of G was first measured in the laboratory by Cavendish in1798, whichgave G=6.67(7)×10~11m3kg1s2with a relative uncertainty (ur) of about1%. Over the pasttwo centuries, nearly300different values of G have appeared, however, the measurement pre-cision of G value has improved only at the rate of about1order of magnitude per century. Thenewest recommended G value of CODATA2010(Committee on Data for Science and Tech-nology) is6.67384(80)×10~11m3kg1s2with ur=120ppm. The adopted G values in CO-DATA2010are in poor agreement in their claimed uncertainties, in which the largest differenceyields487ppm. This situation testifies the great difficulty in G measurements, and there maybesome unfound systematic errors.
     Based on the HUST-09G measurement in our laboratory, we develop the new work onG measurement with the time-of-swing method by using a high-Q silica fiber. The main im-provements in the experiment are:1. A silica fiber with Q-factor of5.00×10~4is used as thesuspension fiber to reduce the fiber’s anelastic effect and advance the stability of the pendulum’speriod. Due to the fiber’s high Q, the anelastic effect is reduced from-211.80(18.69) ppm inHUST-09G measurement to only-6.37(0.50) ppm. This means that the anelasticity will not bea main error source in present G measurement;2. To reduce the potential electrostatic effect, thesilica fiber is coated with8-nm-thickness of germanium and8-nm-thickness of bismuth layers inturn. After coated, the period’s stability is about0.05ms yielded from one set of3-days data ofthe pendulum;3. The background gravitational field of the environment is measured by using adipolar pendulum. After compensated with~800kg lead blocks, the influence on the period dueto the background gravitational field is reduced to1/5of that of before compensating. Besides,the equilibrium position of the pendulum in G measurement is located at the peak value of thebackground gravitational field which leads to the least contribution to G value;4. A copper tubewith5-mm-thickness is installed around the fiber to decrease the temperature discrepancy, and6sensors are installed near the fiber to monitor the temperature change. In experiment, the largestdifference between the sensors is less than0.02C, which contribute an uncertainty of <5ppmto G value;5. The magnetic damper is designed to reduce its influence on the pendulum’s pe-riod. At present, the correction from the magnetic damper is reduced from17.54(0.31) ppm toonly0.13(0.01) ppm;6. Aluminum is chosen as the coating material of the pendulum instead ofgold and copper. After improved, the correction for G value from coating layer is reduced from-24.28(4.33) ppm to-1.81(0.91) ppm.
     Up to now we have finished the primary experiment, and the combined uncertainty of Gvalue is16.95ppm. After repeating the G measurement time after time, we will report the final G value with the hoped uncertainty of <20ppm.
     This work is supported in part by the National Basic Research Program of China underGrant No.2010CB832801.
引文
[1] Boys C V. On the Newtonian constant of gravitation. Trans. R. Soc. London Ser. A.,1895,186:1-72
    [2] Braginsky V B, Manukin A B. Measurement of weak forces in physics experiments. Chicago: Universityof Chi-cago Press,1977
    [3] Hawking S W, Isreal W.300years of gravitation. Cambridge: Cambridge University Press,1987
    [4] Gillies G T. Status of the Newtonian gravitational constant. NATO Advanced Science Institute Series C,1988,230:191-214
    [5] Chen Y T, Cook A. Gravitational experiments in the laboratory. Cambridge: Cambridge University Press,1993
    [6] Fischbach E, Talmadge C L. The search for non-Newtonian gravity. New York: Springer Press,1999
    [7] Stacy F D, Truck G T, Moore G I. Geophysics and law of gravity. Rev. Mod. Phys.,1987,59:157-174
    [8] Cook A H. Experiments on gravitation. Rep. Prog. Phys.,1988,51:707-757
    [9] Gillies G T. The Newtonian gravitational constant: Recent measurements and related studies. Rep. Prog.Phys.,1997,60:151-225
    [10] Luo J, Hu Z K. Status of measurement of Newtonian gravitational constant G. Class Quantum Gravity,2000,17:2351-2363
    [11] Herrick S. Astodynamics1: Orbit determination, space navigation, celestial dynamics. London: VanNostrand Reinhold,1971,127-163
    [12] Ries J C, Eanes R J, Shum C K, et al. Progress in the determination of the gravitational coefficient of theEarth. Geophys. Res. Lett.,1992,19:529-531
    [13] United States Naval Observatory, The astronomical almanac for the year2001: Data for astronomy,space sci-ences, geodesy, surveying, navigation and other applications. Washington: Nautical AlmanacOffice,2000
    [14] Ezer D, Cameron A G W. Solar evolution with varying G. Can. J. Phys.1966,44:593-615
    [15] Gallmeier J, Loewe M, Olson D W. Precession and the Pulsar. Sky and Telescope,1995,90:86-88
    [16] Teller E. On the change of physical constants. Phys Rev.1948,73:801-802
    [17] Linde A. Extended chaotic inflation and spatial variations of the gravitational constant. Phys. Lett. B.,1990,238:160-165
    [18] McQueen H W S. Independence of the gravitational constant from gross earth data. Phys. Earth PlanetInter.,1981,26:6-9
    [19] Jiang Y, Duan Y S. The branch process of cosmic strings. J. Math. Phys.,2000,41:2616-2628
    [20] Hindmarsh M B, Kibble T W B. Cosmic strings. Rep. Prog. Phys.,1995,58:477-562
    [21] Fujii Y. Origin of the gravitational constant and particle masses in a scale-invariant scale-tensor theory.Phys. Rev. D.,1982,26:2580-2588
    [22] Zhang Y Z. Newtonian limit in generalized Brans-Dicke theory. Chin. Phys. Lett.,1993,10:513-515
    [23] Li X Z, Zhang J Z. The constraint of Newton’s constant in wormhole. Nuovo. Cimento. A.,1992,105:1291-1299
    [24] Kim D S, Kim J B, Lee H K. Cosmological constraints on the gravitational constant and electron-neutrinode-generacy. J. Korean. Phys. Soc.,1993,26:32-36
    [25] Greensite J. Dispersion of Newton’s constant: a transfer matrix. Phys. Rev. D.,1994,49:930-940
    [26] Nordtvedt K. Post-Newtonian gravity: its theory-experiment interface. Class Quantum Grav.,1994,11:A119-A132
    [27] Landau L D. On the quantum theory of fields, In: Niels Bohr and the development of physics. eds. WPauli, New York: McGraw-Hill,1995
    [28] Terazawa H. Simple relation among the electromagnetic fine-structure, Fermi weak-coupling, and New-tonian gravitational constants. Phys. Rev. D.,1980,22:1037-1038
    [29] Kolosnitsyn N I. A novel method for measurement of the gravitational constant, Meas. Tech.,1993,39:979-986
    [30] Dirac P A M. The cosmological constants. Nature,1937,139:323
    [31] Dirac P A M. A new basis for cosmology. Roy. Soc. Lond. Proc. A.,1938,165:199-208
    [32] Dirac P A M. Cosmological models and the large number hypothesis. Roy. Soc. Lond. Proc. A.,1974,338:439-446
    [33] Weinberg S. The cosmological constant problem. Rev. Mod. Phys.,1989,61:1-23
    [34] Brans C, Dicke R H. Mach’s principle and a relativistic theory of gravitation. Phys. Rev.,1961,124:925-935
    [35] Hellings R W. Time variation of the gravitational constant, NATO Advanced Science Institute Series C,1988,230:215-224
    [36] Massa C. Equation of hydrostatic equilibrium and temperature-dependent gravitational constant, Helv.Phys. Act.,1989,62:424-426
    [37] Long D R. Experimental examination of the gravitational inverse square law. Nature,1976,260:417-418
    [38] Cavendish H. Experiments to Determine the Density of the Earth. Philos. Trans. R. Soc. London,1798,88:469-526
    [39] Luo J, Hu Z K. Status of measurement of Newtonian gravitational constant G. Class Quantum Gravity,2000,17:2351-2363
    [40] Stacey F D. Possibility of a geophysical determination of the Newtonian gravitational constant. Geophys.Res. Lett.,1978,5:377-378
    [41] Stacey F D, Truck G T, Moore G I. Geophysics and law of gravity. Rev. Mod. Phys.,1987,59:157-174
    [42] Hubler B, Cornaz A, Kündig W. Determination of the gravitational constant with a lake experiment: Newcon-straints for non-Newtonian gravity, Phys. Rev. D.,1995,51:4005-4016
    [43] Zumberge M A, Hildebrand J A, Stevenson J M, et al. Submarine measurement of the Newtonian gravi-tational constant, Phys. Rev. Lett.,1991,22:3051-3054
    [44] Speake C C, Gillies G T. The beam balance as a detector in experimental gravitation. Proc. R. Soc.London Ser. A.,1987,414:315-332
    [45] Speake C C, Gillies G T. Fundamental limits to mass comparison by means of a beam balance, Proc. R.Soc. London Ser. A.,1987,414:333-358
    [46] Moore G I, Stace F D, Tuck G J, et al. A balance for precise weighing in a disturbed environment, J.Phys. E: Sci. Instrum.,1988,21:534-539
    [47] Gillies G T, Ritter T C. Torsion balance, torsion pendulums, and related devices. Rev. Sci. Instrum.,1993,64:283-309
    [48] Luther G G, Towler W R. Redetermination of the Newtonian gravitational constant, Phys. Rev. Lett.,1982,48:121-123
    [49] Hely P R. A redetermination of constant of gravitation, J. Res. Nat. Bur. Stand.(US),1930,5:1243-1290
    [50] Hely P R. A new redetermination of constant of gravitation, J. Res. Nat. Bur. Stand.(US),1942,29:1-31
    [51] Gundlach J H, Merkowitz S M. Measurement of Newton’s constant using a torsion balance with angularacceleration feedback. Phys. Rev. Lett.,2000,85:2869-2872
    [52] Schwarz J P, Robertson D S, Niebauer T M, et al. A free-fall determination of the Newtonian Constantof Gravity. Science,1998,282:2230-2234
    [53] Schwarz J P, Robertson D S, Niebauer T M, et al. A new determination of the Newtonian constant ofgravity using the free fall method. Meas. Sci. Technol.,1999,10:478-486
    [54] Fixler J B, Foster G T, McGuirk J M, et al. Atom interferometer measurement of the Newtonian constantof gravity, Science,2007,315:74-77
    [55] Lamporesi G, Bertoldi A, Cacciapuoti L, et al. Determination of the Newtonian gravitational constantusing atom interferometry, Phys. Rev. Lett.,2008,100:050801
    [56] Vinti J P. Theory of an experiment to determination the gravitational constant in an orbiting space labo-ratory. Celest. Mech.,1972,5:204-254
    [57] Ritter R C, Gillies G T. A satellite measurement of G to a part per million, Bull. Am. Phys. Soc.,1984,29:703
    [58] Nobili A M, Milani A, Farinella P. Testing Newtonian gravity in space, Phys. Lett. A.,1987,120:437-441
    [59] Alexeev A D, Bronnikov K A, Kolosnitsyn N I. On two-body space experiments for measuring gravita-tional in-teraction parameters. Int. J. Mod. Phys. D.,1994,3:773-793
    [60] Turyshev S G. Tests of Relativistic Gravity in Space: Recent Progress and Future Directions. Eur. Phys.J.,2008,163:227-253
    [61] Blaser J P, Bye M, Cavallo G, et al. STEP: Satellite test of the equivalence principle. Report on the phaseA study, NASA STI/Recon, Technical Report (Noordwijk: European Space Agency),1993,57-64
    [62] Nobili A M, Milani A, Polacco E, et al. The Newton mission-a proposed manmade planetary system inspace to measure the gravitational constant. ESA J.,1990,14:389-408
    [63] Sanders A J, Deeds W E. Proposed new determination of the gravitational constant G and test of Newto-nian gravitation. Phys. Rev. D.,1992,46:489-504
    [64] Cohen E R, Taylor B N. Recommended consistent values of the fundamental physical constants. J. Phys.Chem. Ref. Data,1973,2:663-734
    [65] Cohen E R, Taylor B N. The1986adjustment of the fundamental physical constants. Rev. Mod. Phys.,1987,59:1121-1148
    [66] Mohr P J, Taylor B N. CODATA recommended values of the fundamental physical constants:1998. Rev.Mod. Phys.,2000,72:351-495
    [67] Mohr P J, Taylor B N. CODATA recommended values of the fundamental physical constants:2002. Rev.Mod. Phys.,2005,77:1-107
    [68] Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical con-stants:2006. Rev. Mod. Phys.,2008,80:633-730
    [69] Mohr P J, Taylor B N, Newell D B. CODATA recommended values of the fundamental physical Con-stants:2010. Rev. Mod. Phys.,2012,84:1527-1605
    [70] Quinn T J, Speake C C, Richman S J, et al. A new determination of G using two methods. Phys. Rev.Lett.,2001,87:111101
    [71] Schlamminger S, Holzschuh E, Kündig W, et al. Determination of the gravitational constant with a BeamBalance. Phys. Rev. Lett.,2002,89:161102
    [72] Armstrong T R, Fitzgerald M P. New measurements of G using the measurement standards laboratorytorsion balance. Phys. Rev. Lett.,2003,91:201101
    [73] Luo J, Hu Z K, Fu X H, et al. Determination of Newtonian gravitational constant G with considering thenon-linear effect. Phys. Rev. D.,1998,59:042001
    [74] Hu Z K, Guo J Q, Luo J. Correction of source mass effects in the HUST-99measurement of G, Phys.Rev. D.,2005,71:127505
    [75] Schlamminger S, Holzschuh E, Kündig W, et al. Measurement of Newton’s gravitational constant. Phys.Rev. D.,2006,74:082001
    [76] Karagioz O V, Izmailov V P. Measurement ofthe gravitational constant with a torsion balance, Meas.Tech.,1996,39:979-986
    [77] Bagley C H, Luther G G. Preliminary results of a dtermination of the Newtonian constant: a test of theKuroda hypothesis, Phys. Rev. Lett.,1997,78:3047-3050
    [78] Kleinevo U. Bestimmung der Newtonschen gravitationskonstanten G, Disertation for the Doctoral De-gree. thesis, Wuppertald: University of Wuppertald,2002
    [79] Luo J, Liu Q, Tu L C, et al. Determination of the Newtonian gravitational constant G with time-of-swingmethod. Phys. Rev. Lett.,2009,102:240801
    [80] Tu L C, Li Q, Wang Q L, et al. New determination of the gravitational constant G with time-of-swingmethod. Phys. Rev. D.,2010,82:022001
    [81] Parks H V, Faller J E. Simple Pendulum Determination of the Gravitational Constant. Phys. Rev. Lett.,2010,105:110801
    [82] Kuroda K. Does the Time-of-Swing Method Give a Correct Value of the Newtonian Gravitational Con-stant? Phys. Rev. Lett.,1995,75:2796
    [83]胡忠坤.万有引力常数G的精确测量与扭秤特性研究:[博士学位论文].武汉:华中科技大学,2001
    [84]刘祺.基于双球体吸引质量的扭秤周期法测量牛顿引力常数G:[博士学位论文].武汉:华中科技大学,2009
    [85] Yang S Q, Tu L C, Shao C G, et al. Direct measurement of the anelasticity of a tungsten fiber. Phys. Rev.D.,2009,80:122005
    [86] Liu L X, Guan S G, Liu Q, et al. Precision Measurement of Distribution of Film Thickness on Pendulumfor Experiment of G. Chin. Phys. Lett.,2009,26:090402
    [87] Mills A. P,Proposed null experiments to test the inverse square law of gravitation, Jr. Gen. Relativ.Gravit.,1979,11:1-11
    [88] Chen Y T, Cook A H, Metherell A J F. An experiment of test of the inverse aquare law of gravitation atrange of0.1m, Porc. Roy. Soc. A.,1984,394:47-68
    [89] Gundlach J H. New constants on composition-dependent interactions with range down to1cm. Phys.Rev. D.,1994,52:295-300
    [90] Tu L C, Guan S G, Luo J, et al. Null Test of Newtonian Inverse-Square Law at Submillimeter Range witha Dual-Modulation Torsion Pendulum. Phys. Rev. Lett.,2007,98:201101
    [91] Yang S Q, Zhan B F, Wang Q L, et al. Test of the Gravitational Inverse Square Law at Millimeter Ranges.Phys. Rev. Lett.,2012,108:081101
    [92] Fischbach E, Talmadge C. Six years of the fifth force. Nature,1992,356:207
    [93] Adelberger E G, Stubbs C W, Heckel B R, et al. Testing the equivalence principle in the field of the earth:Particle physics at masses below1μeV? Phys. Rev. D.,1990,42:3267-3292
    [94] Su Y, Heckel B R, Adelberger E G, et al. New test of the universality of free fall. Phys. Rev. D.,1994,50:3614-3636
    [95] Smith G L, Hoyle C D, Gundlach J H, et al. Short-range tests of the equivalence principle. Phys. Rev. D.,1999,61:022001
    [96] Schlamminger S, Choi K-Y, Wagner T A, et al. Test of the Equivalence Principle Using a RotatingTorsion Balance. Phys. Rev. Lett.,2008,100:041101
    [97] Luo J,Shao C G, Liu Z Z, et al. Determination of the limit of photon mass and cosmic magnetic vectorwith rotating torsion balance, Phys. Lett. A.,2000,270:288
    [98] Luo J, Tu L C, Hu Z K, et al. New Experimental Limit on the Photon Rest Mass with a Rotating TorsionBalance. Phys. Rev. Lett.,2003,90:081801
    [99] Zhao L, Tu Y, Gu B M, et al. An Abnormal Vibrational Mode of Torsion Pendulum. Chin. Phys. Lett.,2003,20:1206
    [100] Tu Y, Zhao L, Liu Q, et al. An abnormal mode of torsion pendulum and its suppression. Phys. Lett. A.,2004,331:354
    [101] Fan X D, Liu Q, Liu L X, et al. Coupled modes of the torsion pendulum. Phys. Lett. A.,2008,372:547
    [102]张雅婷.测G和反平方检验实验中的数学建模:[硕士学位论文].武汉:华中科技大学,2009
    [103] Cavalleri A, Ciani G, Dolesi R, et al. A new torsion pendulum for testing the limits of free-fall for LISAtest masses. Class Quantum Gravity,2009,26:094017
    [104] Saulson P R. Thermal noise in mechanical experiments. Phys. Rev. D.,1990,42:2437-2445
    [105] Cavalleri A, Ciani G, Dolesi R, et al. Gas damping force noise on a macroscopic test body in an infinitegas reservoir. Phys. Lett. A.,2010,374:3365-3369
    [106] Gretarssona A M, Harryb G M. Dissipation of mechanical energy in fused silica fibers. Rev. Sci. In-strum.,1999,70:4081-4087
    [107] Penn S D, Harry G M, Gretarsson A M, et al. High quality factor measured in fused silica. Rev. Sci.Instrum.,2001,72:3670-3673
    [108] Ageev A, Palmer B C, Felice A D, et al. Very high quality factor measured in annealed fused silica.Class Quantum Gravity,2004,21:3887-3892
    [109] Penn S D, Ageev A, Busby Dan, et al. Frequency and surface dependence of the mechanical loss infused silica. Phys. Lett. A.,2006,352:3-6
    [110] Numata K, Horowitz J, Camp Jordan. Coated fused silica fibers for enhanced sensitivity torsion pendu-lum for LISA. Phys. Lett. A.,2007,370:91-98
    [111] Huang Y L, Saulson P R. Dissipation mechanisms in pendulums and their implications for gravitationalwave interferometers. Rev. Sci. Instrum.,1998,69:544
    [112] Rowan S, Twyford S M, Hutchins R, et al. Q factor measurements on prototype fused quartz pendulumsuspensions for use in gravity wave detectors. Phys. Lett. A.,1997,233:303-308
    [113] Braginsky V B, Mitrofanov V P, Tokmakov K V. Energy dissipation in the pendulum mode of the testmass suspension of a gravitational wave antenna. Phys. Lett. A.,1996,218:164-166
    [114] Cagnoli G, Gammaitoni L, Hough J, et al. Very high Q measurements on a fused silica monolithicpendulum for use in enhanced gravity wave detectors. Chin. Phys. Lett.,2000,85:2442
    [115] Numata K, Yamamoto K, Ishimoto H, et al. System measurement of the Intrinsic losses in various kindsof fused silica. Phys. Lett. A.,2004,327:263-271
    [116] Bilenko I A, Braginsky V B, Lourie S L. Mechanical losses in thin fused silica fibres. Class QuantumGravity,2004,21: s1231-s1235
    [117]范启通.基于高Q值扭秤检验弱等效原理实验的前期研究:[硕士学位论文].武汉:华中科技大学,2011
    [118] Mitrofanov V P, Tokmakov K V. Effect of heating on dissipation of mechanical energy in fused silicafibers. Phys. Lett. A.,2003,308:212-218
    [119] Pollack S E, Turner M D, Schlamminger S, et al. Charge management for gravitational-wave observa-tories using UV LEDs. Phys. Rev. D.,2010,81:021101
    [120]田民波,刘德令编译.薄膜科学与技术手册.机械工业出版社,1991
    [121]张以忱等编著.真空镀膜技术,第1版.冶金工业出版社,2009
    [122] Liu L X, Liu Q, Shao C G, et al. Measurement of Density Inhomogeneity for Glass Pendulum. Chin.Phys. Lett.,2008,25:4203
    [123] Luo J, Wang W M, Hu Z K, et al. Precise Determination of Separation Between Spherical AttractingMasses in Measuring the Gravitational Constant. Chin. Phys. Lett.,2001,18:1012
    [124] Chen D C, Luo J, Hu Z K, et al. Precise Measurement of Separation Between Two Spherical SourceMasses. Chin. Phys. Lett.,2004,21:33
    [125] Davis R S. Device to locate the centre of mass of a test object to within a precision of micrometres.Meas. Sci. Technol.,1995,6:227-229
    [126] Guo J Q, Hu Z K, Gu B M, et al. Measurement of Eccentricity of the Centre of Mass from the GeometricCentre of a Sphere. Chin. Phys. Lett.,2004,21:612
    [127] Liu L X, Shao C G, Tu L C, et al. Measurement of Density Inhomogeneity for Source Masses in Time-of-Swing Method of Measuring G. Chin. Phys. Lett.,2009,26:010403
    [128]刘琳霞.测G实验中几种相关效应的影响分析:[博士学位论文].武汉:华中科技大学,2009
    [129]杨山清.扭丝滞弹性效应的精确测量:[博士学位论文].武汉:华中科技大学,2009
    [130] Uhlenbeck G E, Ornstein L S. On the theroty of the Brownian motion. Phys. Rev.,1930,36:823-841
    [131] Wang M C, Uhlenbeck G E. On the theroty of the Brownian motion II. Rev. Mod. Phys.,1945,17:323-342
    [132] Ritter R C, Gillies G T. Classical limit of mechanical thermal noise reduction by feedback. Phys. Rev.A.,1985,31:995-1000
    [133] Chen Y T, Cook A. Thermal noise limitations in torsion pendulum experiments. Class Quantum Gravity,1990,7:1225-1239
    [134] Ritter R C, Winkler L I, Gillies G T. Precision limits of the modern Cavendish device: thermal noisemeasurement regimes and strategies in the torsion pendulum. Meas. Sci. Technol.,1999,10:499-507
    [135] Luo J, Shao C G, Wang D H. Thermal noise limit on the period of a torsion pendulum. Class QuantumGravity,2009,26:195005
    [136] Zener C. Elasticity and Anelasticity of Metals。University of Chicago Press, Chicago,1948
    [137] Luo J, Hu Z K, Hsu H. Thermoelastic property of the torsion fiber in the gravitational experiments. Rev.Sci. Instrum.,2000,71:1524-1528
    [138] Hu Z K, Wang X L, Luo J. Thermoelastic Correction in the Torsion Pendulum Experiment. Chin. Phys.Lett.,2001,18:7-9
    [139] Chen F, Wu S C, Fan S H, et al. Determining the phases of the semidiurnal temperature and pressureoscillations by the cross-correlation equilibrium method. Meas. Sci. Technol.,2003,14:619-624
    [140] Shao C G, Luan E J, Luo J. On the significance of the period fitting method. Rev. Sci. Instrum.,2003,74:2849-2852
    [141] Tian Y L, Tu Y, Shao C G. Correlation method in period measurement of a torsion pendulum. Rev. Sci.Instrum.,2004,75:1971-1974
    [142] Zener C.金属的弹性与滞弹性.第1版.孔庆平,周本廉等译.北京:科学出版社,1965
    [143]葛庭隧.固体内耗理论基础,第1版.北京:科学出版社,2000
    [144] Nowick A S, Berry B S. Anelastic Relaxation in Crystalline Solids. New York: Academic Press,1972
    [145] Ke T S. Experimental evidence of the viscous behavior of grain boundaries in metals. Phys. Rev.,1947,71:533-546
    [146] Ke T S. Stress relaxation across grain boundaries in metals. Phys. Rev.,1947,71:41-46
    [147] Quinn T J, Speake C C, Brown L M. Materials problems in the construction of long-period pendulums.Philos. Mag. A.,1992,65:261-276
    [148] Quinn T J, Speake C C, Davis R S, et al. Stress-dependent damping in Cu-Be torsion and flexuresuspensions at stresses up to1.1GPa. Phys. Lett. A.,1995,197:197-208
    [149] Poynting J H, Thomson J J. Properties of Matter, London,1902
    [150] Kuroda K. Anelasticity in G experiments. Meas. Sci. Technol.,1999,10:435-438
    [151] Matsumura S, Kanda N, Tomaru T, et al. A measurement of the frequency dependence of the springconstant. Phys. Lett. A.,1998,244:4-8
    [152] Newman R D, Bantel M K. On determining G using a cryogenic torsion pendulum. Meas. Sci. Technol.,1999,10:445-453
    [153] Nayfeh A H, Mook D T. Nonlinear oscillations. New York: John wiley and Sons,1979
    [154] Chen Y T. Non-linear effects in the determination of the gravitational constant by means of the swingtime method. Phys. Lett. A.,1984,106:19-22
    [155] Hu Z K, Luo J, Hsu H. Nonlinearity of tungsten fiber in the time-of-swing method. Phys. Lett. A.,1999,264:112-116
    [156] Hu Z K, Luo J, Amplitude dependence of quality factor of the torsion pendulum. Phys. Lett. A.,2000,268:255-259
    [157] Klein U, Vollmann W, Abatti P J. Contact Potential Differences Measurement: Short History and Ex-perimental Setup for Classroom Demonstration. IEEE Transactions On Education,2003,46(3):338-344
    [158] Jackson J D. Classical Electrodynamics.,1999,3rded.(New York: Wiley)
    [159] Li Q, Liu L X, Tu L C, et al. Effect of Local Magnetic Field in G Measurement with Time-of-SwingMethod. Chin. Phys. Lett.,2010,27:070401
    [160]闫宝珠.质量与密度测量不确定度评定,第1版.中国计量出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700