钙钛矿铁电器件材料制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去几十年全球能源消耗由于工业化发展和人口增长而显著增加,致使人类社会面临着化石能源枯竭和全球变暖、二氧化碳过量排放、臭氧层破坏等环境问题,因而研究可再生能源显得十分迫切。室外的可再生能源如太阳能、风能、海洋波浪能可以提供大量能量。然而对于驱动室内低能耗电子设备或者封闭环境如隧道中、衣服、人造皮肤以及可植入生物设备,仍然期待创新方法去实现。利用压电材料可以将人在压力、弯曲、拉伸运动中产生的振动和机械能转化为电能。因此制造有着高压电性能铁电纳米发电机P(VDF-TrFE)比类似结构的其他器件有着更高的能量输出。而弛豫铁电体PMN-PT/PIN-PMN-PT单晶有着大压电系数d33、高介电常数、高电机械耦合因子k33。弛豫铁电体PMN-PT/PIN-PMN-PT物理性质和Ti含量、极化强度、晶体取向有关。在靠近准同型相界区域弛豫铁电体PMN-PT/PIN-PMN-PT有着复杂的结构。有关弛豫铁电体PMN-PT/PIN-PMN-PT电子跃迁报道很少,尤其是其温度依赖的电子能带结构很少研究。光谱学方法是一种非破坏性探测技术,通过光谱测量手段可以获得材料的光学带隙、光学常数、吸收特性、带尾态行为、光学声子模式。本论文主要工作和创新点包括以下几方面:
     1.研究了温度依赖的Pb(Mg1/3Nb2/3)O3-PbTiO3单晶的光学性质、直接带隙、间接带隙,提出了一个能带结构和温度关系模型来解释了铁电PMN-PT/PIN-PMN-PT单晶在准同型相界附近负的和正的能带温度系数。
     在5.3-300K温度范围研究了PMN-xPT(x=0.24和0.31)单晶的透射光谱。我们发现PMN-0.24PT单晶300K时的直接带隙是3.150±0.016eV,间接带隙2.939±0.014eV,声子能量0.098±0.014eV。随着温度的上升,PMN-0.24PT单晶的直接带隙从3.263±0.017降到3.150±0.016eV, PMN-0.31PT单晶的直接带隙从3.050±0.015升至3.101±0.016eV。这种独特的性质是由于PMN-0.31PT中单斜和三方相的共存。用紫外近红外透射光谱在8-300K温度范围研究了铁电PIN-PMN-PT单晶在准同型相界的光学性质。基于变温光谱的能带测量,我们提出了一个能带结构和温度的现象模型,解释了铁电PIN-PMN-PT单晶在多相共存的准同型相界所发现的负的和正的能带温度系数。这种特殊的正的温度系数只在准同型相界的不稳定多相区域出现,而由晶格的热膨胀和电子声子相互作用引起的能带重整化造成的负的温度系数,存在于三方相和四方相这种单相区域,同时,也存在于准同型相界的稳定的多相共存区域。正的温度系数的起源是由于升温造成的从小带隙的单斜相向大带隙的三方相的共存相比例的变化。和PMN-PT、PIN-PIN-PT的光学透射结果一致,我们的模型揭示了这种反常的正的温度系数可能存在于所有的铁电体中多相不稳定的准同型相界区域。
     2.通过拉曼、X射线衍射技术发现PIN-PMN-33PT单晶在200K有和氧八面体旋转和极化翻转相关的结构异常。研究了LaNiO3薄膜在不同电压下反射光谱,用Drude-Lorentz色散模型用来提取光学函数,在能量1.96eV处指认O2p到Ni3d电子跃迁。用变温拉曼光谱我们直接观测到了弛豫铁电单晶Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3结构变化。除了观察到室温以上两个己知的相变,我们在200K左右还观察到了和氧八面体旋转以及极化角度倾斜相关的结构相变。目前的实验结果和自由能膨胀理论结果相比较,我们得出结论是这种奇异的性质是三相比例随着温度发生变化。低温结构变化包括一个正交相和三方相之间的一级相变和单斜相和正交相之间的二级相变。用不同的外加直流电流电压,在光谱范围190-2650nm(0.47-6.5eV)研究了硅衬底上的LaNiO3薄膜的反射光谱。Drude-Lorentz色散模型用来提取光学函数。O2p到Ni3d电子跃迁可以在能量约1.96eV处指认,并且这种电子跃迁随着外电压的下降而下降。外加电压不同导致的介电函数实部的不同有着强的光谱依赖。外电压导致的光电导变化揭示了电场可以诱发载流子修正。
     3.通过变温透射光谱我们研究了制备在石英衬底上的BLT薄膜光学性质,发现BLT薄膜在300K从四方相相变到正交相,在160K从正交相相变到单斜相。用P(VDF-TrFE)薄膜制备出了一种新型纳米发电机,其峰峰值电压输出可以高达0.6V,峰峰值电流输出高达3nA。
     研究了用溶胶凝胶方法制备的钙钛矿AB03-型Bi3.25Lao.75Ti3Oi2(BLT)铁电薄膜的在近红外到紫外光谱区域光学性质。在80K到480K温度范围用透射光谱确定了温度依赖的BLT薄膜电子跃迁性质。最大透射率和相变息息相关。我们用Adachi模型在1.1-6.5eV光子能量区域拟合了介电函数。介电函数和基本光学跃迁能量在160K有个明显的下降,在300K间断。和材料中每个原子价带总有效电子数量相关的长波段折射率n(0)也有着类似的趋势。这个结果显示了随着温度下降,BLT薄膜结构从四方相变到正交相,最后变到单斜相。相变温度分别在300K和160K。此项研究给出了直接观测铁电材料相变。研究了不同退火温度P(VDF-TrFE)薄膜的微观结构,发现杨氏模量和结构密切相关,杨氏模量最大值对应于薄膜最大结晶性百分比。杨氏模量随着退火温度不同从室温下干燥时的0.47GPa显著增大到130℃退火温度下的5.3GPa。再增高退火温度导致弹性模量减小是由于熔点温度Tm以上薄膜结晶性减少。成功制备了P(VDF-TrFE)纳米薄膜发电机,其尺寸大小是5*5mm,厚度是3um,输出电压峰峰值可以高达0.6V,输出电流峰峰值达到3nA。
Due to the process of industrialization and population growth, global energy consumption increased significantly in the past few decades, the whole community is faced with the depletion of fossil energy and environmental issues. These challenges can be resolved through renewable energy. Producing nano-generator is particularly attractive, because it can take advantage of the human biomechanics energy such as heart beat, blood circulation, muscle stretch, and put it into electricity power to support the implanted biological devices. Piezoelectric material is multi-functional, which has a wide range of applications from medical diagnosis and treatment, industrial process control, environmental monitoring, automotive and robotics industry to multimedia and communication. The piezoelectric material can convert mechanical energy to electrical energy, or convert electrical energy into mechanical energy. This nature is particularly prominent in the solid solution of the perovskite type ferroelectric. However, for the low-power electronic devices driven indoor or closed environment and implantable biological devices, there is still need innovative approaches to achieve. Fabricating high voltage output ferroelectric generator by using P(VDF-TrFE) can get higher output than other devices with similar structure. Relaxor perovskite PMN-PT/PIN-PMN-PT single crystal is a very promising compound as the candidate of ferroelectric material for electromechanic transducers due to its excellent piezoelectric coefficients d33, ultrahigh strain levels with low hysteresis, high dielectric constant, large electro-optic coefficients, and large electromechanical coupling factor k33. Physical properties of PMN-PT are sensitive to Ti content, poling strength, crystallographic orientation. The structure of PMN-PT contains the coexistence of neighboring phases in a broad composition range near the morphotropic phase boundary (MPB). Although the dielectric permittivity, domain structure, hysteresis loop, and piezoelectric have been widely investigated, the reports on electronic transitions of PMN-PT are still scarce. On the other hand, the investigations on PMN-PT crystals at low temperature have been mainly focused on the phase transition behavior and domain structures. Up to date, less attention has been paid to the optical properties, especially the temperature dependence of electronic structures for PMN-PT materials. As we know, transmittance spectra can provide optical band gap (OBG), optical constants, absorption characteristics, band tail state behavior, and optical phonon modes. In this thesis, we analysis the optical properties of ferroelectrics and provide a electronic band model. And we use the perovskite ferroelectrics to make thin film nano-generator which has a high-voltage performance and large current output. The following is the main works and results of this dissertation.
     1. The transmittance spectra of Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals have been studied and we found that the temperature dependence of direct band gap Egd, indirect band gap Egi, and phonon energy Ep for different PMN-PT crystals. A phenomenological model of band structure vs. temperature is proposed to explain the negative and positive band narrowing coefficient dEgdldT in ferroelectric PMN-PT/PIN-PMN-PT crystals around the MPB where multiple phases coexist.
     The transmittance spectra of (1-x)Pb(Mg1/3Nb2/3)03-xPbTi03(x=0.24and0.31) single crystals have been studied in the temperature range of5.3-300K. It was found that the direct band gap Egd is3.150±0.016eV, indirect band gap Egi is2.939±0.014eV, and the phonon energy Ep is0.098±0.014eV for the PMN-0.24PT crystal at300K. With increasing the temperature, the Egd of the PMN-0.24PT crystal decreases from3.263±0.017to3.150±0.016eV while the Egd of the PMN-0.31PT crystal increases from3.050±0.015to3.101±0.016eV. The peculiar characteristic can be ascribed to the monoclinic and rhombohedral multiphase coexistence in the PMN-0.31PT crystal. The optical properties of ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3(PIN-PMN-PT) single crystals around the morphotropic phase boundary (MPB) have been investigated using ultraviolet-infrared transmittance spectra in the temperature range of8-300K. Based on the temperature-dependent spectral measurement of the band gap, we propose a phenomenological model of band structure vs. temperature to explain both the negative and positive band narrowing coefficient dEgdldT in ferroelectric PIN-PMN-PT crystals around the MPB where multiple phases coexist. The peculiar positive coefficient only exists in the fragile multiphase region of the MPB, while the negative coefficient, caused by thermal expansion of the lattice and renormalization of the band structure by electron-phonon interaction, exists in the rhombohedral or tetragonal single-phase region as well as in the stationary multiphase region of the MPB. The origin of the positive coefficient is a long-range increasing fraction of coexistence from the monoclinic phase with small band gap to rhombohedral phase with large band gap at elevated temperature. In agreement with optical transmittance results of PMN-PT/PIN-PMN-PT, the model predicts that these unusual positive band narrowing coefficients may exist for all ferroelectrics around the MPB where the coexistence of phases lacks thermodynamic stability.
     2. Anomalous structure deformations involving octahedral rotations and tilting angle of polarization can be found around200K in by Raman spectra and XRD. The reflectance spectra of LaNiO3film on silicon under different applied voltage are studied. The energy of1.96eV is corresponding to the O2p to Ni3d electronic transition, which increases with increasing applied voltage.
     We report direct observation for the structural transformations of relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3single crystals with the aid of temperature-dependent polarized Raman scattering. In addition to the two well-known phase transitions above room temperature, anomalous structure deformations involving octahedral rotations and tilting angle of polarization can be found around200K. A comparison of experimental results with the Devonshire expansion of the free energy allows us to elucidate the peculiar characteristic as the variation of volume fractions among coexistence of three phases, including a first-order phase transition between the orthorhombic and rhombohedral phases and a second-order phase transition between the monoclinic and orthorhombic ones at low temperature. We provides direct observation of the phase/structural transitions of ferroelectric materials. The reflectance spectra of LaNiO3film on silicon have been investigated in the wavelength range of190-2650nm (0.47-6.5eV) under different external direct-current voltage. The Drude-Lorentz dispersion model is used to extract the optical function. The O2p to Ni3d electronic transition can be uniquely assigned to the energy of about1.96eV and decreases with decreasing applied voltage. The discrepancy from the real part of dielectric function with the applied voltage has a strong spectral dependence. The optical conductivity variation under different external voltage indicates that the electrical field can induce the modification of the carrier transport.
     3. The temperature dependences of the optical properties of Bi3.25La0.7sTi3O12films have been studied. The tetragonal phase of the BLT film transforms to orthorhombic phase at300K and then to monoclinic phase at160K. A P(VDF-TrFE) film device is made, its size is5*5mm,with the thickness of film3um. The voltage output is0.6V while the current output is3nA.
     The optical properties of perovskite (ABO3)-type Bi3.25La0.75Ti3O12(BLT) FE nanocrystalline films grown by using the sol-gel method have been investigated from the near-infrared to the ultraviolet photon energy region. The temperature dependences of the electronic properties in BLT nanocrystalline films have been determined by using the spectral transmittance at temperatures from80to480K. The maximum transmittance is strongly related to phase/structural transitions. The dielectric functions in the photon energy range of1.1-6.5eV have been extracted by fitting the experimental data with Adachi's model. The dielectric function and the fundamental optical transition energy show an obvious dip pattern at160K and discontinuous variation at300K. Moreover, the long-wavelength refractive index n(0), which is related to the total effective number of valence electrons per atom in the materials, presents a similar trend. The result indicates that the tetragonal structure of the BLT nanocrystal gradually transforms to an orthorhombic structure and then to a monoclinic structure with decreasing temperature. The phase transition temperatures are located at about300and160K, respectively.
     Young's Modulus are closely relative to microstructure of P(VDF-TrFE) films annealing at different temperature. The maximum Young's modulus are achieved at the highest percentage of crystallinity. Young'modulus increases from0.47Gpa at the room annealing temperature to5.3GPa at130℃annealing temperature. Further increasing the annealing temperature leads to the decrease of Young's modulus due to the decrease of crystallinity above melting temperature Tm. P(VDF-TrFE) generator is made, the size is5*5mm, the thickness of film is3um, the voltage output is0.6V, the current output is3nA.
引文
[1]B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, London, 1971.
    [2]S. E. Park and T. R. Shrout, J. Appl. Phys.82,1804 (1997).
    [3]B. Noheda, D. E. Cox, L. E. Cross, and S. E. Park, Appl. Phys. Lett.74,2059 (1999).
    [4]B. Noheda, Curr. Opin. Solid State Mater. Sci 6,27 (2002).
    [5]B. Noheda and D. E. Cox, Phase Transitions 79,5 (2006).
    [6]H. Fu and R. E. Cohen, Nature (London) 403,281 (2000).
    [7]L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett.84,5427 (2000).
    [8]D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63,094108 (2001).
    [9]B. Noheda, L. Wu, and Y. Zhu, Phys. Rev. B 66,60103 (2002).
    [10]D. I. Woodward, J. Knudsen, and I. M. Reaney, Phys. Rev. B 72,104110 (2005).
    [11]I. A. Kornev, L. Bellaiche, P.-E. Janolin, B. Dkhil, and E. Suard, Phys. Rev. Lett.97, 157601 (2006).
    [12]B. Noheda, J. A. Gonzalo, L. E. Cross, R. Guo, S. E. Park, D. E. Cox, and G. Shirane, Phys. Rev. B 61,8687 (2000).
    [13]B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, and Z. Zhong, Phys. Rev. Lett.86 3891 (2001).
    [14]H. Cao, J. Li, D. Viehland, and G. Xu, Phys. Rev. B 73,184110 (2006).
    [15]M. Davis, D. Damjanovic, and N. Setter, J. Appl. Phys.95,5679 (2004).
    [16]P.-E. Janolin, B. Dkhil, M. Davis, and N. Setter, Appl. Phys. Lett.90,152907 (2007).
    [17]J. Carreaud, P. Gemeiner, J. M. Kiat, and B. Malic, Phys. Rev. B 72,174115 (2005).
    [18]R. Jimenez, B. Jimenez, J. Carreaud, J. M. Kiat, B. Dkhil, J. Holc, M. Kosec, and M. Alguero, Phys. Rev. B 74,184106 (2006).
    [19]J. Carreaud, J. M. Kiat, B. Dkhil, J. Ricote, R. Jimenez, J. Holc, and M. Kosec, Appl. Phys. Lett.89,252906 (2006).
    [20]A. M. Glazer, S. A. Mabud, and R. Clarke, Acta Crystallographica Section B-Structural Science 34,1060 (1978).
    [21]D. L. Corker, A. M. Glazer, R. W. Whatmore, A. Stallard, and F. Fauth, J. Phys. Condensed Matter 10,6251 (1998).
    [22]S. G Zhukov, V. V. Chernyshev, and H. Schenk, J. Appl. Cryst.28,385 (1995).
    [23]B. Dkhil, J. M. Kiat, G Calvarin, G. Baldinozzi, S. B. Vakhrushev, and E. Suard, Phys. Rev. B 65,024104 (2002).
    [24]P. M. Gehring, S.-E. Park, and G Shirane, Phys. Rev. Lett.84,5216 (2000).
    [25]J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C. A. Randall, and S. J. Zhang, Phys. Rev. Lett.91,107602(2003).
    [26]M. Roth, E. Mojaev, and B. Dkhil, Phys. Rev. Lett.98,265701 (2007).
    [27]I. Grinberg, V. L. Cooper, and M. Rappe, Nature (London) 419,909 (2002).
    [28]L. Bellaiche, A. Garcia, and D. Vanderbilt, Phys. Rev. Lett.84,5427 (2000).
    [29]D. Viehland, J. Appl. Phys.88,4794 (2000).
    [30]Y. Wang and A. G. Khachaturyan, Acta Materialia 45,759 (1997).
    [31]Y. U. Wang, Phys. Rev. B 73,014113 (2006).
    [32]Z. Kutnjak, J. Petzelt, and R. Blinc, Nature (London) 441,956 (2006).
    [33]E. Dagotto, Science 309,257 (2005).
    [34]胡志高,中国科学院上海技术物理研究所博士研究生学位论文,2003年12月。
    [35]褚君浩,窄禁带半导体物理学,科学出版社,2005年。
    [36]方荣川,固体光谱学,中国科技大学出版社,2001年
    [37]沈学础,半导体光谱和光学性质(第二版),科学出版社,2002年。
    [38]李文武,华东师范大学博士论文,2012年5月。
    [1]Yamashita, Y.J., Hosono, Y., Harada, K., Ye, Z.-G., in Piezoelectric Materials in Devices, Setter, N., Ed. (Ceramics Laboratory, Switzerland,2002), p.455.
    [2]Park, S.-E., Shrout, T.R., J. Appl. Phys.82,1804 (1997).
    [3]Kuwata, J., Uchino, K., Nomura, S., Jpn. J. Appl. Phys.21,1298 (1982).
    [4]Kobayashi, T., Shimanuki, S., Saitoh, S., Yamashita, Y, Jpn. J. Appl. Phys.36,6035 (1997).
    [5]Liu, S., Park, S.-E., Shrout, T.R., Cross, L.E., J. Appl. Phys.85,2810 (1999).
    [6]Harada, K., Shimanuki, S., Kobayashi, T., Saitoh, S., Yamashita, Y., Key Eng. Mater. 157-158,95(1999).
    [7]Smith, W.A., Navy, U.S. "Piezoelectric Crystal Planning Workshop," Washington Dulles Airport Marriott, May 14-16,1997.
    [8]Ye, Z.-G., Ed., Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials—Synthesis, Properties and Applications (Woodhead Publishing, Cambridge, UK,2008), Chapters 1-14.
    [9]Dong, M., Ye, Z.-G., J. Cryst. Growth 209,81 (2000).
    [10]Zhang, L., Dong, M., Ye, Z.-G., Mater. Sci. Eng. B 78,96 (2000).
    [11]Kumar, F.J., Lim, L.C., Chilong, C., Tan, M.J., J. Cryst. Growth 216,311 (2000).
    [12]Lim, L.C., Rajan, K.K., J. Cryst. Growth 271,435 (2004).
    [13]Lim, L.C., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p.38.
    [14]Chen, W., Ye, Z.-G., J. Cryst. Growth 233,503 (2001).
    [15]Long, X., Ye, Z.-G., Acta Mater.55,6507 (2007).
    [16]Lee, H.Y., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p.158.
    [17]Zhang, S., Lee, S.-M., Kim, D.-H., Lee, H.-Y., Shrout, T.R., J. Am. Ceram. Soc.91, 683 (2008).
    [18]Lee, S.-G., Monteiro, R.G., Fiegelson, R.S., Lee, H.S., Lee, M., Park, S.-E., Appl. Phys. Lett.74,1030(1999).
    [19]Luo, H., Xu, G., Wang, P., Yin, Z., Ferroelectrics 231,97 (1999).
    [20]Luo, H., Xu, G., Xu, H., Wang, P., Yin, Z., Jpn. J. Appl. Phys.39,5581 (2000).
    [21]Zawilski, K.T., Claudia, M., Custodio, C., Demattei, R.C., Lee, S.-G., Monteiro, R.G., Odagawa, H., Feigelson, R.S., J. Cryst. Growth 258,353 (2003).
    [22]Han, P., Tian, J., Yan, W., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p. 3.
    [23]Hackenberger, W.S., Luo, J., Jiang, X., Snook, K.A., Rehrig, P.W., Zhang, S., Shrout, T.R., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p.73.
    [24]Rhim, S.M., Shin, M.C., Lee, S.-G., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p.101.
    [25]Zawilski, K.T., Demattei, R.C., Feigelson, R.S., J. Cryst. Growth 277,393 (2005).
    [26]Benayad, A., Sebald, G., Lebrun, L., Guiffard, B., Pruvst, S., Guyomar, D., Beylat, L., Mater. Res. Bull.41,1069 (2006).
    [27]Fang, B.-J., Xu, H.Q., He, T.-H., Luo, H.-S., Yin, Z.-W., J. Cryst. Growth 244,318 (2002).
    [28]Harada, K., Hosono, Y., Yamashita, Y., Miwa, K., J. Cryst. Growth 229,294 (2001).
    [29]Harada, K., Shimanuki, S., Kobayashi, T., Yamashita, Y., Saitoh, S., J. Amer. Ceram. Soc.85,145(2002).
    [30]Fang, B.,Xu, H., Luo, H.-S., J. Cryst. Growth 310,2871 (2008).
    [31]Cross, L.E., Ferroelectrics 76,241 (1987); Ferroelectrics 151,305 (1994).
    [32]Ye, Z.-G., Key Eng. Mater.155-156,81 (1998).
    [33]Bokov, A.A., Ye, Z.-G., J. Mater. Sci.41,31 (2006).
    [34]Ye, Z.-G., Bing, Y, Gao, J., Bokov, A.A., Stephens, P., Noheda, B., Shirane, G., Phys. Rev. B 67,104104(2003).
    [35]Ye, Z.-G., Noheda, B., Dong, M., Cox, D.E., Shirane, G., Phys. Rev. B 64,184114 (2001).
    [36]Singh, A.K., Pandey, D., J. Phys.:Condens. Matter 13, L931 (2001).
    [37]Singh, A.K., Pandey, D., Phys. Rev. B 67,064102 (2003).
    [38]Kiat, J.M., Uesu, Y, Dkhil, B., Masuta, M., Malibert, C., Calvarin, G., Phys. Rev. B 65,064106(2002).
    [39]Noheda, B., Cox, D.E., Shirane, G., Gao, J., Ye, Z.-G., Phys. Rev. B 66,054104 (2003).
    [40]Kiat, J.-M., Dkhill, B., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G, Ed. (Woodhead Publishing, Cambridge, UK,2008) p. 391.
    [41]Noheda, B., Cox, D.E., Shirane, G., Park, S.-E., Cross, L.E., Zhong, Z., Phys. Rev. Lett.86,3891 (2001).
    [42]Guo, R., Cross, L.E., Park, S.-E., Noheda, B., Cox, D.E., Shirane, G., Phys. Rev. Lett. 84,5423 (2000).
    [43]Bokov, A.A., Ye, Z.-G., Phys. Rev. B 66,094112 (2002).
    [44]Noheda, B., Curr. Opin. Solid State Mater. Sci.6,27 (2002).
    [45]Bokov, A.A., Ye, Z.-G., Ceram. Trans.136,37 (2003).
    [46]Fu, H., Cohen, R.E., Nature (London) 403,281 (2000).
    [47]Ye, Z.-G, Dong, M., J. Appl. Phys.87,2312 (2000).
    [48]Xu, G, Luo, H., Qi, Z., Xu, H., Yin, Z., J. Mater. Res.16,932 (2001).
    [49]Xu, G, Luo, H., Xu, H., Yin, Z., Phys. Rev. B 64,020102 (2001).
    [50]Tu, C.-S., Chien, R.R., Wang, F.-T., Schmidt, V.H., Pan, H., Phys. Rev. B 70,220103 (2004).
    [51]Tu, C.-S., Schmidt, V.H., Shih, I.-C., Chien, R., Phys. Rev. B 67,020102 (2003).
    [52]Chien, R.R., Tu, C.-S., Schmidt, V.H., Wang, F.-T., J. Phys.:Condens. Matter 18, 8337 (2006).
    [53]Schmidt, V.H., Chien, R.R., Tu, C.-S., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G, Ed. (Woodhead Publishing, Cambridge, UK,2008), p.333.
    [54]Bokov, A.A., Ye, Z.-G, J. Appl. Phys.87,6347 (2004).
    [55]Guo, Y., Luo, H., Ling, D., Xu, H., He, T., Yin, Z., J. Phys.:Condens. Matter 15, L77 (2003).
    [56]Shanthi, M., Hoe, K.H., Lim, C.Y.H., Lim, L.C., Appl. Phys. Lett.86,262908 (2005).
    [57]Rajan, K.K., Jin, J., Chang, W.S., Lim, L.-C., Jpn. J. Appl. Phys.46,681 (2007).
    [58]Bokov, A.A., Ye, Z.-G, Appl. Phys. Lett.92,082901 (2008).
    [59]Zhang, S.. Luo, J., Shanta, R., Synder, D.W., Shrout, T.R., in Proceedings of the 15th IEEE-ISAF (Sunset Beach, NC, USA), Gruverman, A., Ed. (2006), p.261.
    [60]Luo, L., Zhou, D., Tang, Y., Jia, Y, Xu, H., Luo, H., Appl. Phys. Lett.90,102907 (2007).
    [61]Zhang, S., Lebrun, L., Jeong, D.-Y., Randal, C., Zhang, Q.M., Shrout, T., J. Appl. Phys.93,9257 (2003).
    [62]Zhang, S.. Luo, J., Snyder, D.W., Shrout, T.R, in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p.130.
    [63]Hosono, Y., Yamashita, Y, Sakamoto, H., Ichinose, N., Jpn. J. Appl. Phys.41, L1240 (2003); Jpn. J. Appli. Phys.42,5681 (2003).
    [64]Yamashita, Y.J., Hosono, Y., in Handbook of Advanced Dielectric, Piezoelectric and Ferroelectric Materials, Ye, Z.-G., Ed. (Woodhead Publishing, Cambridge, UK,2008), p. 205.
    [65]Luo, J., Hackenberger, W., Zhang, S., Shrout, T.R., in U.S. Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, USA, May 13-15, 2008.
    [66]Han, P., Tian, J., in U.S. Navy Workshop on Acoustic Transduction Materials and Devices, State College, PA, USA, May 13-15,2008.
    [67]Tian, J., Han, P., Huang, X., Pan, X., Caroll, J.F. Ⅲ, Payne, D.A., Appl. Phys. Lett. 91,222903(2007).
    [68]Hosono, Y, Yamashita, Y., Sakamoto, H., Ichinose, N., Jpn. J. Appl. Phys.42,6062 (2003).
    [69]Hosono, Y, Yamashita, Y., Hirayama, K., Ichinose, N., Jpn. J. Appl. Phys.44,7037 (2004).
    [70]Yu, P., Wang, F., Zhou, D., Ge, W., Zhao, X., Luo, H., Sun, J., Meng, X., Chu, J., Appl. Phys. Lett.92,252907 (2008).
    [71]S. E. Park and T. R. Shrout, J. Appl. Phys.82,1804 (1997).
    [72]G. S. Xu, X. F. Wang, D. F. Yang, Z. Q. Duan, C. D. Feng, and K. Chen, Appl. Phys. Lett.86,032902 (2005).
    [73]G. S. Xu; H. S. Luo, H. Q. Xu, and Z. W. Yin, Phys. Rev. B 64,020102(R) (2001).
    [74]Z. G. Hu, Y. W. Li, F. Y. Yue, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.91,221903 (2007).
    [75]W. W. Li, J. J. Zhu, J. D. Wu, J. Gan, Z. G. Hu, M. Zhu, and J. H. Chu, Appl. Phys. Lett.97,121102(2010).
    [76]C. J. He, L. H. Luo, X. Y. Zhao, H. Q. Xu, X. H. Zhang, T. H. He, H. S. Luo, and Z. X. Zhou, J. Appl. Phys.100,013112 (2006).
    [77]K. Y. Chan, W. S. Tang, C. L. Mak, and K. H. Wong, Phys. Rev. B 69,144111 (2004).
    [78]A. K. Singh and D. Pandey, Phys. Rev. B 67,064102 (2003).
    [79]Z. G Ye, B. Noheda, M. Dong, D. E. Cox, and G Shirane, Phys. Rev. B 64,184114 (2001).
    [80]J. M. Kiat, Y. Uesu, B. Dkhil, M. Matsuda, C. Malibert, and G Calvarin, Phys. Rev. B 65,064106(2002).
    [81]S. P. Singh, S. Yoon, S. Baik, N. Shin, and D. Pandey, Appl. Phys. Lett.97,122902 (2010).
    [82]R. R. Chien, V. H. Schmidt, L. W. Hung, and C. S. Tu, J. Appl. Phys.97,114112 (2005).
    [83]B. Noheda, D. E. Cox, G. Shirane, J. A. Gonzalo, L. E. Cross, and S. E. Park, Appl. Phys. Lett.74,2059 (1999).
    [84]W. S. Chang, L. C. Lim, P. Yang, C. S. Ku, H. Y. Lee, and C. S. Tu, J. Appl. Phys. 108,044105(2010).
    [85]R. Guo, L. E. Cross, S. E. Park, B. Noheda, D. E. Cox, and G. Shirane, Phys. Rev. Lett.84,5423 (2000).
    [86]B. Noheda, D. E. Cox, G. Shirane, J. Gao, and Z. G. Ye, Phys. Rev. B 66,054104 (2002).
    [87]B. Noheda, Z. Zhong, D. E. Cox, G. Shirane, S. E. Park, and P. Pehrig, Phys. Rev. B 65,224101 (2002).
    [88]Y. H. Bing, R. Guo, and A. S. Bhalla, Ferroelectrics 242,1 (2000).
    [89]O. Svitelskiy, J. Toulouse, G. Yong, and Z. G. Ye, Phys. Rev. B 68,104107 (2003).
    [90]Y. Yang, Y. L. Liu, L. Y. Zhang, K. Zhu, S. Y. Ma, G. G Siu, Z. K. Xu, and H. S. Luo, J. Raman Spectrosc.41,1735 (2010).
    [91]E. Sun, R. Zhang, Z. Wang, D. Xu, L. Li, and W. Cao, J. Appl. Phys.107,113532 (2010).
    [92]C. S. Tu, F. T. Wang, C. M. Hung, R. R. Chien, and H. S. Luo, J. Appl. Phys.100, 104104(2006).
    [93]H.Y. Fan Phys Rev,82,900 (1951); J.O. Dimmock, I. Melngailis, A.J. Strauss Phys Rev Lett,16,1193 (1966); Y.W. Tsang, M.L. Cohen Phys Rev B,3,1254 (1971).
    [94]D.J. Chadi, M.L. Cohen Phys Rev B,7,692 (1973).
    [95]S.E. Park, T.R. Shrout J Appl Phys,82,1804 (1997).
    [96]C. He, X.Z. Li, Z.J. Wang, X.F. Long, S.Y. Mao, Z.G. Ye Chem Mater,22,5588 (2010).
    [97]B. Noheda, D.E. Cox, G. Shirane, S.E. Park, L.E. Cross, Z. Zhong Phys Rev Lett,86, 3891 (2001).
    [98]H. Fu, R.E. Cohen Nature (London),403,281 (2000).
    [99]S.J. Zhang, J. Luo, F. Li, R.J. Meyer Jr., W. Hackenberger, T.R. Shrout Acta Mater, 58,3773 (2010).
    [100]D.B. Lin, H.J. Lee, S.J. Zhang, F. Li, Z.R. Li, Z. Xu et al. Scripta Mater,64,1149 (2011).
    [101]K.G. Webber, H.C. Robinson, G.A. Rossetti Jr, C.S. Lynch Acta Mater,56,2744 (2008).
    [102]G.S. Xu, H.S. Luo, H.Q. Xu, Z.W. Yin Phys Rev B,64,020102 R (2001).
    [103]D. La-Orauttapong, B. Noheda, Z.G. Ye, M. Gehring, J. Toulouse, D.E. Cox et al. Phys Rev B,65,144101 (2001).
    [104]X.F. Long, Z.G. Ye Acta Mater,55,6507 (2007).
    [105]B. Noheda, D.E. Cox Phase Transit,79,5 (2006).
    [106]F. Li, S.J. Zhang, Z. Xu, X.Y. Wei, J. Luo, T.R. Shrout Appl Phys Lett,97, 252903 (2010).
    [107]E.W. Sun, S.J. Zhang, J. Luo, T.R. Shrout, W.W. Cao Appl Phys Lett,97,032902 (2010).
    [108]G. Burns, F.H. Dacol Phys Rev B,28,2527 (1983).
    [109]Z.G Hu, Y.W. Li, F.Y. Yue, Z.Q. Zhu, J.H. Chu Appl Phys Lett,91,221903 (2007).
    [110]W.W. Li, J.J. Zhu, J.D. Wu, J. Gan, Z.G. Hu, M. Zhu et al. Appl Phys Lett,97, 121102(2010).
    [111]J.J. Zhu, W.W. Li, G.S. Xu, K. Jiang, Z.G Hu, M. Zhu et al. Appl Phys Lett,98, 091913 (2011).
    [112]GS. Xu, K. Chen, D.F. Yang, J.B. Li Appl Phys Lett,90,032901 (2007).
    [113]M. Suewattana, D.J. Singh Phys Rev B,73,224105 (2006).
    [114]R. Wongmaneerung, R.Y. Guo, A. Bhalla, R. Yimnirun, S. Anata J Alloys Compd, 461,565(2008).
    [115]A.Slodczyk, Daniel, A. Kania Phys Rev B,77,184114(2008).
    [116]C.S. Tu, F.T. Wang, C.M. Hung, R.R. Chien, H.S. Luo J Appl Phys,100,104104 (2006).
    [117]R.R. Chien, V.H. Schmidt, L.W. Hung, C.S. Tu J Appl Phys,97,114112 (2005).
    [118]W.S. Chang, L.C. Lim, C.S. Ku, H.Y. Lee, C.S. Tu J Appl Phys,108,044105 (2010).
    [119]K.Y. Chan, W.S. Tang, C.L. Mak, K.H. Wong Phys Rev B,69,144111 (2004).
    [120]E.W. Sun, R. Zhang, Z. Wang, D. Xu, L. Li, WW. Cao J Appl Phys,107, 113532(2010).
    [121]D.J. Singh, S.S.A. Seo, H.N. Lee Phys Rev B,82,180103 R (2010).
    [122]Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi Appl Phys Lett,79,2791 (2001).
    [123]J.C. Tauc Optical Properties of Solids North-Holland, Amsterdam (1972).
    [124]O. Svitelskiy, J. Toulouse, G Yong, Z.G. Ye Phys Rev B 68,104107 (2003).
    [125]S. Kamba, E. Buixaderas, J. Petzelt, J. Fousek, J. Nosek, Bridenbaugh J Appl Phys, 93,933 (2003).
    [126]J. Frantti, Y. Fujioka, J. Zhang, S.C. Vogel, Y. Wang, Y. Zhao J Phys Chem B 113, 7967 (2009).
    [127]S.A. Prosandeev, E. Cockayne, B. Burton, S. Kamba, J. Petzelt, Y. Yuzyuk Phys Rev B 70,134110(2004)
    [128]N. Choudhury, Z.G. Wu, E.J. Walter, R.E. Cohen Phys Rev B 71,125134 (2005).
    [129]Hosun Lee, Youn-Seon Kang, Sang-Jun Cho, Bo Xiao, Hadis Morkoc, Tae Dong Kang, Jingbo Li, Su-Hwai Wei, J. Snyder, and J. T. Evans, J. Appl. Phys.98,094108 (2005).
    [129]Z. G. Ye, Handbook of dielectric, piezoelectric and ferroelectric materials.
    [1]Z. G. Ye, MRS Bulletin 34,277 (2009).
    [2]S. E. Park and T. R. Shrout, J. Appl. Phys.82,1804 (1997).
    [3]M. Ahart, M. Somayazulu, R. E. Cohen, P. Ganesh, P. Dera, H. K. Mao, R. J. Hemley, Y. Ren, P. Liermann, and Z. G Wu, Nature 451,545 (2008).
    [4]H. Fu and R. E. Cohen, Nature 403,281 (2000).
    [5]B. Noheda, D. E. Cox, G. Shirane, S. E. Park, L. E. Cross, Z. Zhong, Phys. Rev. Lett. 86,3891(2001).
    [6]G S. Xu, K. Chen, D. F. Yang, and J. B. Li, Appl. Phys. Lett.90,032901 (2007).
    [7]P. Finkel, H. Robinson, J. Stace, and A. Amin, Appl. Phys. Lett.97,122903 (2010).
    [8]B. Noheda, D. E. Cox, G Shirane, J. Gao, and Z. G. Ye, Phys. Rev. B 66,054104 (2002).
    [9]F. Li, S. J. Zhang, Z. Xu, X. Y. Wei, J. Luo, and T. R. Shrout, Appl. Phys. Lett.97, 252903 (2010).
    [10]A. Slodczyk, P. Daniel, and A. Kania, Phys. Rev. B 77,184114 (2008).
    [11]G Xu, Z. Zhong, Y. Bing, Z. G Ye, and G Shirane, Nature Mater.5,134 (2006).
    [12]J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, and J. H. Chu, Acta Mater.59,6684 (2011).
    [13]D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63,094108 (2001).
    [14]O. Svitelskiy, J. Toulouse, G Yong, and Z. G Ye, Phys. Rev. B 68,104107 (2003).
    [15]E. Husson, L. Abello, and A. Morell, Mater. Res. Bull.25,539 (1990).
    [16]J. A. Lima, W. Paraguassu, P. T. C. Freire, A. G. S. Filho, C. W. A. Paschoal, J. M. Filho, A. L. Zanin, M. H. Lente, D. Garcia, and J. A. Eiras, J. Raman Spectrosc.40,1144 (2009).
    [17]N. Waeselmann, B. Mihailova, B. J. Maier, C. Paulmann, M. Gospodinov, V. Marinova, and U. Bismayer, Phys. Rev. B 83,214104 (2011).
    [18]J. Frantti, V. Lantto, and J. Lappalainen, J. Appl. Phys.79,1067 (1996).
    [19]M. Deluca, H. Fukumura, N. Tonari, C. Capiani, N. Hasuike, K. Kisoda, C. Galassi, and H. Harima, J. Raman Spectrosc.42,488 (2011).
    [20]H. Katzke, M. Dietze, A. Lahmar, M. E. Souni, N. Neumann, and S. G. Lee, Phys. Rev.B 83,174115(2011).
    [21]J. D. Freire and R. S. Katiyar, Phys. Rev. B 37,2074 (1988).
    [22]Y. Yang, Y. L. Liu, L. Y. Zhang, K. Zhu, S. Y. Ma, G. G. Siu, Z. K. Xu, and H. S. Luo, J. Raman Spectrosc.41,1735 (2010).
    [23]M. El Marssi, R. Farhi, and Yu I. Yuzyuk, J. Phys.:Condens. Matter 10,9161, (1998).
    [24]B. Noheda, L. Wu, and Y. Zhu, Phys. Rev. B 66,060103(R) (2002).
    [25]B. Mihailova, U. Bismayer, B. Guttler, M. Gospodinov, and L. Konstantinov, J. Phys.:Condens. Matter 14,1091 (2002).
    [26]B. Mihailova, M. Gospodinov, B. Guttler, R. Stosch, and U. Bismayer, J. Phys.: Condens. Matter 19,275205 (2007).
    [27]B. Mihailova, M. Gospodinov, B. Guttler, R. Stosch, D. Petrova, and U. Bismayer, J. Phys.:Condens. Matter 19,246220 (2007).
    [28]A-M. Welsch, B. Mihailova, M. Gospodinov, R. Stosch, B. Guttler, and U. Bismayer, J. Phys.:Condens. Matter 21,235901 (2009).
    [29]F. Cordero, F. Craciun, and C. Galassi, Phys. Rev. Lett.98,255701 (2007).
    [30]J. J. Zhu, W. W. Li, G. S. Xu, K. Jiang, Z. G. Hu, M. Zhu, and J. H. Chu, Appl. Phys. Lett.98,091913 (2011).
    [31]C. Augier, M. PhamThi, H. Dammak, and P. Gaucher, J. Eur. Ceram. Soc.25,2429 (2005).
    [32]D. W. Wang, M. S. Cao, and S. J. Zhang, J. Eur. Ceram. Soc.32,433 (2012).
    [33]E. Dagotto, New J. Phys.7,67 (2005).
    [34]G. Burns and F.H. Dacol, Solid State Commun.48,853 (1983).
    [35]I.K. Bdikin, V.V. Shvartsman, and A.L. Kholkin, Appl. Phys. Lett.83,4232 (2003).
    [36]P.M. Gehring, S. Wakimoto, Z.G Ye, and G. Shirane, Phys. Rev. Lett.87,277601 (2001).
    [37]S. Vakhrushev, S. Zhukov, G Fetisov, and V. Chernyshov, J. Phys. Condens. Matter 6, 4021 (1994).
    [38]I.-K. Jeong, T.W. Darling, J.K. Lee, Th. Proffen, R.H. Heffner, J.S. Park, K.S. Hong, W. Dmowski, and T. Egami, Phys. Rev. Lett.94,147602 (2005)
    [39]J. Hlinka, S. Kamba, J. Petzelt, J. Kulda, C.A. Randall, and S.J. Zhang, J. Phys. Condens. Matter 15,4249 (2003).
    [40]G. Kozlov andA.Volkov, eds., Millimeter and Submillimeter Wave Spectroscopy of Solids, G Gruner,ed., Springer, Berlin,1998.
    [41]M. Nuss and J. Orenstein, Topics Current Chemistry, E. Gruner, ed., Springer, Heidelberg, pp.74-771998.
    [42]A. Pashkin, M. Kempa, H. Nemec, F. Kadlec, and P. Kuhel, Rev. Sci. Instrum.74, 4711 (2003).
    [43]J. Hlinka, T. Ostapchuk, D. Noujni, S. Kamba, and J. Petzelt, Phys. Rev. Lett.96, 027601 (2006).
    [1]H. N. Lee, D. Hesse, N. Zakharov and U. G" osele, Science 296,2006 (2002).
    [2]C. S. Yeh and J. M. Wu, Appl. Phys. Lett.93,154101 (2008).
    [3]J. F. Scott, Science 315,954 (2007).
    [4]G. Catalan and J. F. Scott, Adv. Mater.21,2463 (2009).
    [5]Y. Kan, Y. F. Liu, O. Mieth, H. F. Bo, X. M. Wu, X. M. Lu, L. M. Eng and J. S. Zhu, Phys. Lett. A 374,360 (2009).
    [6]L. Zhu, K. L. Yao, Z. L. Liu and D. H. Zhang, Phys. Lett. A 373,2374 (2009).
    [7]S. E. Cummins and L. E. Cross, J. Appl. Phys.39,2268 (1986).
    [8]J. F. Scott and A. Araujo, Science 246,1400 (1989).
    [9]B. H. Park, B. S. Kang, S. D. Bu, T. W. Noh, J. Lee and W. Jo, Nature 401,682 (1999).
    [10]H. Du, L. Tang and S. Kaskel, J. Phys. Chem. C 113,1329 (2009).
    [11]Y. Shimakawa, Y. Kubo, Y. Tauchi, H. Asano, T. Kamiyama, F. Izumi and Z. Hiroi, Appl. Phys. Lett.79,2791 (2001).
    [12]J. E. Spanier, A. M. Kolpak, J. J. Urban, I. Grinberg, L. Ouyang, W. S. Yun, A. M. Rappe and H. Park, Nano Lett.6,735 (2006).
    [13]A. A. Sirenko, C. Bernhard, A. Golnik, A. M. Clark, Jianhua Hao, Weidong Si and X. X. Xi, Nature 404,373 (2000).
    [14]D. A. Tenne, A. Bruchhausen, N. D. Lanzillotti-Kimura, A. Fainstein, R. S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J. H. Haeni, W. Tian, D. G. Schlom, K. J. Choi, D. M. Kim, C. B. Eom, H. P. Sun, X. Q. Pan, Y. L. Li, L. Q. Chen, Q. X. Jia, S. M. Nakhmanson, K. M. Rabe and X. X. Xi, Science 313,1614 (2006).
    [15]Y. L. Du, M. S. Zhang, Q. Chen, Z. R. Yuan, Z. Yin and Q. A. Zhang, Solid State Commun.124,113(2002).
    [16]S. R'los, J. F. Scott, A. Lookman, J. McAneney, R. M. Bowman and J. M. Gregg, J. Appl. Phys.99,024107 (2006).
    [17]T. Hoshina, H. Kakemoto, T. Tsurumi, S. Wada and M. Yashima, J. Appl. Phys.99, 054311 (2006).
    [18]H. Idink, V. Srkanth, W. B. White and E. C. Subbarao, J. Appl. Phys.76,1819 (1994).
    [19]Y. L. Du, G. Chen and M. S. Zhang, Solid State Commun.132,175 (2004).
    [20]J. I. Sohn, H. J. Joo, D. Ahn, H. H. Lee, A. E. Porter, K. Kim, D. J. Kang and M.E. Welland, Nano Lett.9,3392 (2009).
    [21]D. A. Tenne, P. Turner, J. D. Schmidt, M. Biegalski, Y. L. Li, L. Q. Chen, A. Soukiassian, S. Trolier-McKinstry, D. G. Schlom, X. X. Xi, D. D. Fong, P. H. Fuoss, J. A. Eastman, G. B. Stephenson, C. Thompson and S. K. Streifer, Phy. Rev. Lett.103,177601 (2009).
    [22]S. Zhang, J. Y. Chou and L. J. Lauhon, Nano Lett.9,4527 (2009).
    [23]Z. G. Hu, Y. W. Li, F. Y. Yue, Z. Q. Zhu and J. H. Chu, Appl. Phys. Lett.91,221903 (2007).
    [24]G. S. Wang, X. J. Meng, Z. Q. Lai, J. Yu, J. L. Sun, S. L. Guo and J. H. Chu, Appl. Phys. A:Mater. Sci. Process.76,83 (2003).
    [25]L. S. Birks and H. Friedman, J. Appl. Phys.17,687 (1946).
    [26]O. S. Heaven, Optical Properties of Thin Solid Films (Dover; New York,1991) Chap. 4, p.69.
    [27]S. Adachi, Phys. Rev. B 35,7454 (1987).
    [28]W. W. Li, Z. G. Hu, J. D. Wu, J. Sun, M. Zhu, Z. Q. Zhu and J. H. Chu, J. Phys. Chem.C 113,18347(2009).
    [29]T. J. Kim, J. J. Yoon, S. Y. Hwang, D. E. Aspnes, Y. D. Kim, H. J. Kim, Y. C. Chang and J. D. Song, Appl. Phys. Lett.95,111902 (2009).
    [30]E. C. Subbarao, Phys. Rev.122,804 (1961).
    [31]S. Tsunekawa, S. Ito, Y. Kawazoe and J. T. Wang, Nano Lett.3,871 (2003).
    [32]L. E. Cross and R. C. Pohanka, J. Appl. Phys.39,3992 (1968).
    [33]W. B. Joseph, G Llya and M. R. Andrew, J. Am. Chem. Soc.130,17409 (2008).
    [34]M. Arslan, H. Duymus and F. Yakuphanoglu, J. Phys. Chem. B 110,276 (2006).
    [35]C. E. L. Myhre, D. H. Christensen, F. M. Nicolaisen and C. J. Nielsen, J. Phys. Chem. A 107,1979(2003).
    [36]Z. G Hu, Y. W. Li, M. Zhu, Z. Q. Zhu and J. H. Chu, Phys. Lett. A 372,4521 (2008).
    [37]A. P. Alivisatos, Science 271,933 (1996).
    [38]M. H. Frey and D. A. Payne, Phys. Rev. B 54,3158 (1996).
    [39]M. A. Zurbuchen, N. J. Podraza, J. Schubert, Y. Jia, and D. G. Schlom, Appl. Phys. Lett.100,223109(2007).
    [40]D. G Schlom, L.-Q. Chen, X. Q. Pan, A. Schmehl, and M. A. Zurbuchen, J. Am. Ceram. Soc.91,2429 (2008).
    [41]W. Noun, B. Berini, Y. Dumont, P. R. Dahoo, and N. Keller, J. Appl. Phys.102, 063709 (2007).
    [42]W. W. Li, Z. G. Hu, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, ACS Appl. Mater. Interfaces 2,896(2010).
    [43]B. Berini, N. Keller, Y. Dumont, E. Popova, W. Noun, M. Guyot, J. Vigneron, A. Etcheberyy, N. Franco, and R. M. C. da Silva, Phys. Rev. B 76,205417 (2007).
    [44]R. Ramesh, B. Dutta, T. S. Ravi, J. Lee, T. Sands, and V. G. Keramidas, Appl. Phys. Lett.64,1588(1994).
    [45]Z. G. Hu, Z. M. Huang, Y. N. Wu, Q. Zhao, G. S. Wang, and J. H. Chu, J. Appl. Phys. 95,4036 (2004).
    [46]T. Arima, Y. Tokura, and J. B. Torran ce, Phys. Rev. B 48,17006 (1993).
    [47]Z. G. Hu, W. W. Li, Y. W. Li, M. Zhu, Z. Q. Zhu, and J. H. Chu, Appl. Phys. Lett.94, 221104(2009).
    [48]P. L. Kuhns, M. J. R. Hoch, W. G. Moulton, A. P. Reyes, J. Wu, and C. Leighton, Phys. Rev. Lett.91,127202 (2003).
    [49]F. Gervais, Mater. Sci. Eng. R.39,29 (2002).
    [50]S. Hellstrom, Z. H. Chen, Y. Fu, M. Qiu, R. Soltanmoradi, Q. Wang, and [11] J. Y. Andersson, Appl. Phys. Lett.96,231110 (2010).
    [51]J. Y. Andersson, Appl. Phys. Lett.96,231110 (2010).
    [52]X. J. Meng, J. L. Sun, J. Yu, H. J. Ye, S. L. Guo, and J. H. Chu, Appl. Surf. Sci.171, 68(2001).
    [53]O. S. Heaven, Optical Properties of Thin Solid Films (Dover, New York,1991), Chap.4, p.69.
    [54]B. Berini, W. Noun, Y. Dumont, E. Popova, and N. Keller, J. Appl. Phys.101, 023529 (2007).
    [55]N. Hamada, J. Phys. Chem. Solids 54,1157 (1993).
    [56]A. Y. Dobin, K. R. Nikolaev, I. N. Krivorotov, R. M. Wentzcovitch, E. D. Dahlberg, and A. M. Goldman, Phys. Rev. B 68,113408 (2003).
    [57]G. Khaliullin and V. Oudovenko, Phys. Rev. B 56, R14243 (1997).
    [58]J. van den Brink, P. Horsch, and A. M. Oles, Phys. Rev. Lett.85,5174 (2000).
    [59]K. Horiba, R. Eguchi, M. Taguchi, A. Chainani, A. Kikkawa, Y. Senba, H. Ohashi, and S. Shin, Phys. Rev. B 76,155104 (2007).
    [60]W. G. Yin, D. Volja, and W. Ku, Phys. Rev. Lett.96,116405 (2006).
    [61]W. S. Choi, S. S. A. Seo, K. W. Kim, T. W. Noh, M. Y. Kim, and S. Shin, Phys. Rev. B 74,205117 (2006).
    [62]Y. Nohara, S. Yamamoto, and T. Fujiwara, Phys. Rev. B 79,195110 (2009).
    [63]M. Abbate, G. Zampieri, F. Prado, A. Caneiro, J. M. Gonzalez-Calbet, and M. Vallet-Regi, Phys. Rev. B 65,155101 (2002).
    [64]A. Rusydi, R. Rauer, G Neuber, M. Bastjan, I. Mahns, S. Muller, P. Saichu, B. Schulz, S. G. Singer, A. I. Lichtenstein, D. Qi, X. Gao, X. Yu, A. T. S. Wee, G. Stryganyuk, K. Dorr, G A. Sawatzky, S. L. Cooper, and M. Riibhausen, Phys. Rev. B 78,125110 (2008).
    [65]A. Jafari, H. Tajalli, and A. Ghanadzadeh, Opt. Commun.266,207 (2006). F. Zhao, A. Balocchi, A. Kunold, J. Carrey, H. Carrere, T. Amand, N. B. Abdallah, J. C. Harmand, and X. Marie, Appl. Phys. Lett.95,241104 (2009).
    [66]M. Zinkevich, N. Solak, H. Nitsche, M. Ahrens, and F. Aldinger, J. Alloys Compd. 438,92 (2007).
    [1]G J. Aubrecht, Energy:Physical, Environment and Social Impact, Pearson Education, London 2006.
    [2]C. Beggs, Energy:Management, Supply and Conservation, Elsevier, Oxford 2002.
    [3]S. Priya, Energy Harvesting Technologies, Springer Science, New York,2009.
    [4]S. Roundy, P. K. Wright, J. Rabaey, J. Comput. Commun.26,1131 (2003).
    [5]S. Roundy, J. M. Rabaey, V. Sundararajan, IEEE Pervas. Comput.4,28, (2005).
    [6]K. Rhinefrank, presented at Energy Ocean, Washington, DC (2005),.
    [7]US Department of the Interior (Minerals Management Service), Technology White Paper on Wave Energy Potential on the US Outer Continental Shelf,2006.
    [8]Y. Qi, M. C. McAlpine, Energy Environ. Sci.3,1275 (2010).
    [9]Z. L. Wang, J. H. Song, Science 312,242, (2006).
    [10]S. Xu, Y. Qin, C. Xu, R. S. Yang, Z. L. Wang, Nat. Nanotechnol.5,366 (2010).
    [11]K. I. Park, S. Xu, G. T. Hwang, Z. L. Wang, K. J. Lee, Nano Lett.10,4939 (2010).
    [12]R. S. Yang, Y. Qin, L. M. Dai, Z. L. Wang,Nat. Nanotechnol.4,34 (2009).
    [13]G. Zhu, R. Yang, S. Wang, Z. L. Wang, Nano Lett.10,3151 (2010).
    [14]Y. Hu, Y. Zhang, C. Xu, G. Zhu, Z. L. Wang, Nano Lett.10,5025 (2010).
    [15]Y. Hu, Y. Zhang, C. Xu, L. Lin, R. L. Snyder, Z. L. Wang, Nano Lett.11,2572 (2011).
    [16]R.Yang, Y. Qin, C.Li, G. Zhu, Z.L.Wang, Nano Lett.9,1201 (2009).
    [17]Z. Li, G. A. Zhu, R. S. Yang, A. C. Wang, Z. L. Wang, Adv. Mater.22,2534 (2010).
    [18]Y. Qi, J. Kim, T. D. Nguyen, P. K. Purohit, M. C. McAlpine, Nano Lett.11,1331 (2011).
    [19]K. I. Park, S. Y. Lee, S. Kim, J. Chang, K. J. Lee, Electrochem. Solid-State Lett.13, G57(2010).
    [20]S. Kim, H. Y. Jeong, S. K. Kim, S.-Y. Choi, K. J. Lee, Nano Lett.11,5438 (2011).
    [21]Meyer, R. B., L. Liebert, L. Stmlecki and P. Keller. J. de Phys. Lett.,36,69 (1975).
    [22]Kawai, H. Jpn, J, Appl. Phys.,8,975 (1969).
    [23]Bergman, J. G. Jr., and G. R. Crane. Appl. Phys. Lett.,18(5),203-205 (1971).
    [24]Lovinger, A. J. Poly(vnylidene fluoride). Developments in Crystalline Polymers-Ⅰ. Ed. by D. C. Bassett. Appl. Sci. London,195-273 (1981).
    [25]Date, M. and T. Furukawa. Ferroelectrics,51,37 (1984).
    [26]Furukawa, T. and G. E. Johnson. Appl. Phys. Lett.,38,1027 (1981).
    [27]J. Yagi, T., M. Tatemoto and J. Sako. Polym. J.,12,209 (1980).
    [28]Lovinger, A. J., T. Furukawa, and M. G. Broadhurst. Polymer,24,1225 (1983).
    [29]Calvert, P. Nature 256,694 (1975).
    [30]Majdoub, M. S.; Sharma, P.; Cagin, T. Phys. Rev. Lett.77,125424 (2008).
    [31]G. Binnig, C.F. Quate, and C. Gerber, Phys. Rev. Lett.56,930 (1986).
    [32]W.F. Heinz, and J.H. Hoh, Bruker application note AN20, Rev. A1 (2004).
    [33]A. Rosa-Zeiser, and O. Marti, Measurement Science and Technology 8,1333 (1997).
    [34]Q. Zhong, D. Inniss, K. Kjoller and V.B. Elings, Surf. Sci.290,688 (1993).
    [35]M. Stark, R.W. Stark, W.M. Heckl, and R. Guckenberger, PNAS 99,8473 (2002).
    [36]J. Legleiter, M. Park, B. Cusick, and T. Kowalewski, PNAS 103,4813 (2006).
    [37]O. Sahin, Dissertation, Stanford Univ. Electrical Engineering (2005).
    [38]O. Sahin, S. Magonov, and O. Solgaard, Nature Nanotechnology 2,507 (2007).
    [39]O. Sahin, Rev. Sci. lnst.78,103707 (2007).
    [40]D. Maugis, Contact, Adhesion and Rupture of Elastic Solids (Springer-Verlag, Berlin, 2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700