半导体量子点系统的理论与模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
量子计算是当前物理学领域的一个重要课题,半导体量子点是量子计算的一个主要的物理实现方案。本论文针对于半导体量子点的操作与测量等关键性问题,进行了理论研究和模拟计算,主要研究了两个方面的问题:一是如何设计更好的量子点,包括对半导体量子点的仿真,以及对量子点中退相干的分析;二是用量子点做什么,包括用Landau-Zener-Stuckelberg干涉实现超快普适的量子逻辑门操作,用Landau-Zener跃迁模拟非平衡相变的Kibble-Zurek机制,用量子点-超导传输线腔耦合系统制备超导传输线腔里的光子态和测量量子点。
     本论文的主要内容有:
     1.简要介绍量子计算的一些基本概念。对量子计算所涉及到的量子比特,量子逻辑门操作,量子模拟等基础概念进行了说明。阐述了半导体门控型量子点量子计算体系的原理基础,实验方案以及一些基本物理特征。
     2.从半导体门控量子点的设计出发,研究了对半导体门控量子点的仿真。分析了量子点的一维模型中如何在GaAs/AlGaAs分界面处形成二维电子气,以及掺杂对能带结构和二维电子气的影响。在此基础上,使用Poisson-Schrodinger自洽求解的方法来对三维的半导体门控量子点进行仿真,仿真得出的量子点电荷稳态蜂窝图与实验结果吻合。
     3.介绍了二能级体系上的退相干的产生来源、模拟方法与一些基本消除手段。使用数值模拟的方式,分析了量子点中存在的退相干,将退相干的来源分为固有退相干和外在退相干,这两种因素都对量子点的退相干有贡献。在考虑量子点到非设计态的耗散的情况下,研究了工作参数(如操作脉冲的波形)对演化过程的影响,结果表明通过优化工作参数,可以制作出更高保真度的量子门操作。
     4.介绍了Landau-Zener跃迁和Landau-Zener-Stiickelberg干涉的基本概念。研究了半导体双量子点的电荷量子比特中的Landau-Zener跃迁过程。利用两通道Landau-Zener-Stiickelberg干涉实现了半导体量子点上的超快普适的量子逻辑门操作。用二维傅里叶频谱的方法提取出了量子点的Landau-Zener跃迁实验的退相干时间。
     5.从平衡的Landau二级相变出发,介绍了非平衡相变的Kibble-Zurek机制。以一维Ising自旋链为例,介绍了Kibble-Zurek机制与Landau-Zener跃迁之间的对应关系,并将其分为快速淬火和慢速淬火两种不同的情况。在实验上利用半导体电荷量子比特的Landau-Zener跃迁过程模拟了Kibble-Zurek机制,得到了两种不同淬火情况下的拓扑缺陷密度与淬火时间之间的关系。
     6.介绍了量子点-超导传输线腔耦合系统的基本物理模型。设计了用量子点来制备超导传输线腔中光子态的实验方案。研究了用超导传输线腔探测量子点的测量技术,包括对电荷稳态蜂窝图的探测和对量子点演化过程的探测。本论文的主要创新点有:
     1.利用Poisson-Schrodinger自洽求解的方法对半导体门控量子点进行了仿真。仿真的结果能促进量子点结构的设计。
     2.使用数值模拟的方式分析量子点的演化过程,发现固有退相干和外在退相干都对量子点的退相干有贡献。发现优化工作参数能提高量子点演化过程的保真度。这些研究能增强对量子点中的退相干的了解,设计出更高保真度的量子门操作。
     3.实现了量子点上的Landau-Zener跃迁,分析了量子点上的Landau-Zener-Stuckelberg干涉过程。并以此为基础,实现了量子点上的普适超快的量子点量子逻辑门操作。
     4.利用实验上实现的量子点上的Landau-Zener跃迁,模拟了非平衡相变的Kibble-Zurek机制,并得出了快速淬火情况下的标度律关系。这是对半导体量子点实现量子模拟的一个原理性验证。
     5.理论上研究了量子点-超导传输线腔耦合系统。设计了用量子点来制备超导传输线腔中光子态的实验方案。研究了用超导传输线腔探测量子点的测量技术,包括对电荷稳态蜂窝图的探测和对量子点演化过程的探测。
Quantum computing is an important topic in the field of modern physics, the semiconductor quantum dots is one of the major physical implementations of quan-tum computing. This thesis presents theoretical and simulation studies to address some key problems in the field of the operation and measurement in semiconductor quantum dots, mainly studies two aspects:First, how to design quantum dots to make them bet-ter, which including the device simulation of semiconductor quantum dots, as well as the analysis of decoherence in quantum dots. Second, what can quantum dots be used to do, including achieved ultra-fast universal quantum logic gate with Landau-Zener-Stiickelberg interference, and simulated Kibble-Zurek mechanism(which describes the non-equilibrium phase transition) with Landau-Zener transitions, and the prepared pho-ton state as well as the measured quantum dot in an hybrid quantum dots-superconducting resonator system.
     The main content of this thesis includes:
     1. A brief introduction of some basic concepts of quantum computing, including the concepts of qubit, quantum logic gate, quantum simulation. Described the basic principles, experimental scheme and basic physics characteristics of semiconduc-tor quantum dots.
     2. From the design of semiconductor quantum dots, we studied the device simula-tion of the semiconductor quantum dots. Analysed the form of two-dimensional electron gas at the interface of GaAs/AlGaAs and the impact on energy band and two-dimensional electron gas due to the doping in the one dimensional model. On the basis, we simulate the three dimensional semiconductor gate controlled quan-tum dots with the method of Poisson-Schrodinger self-consistent solution. The charge stability honeycomb diagrams obtained were agreed with the measurement results of the experiments.
     3. Introduced the source, simulation and elimination of the decoherence in a two level system. We analysed the decoherence in the quantum dots using the nu-merical simulation, and found that the source of decoherence can be divided into intrinsic decoherence and extrinsic decoherence. Both of the two factors were contributed to the decoherence of quantum dots. Then we studied the impact on coherent dynamics of qubit due to the working parameters such as driven pulse shape. The result demonstrated the intrinsic qubit population leakage to unde-sired states can be minimized by choosing proper working parameters. This may improve the fidelity of quantum gates.
     4. Introduced Landau-Zener transition and Landau-Zener-Stuckelberg interference, and studied the Landau-Zener transition in a charge qubit formed by semicon-ductor double quantum dots. We achieved ultra-fast universal quantum logic gate with Landau-Zener-Stuckelberg interference, and extract the decoherence time in the Landau-Zener transition using the two dimensional fourier transform.
     5. From equilibrium phase transition, we introduced the Kibble-Zurek mechanism which describes the non-equilibrium phase transition. Take the one dimensional Ising spin chain for example, we introduced the analogy between the Kibble-Zurek mechanism and the Landau-Zener transition, and how to map the Kibble-Zurek mechanism to the Landau-Zener transition. There are two cases of quench: the slow quench and the fast quench, which performs different behavior. We sim-ulated Kibble-Zurek mechanism with Landau-Zener transitions experimentally, and found the relation between the topological defect density and the quench time in the two different quench cases, respectively.
     6. Introduced the basic physics model of the hybrid quantum dots-superconducting resonator system. Designed the experimental scheme of preparing photon state in the hybrid system by manipulating the quantum dots. And studied the mea-surement method to detected the quantum dots by resonator, which including the detection of the charge stability honeycomb diagram and the detection of the co-herent dynamics of qubits.The main innovations of this thesis are:
     1. Simulated the semiconductor gate controlled quantum dots with the method of Poisson-Schrodinger self-consistent solution, the results can improve the design of the quantum dots.
     2. Analysed the dynamics of quantum dots by numerical simulation. Found both of the intrinsic decoherence and extrinsic decoherence contributed to the deco-herence of quantum dots. Found it can improve the fidelity of quantum dots by optimizing the working parameters. These studies can enhance our understanding of decoherence in the quantum dots, making the high fidelity gate be possible.
     3. Implemented the Landau-Zener transition in the quantum dots and analysed the Landau-Zener-Stuckelberg interference. On the basis, achieved ultra-fast univer-sal quantum logic gate in the quantum dots.
     4. Simulated the Kibble-Zurek mechanism with Landau-Zener transitions in exper-imental, obtained the scale law in the fast quench case. This was a proof-of-principle quantum simulation of the Kibble-Zurek mechanism in experimental.
     5. Studied the hybrid quantum dots-superconducting resonator system theoretically. Designed the experimental scheme of preparing photon state. Studied the mea-surement method to detect the quantum dots by resonator.
引文
薛飞,杜江峰,周先意,and韩荣典.量子计算的物理实现.物理,33(10),2004.
    李承祖,陈平形,and梁林梅.量子计算机研究.科学出版社,北京,2011.
    郑厚植.半导体纳米结构中的库仑阻塞现象.物理,21(11),1992.
    Brennen, G. K., Caves, C. M., Jessen, P. S., and Deutsch, I. H. Quantum logic gates in optical lattices. Physical Review Letters,82(5):1060-1063,1999.
    Brus, L. E. Electron electron and electron-hole interactions in small semiconductor crystallites-the size dependence of the lowest excited electronic state. Journal of Chemical Physics,80(9):4403-4409,1984.
    Cerf, N. J., Adami, C., and Kwiat, P. G. Optical simulation of quantum logic. Physical Review A, 57(3):R1477-R1480,1998.
    Cirac, J. I. and Zoller, P. Quantum computations with cold trapped ions. Physical Review Letters,74(20):4091-4094, 1995.
    Cirac, J. I. and Zoller, P. Goals and opportunities in quantum simulation. Nature Physics,8(4):264-266,2012.
    DiCarlo, L., Chow, J. M., Gambetta, J. M., Bishop, L. S., Johnson, B. R., Schuster, D. I., Majer, J., Blais, A., Frunzio, L., Girvin, S. M., and Schoelkopf, R. J. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature,460(7252):240-244,2009.
    DiVincenzo, D. P. The physical implementation of quantum computation. Fortschritte Der Physik-Progress of Physics,48(9-11):771-783,2000.
    Feynman, R. P. Simulating physics with computers. International Journal of Theoretical Physics,21(6-7):467-488, 1982.
    Gershenfeld, N. A. and Chuang, I. L. Bulk spin-resonance quantum computation. Science,275(5298):350-356, 1997.
    Gulde, S., Riebe, M., Lancaster, G. P. T., Becher, C., Eschner, J., Haffner, H., Schmidt-Kaler, F., Chuang, I. L., and Blatt, R. Implementation of the deutsch-jozsa algorithm on an ion-trap quantum computer. Nature, 421(6918):48-50,2003.
    Ioffe, L. B., Geshkenbein, V. B., Feigel'man, M. V., Fauchere, A. L., and Blatter, G. Environmentally decoupled sds-wave josephson junctions for quantum computing. Nature,398(6729):679-681,1999.
    Kane, B. E. A silicon-based nuclear spin quantum computer. Nature,393(6681):133-137,1998.
    Kastner, M. A. The single-electron transistor. Reviews of Modern Physics,64(3):849-858,1992.
    Klein, L. J., Savage, D. E., and Eriksson, M. A. Coulomb blockade and kondo effect in a few-electron silicon/silicon-germanium quantum dot. Applied Physics Letters,90(3),2007.
    Klein, L. J., Slinker, K. A., Truitt, J. L., Goswami, S., Lewis, K. L. M., Coppersmith, S. N., van der Weide, D. W., Friesen, M., Blick, R H., Savage, D. E., Lagally, M. G., Tahan, C., Joynt, R, Eriksson, M. A., Chu, J. O., Ott, J. A., and Mooney, P. M. Coulomb blockade in a silicon/silicon-germanium two-dimensional electron gas quantum dot. Applied Physics Letters,84(20):4047-4049,2004.
    Kouwenhoven, L. and Marcus, C. Quantum dots. Physics World, 11(6):35-39,1998.
    Kouwenhoven, L. P., Marcus, C. M., Mceuen, P. L., Tarucha, S., Westervelt, R. M., and Wingreen, N. S. Electron transport in quantum dots. In L. L. Sohn, L. P. Kouwenhoven, and G. Schon, editors, Mesoscopic Electron Transport. NATO ASI Conference Proceedings, Kluwer Academic Publishers,1997.
    Loss, D. and DiVincenzo, D. P. Quantum computation with quantum dots. Physical Review A, 57(1):120-126,1998.
    Makhlin, Y., Schon, G., and Shnirman, A. Josephson-junction qubits with controlled couplings. Nature, 398(6725):305-307,1999.
    Molitor, F., Knowles, H., Droscher, S., Gasser, U., Choi, T., Roulleau, P., Guttinger, J., Jacobsen, A., Stampfer, C., Ensslin, K., and Ihn, T. Observation of excited states in a graphene double quantum dot. Epl,89(6),2010.
    Mooij, J. E., Orlando, T. P., Levitov, L., Tian, L., van der Wal, C. H., and Lloyd, S. Josephson persistent-current qubit. Science,285(5430):1036-1039,1999.
    Nakamura, Y, Pashkin, Y. A., and Tsai, J. S. Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature,398(6730):786-788,1999.
    Nielsen, M. A. and Chuang, I. L. Quantum Computation and Quantum Information. Cambridge U. Press, New York, 2000.
    Platzman, P. M. and Dykman, M. I. Quantum computing with electrons floating on liquid helium. Science, 284(5422):1967-1969,1999.
    Raimond, J. M., Brune, M., and Haroche, S. Colloquium:Manipulating quantum entanglement with atoms and photons in a cavity. Reviews of Modern Physics,73(3):565-582,2001.
    Rubin, M. E., MedeirosRibeiro, G., OShea, J. J., Chin, M. A., Lee, E. Y., Petroff, P. M., and Narayanamurti, V. Imag-ing and spectroscopy elf single inas self-assembled quantum dots using ballistic electron emission microscopy. Physical Review Letters,77(26):5268-5271,1996.
    Schmidt-Kaler, F., Haffner, H., Riebe, M., Gulde, S., Lancaster, G. P. T., Deuschle, T., Becher, C., Roos, C. F., Eschner, J., and Blatt, R. Realization of the cirac-zoller controlled-not quantum gate. Nature,422(6930):408-411, 2003.
    Scott, G. D., Xiao, M., Jiang, H. W., Croke, E. T., and Yablonovitch, E. Sputtered gold as an effective schottky gate for strained si/sige nanostructures. Applied Physics Letters,90(3),2007.
    Shaji, N., Simmons, C. B., Thalakulam, M., Klein, L. J., Qin, H., Luo, H., Savage, D. E., Lagally, M. G., Rimberg, A. J., Joynt, R., Friesen, M., Blick, R. H., Coppersmith, S. N., and Eriksson, M. A. Spin blockade and lifetime-enhanced transport in a few-electron si/sige double quantum dot. Nature Physics,4(7):540-544,2008.
    Shang, R. N., Li, H. O., Cao, G., Xiao, M., Tu, T., Jiang, H. W., Guo, G. C., and Guo, G. P. Photon-assisted-tunneling in a coupled double quantum dot under high microwave excitation powers. Applied Physics Letters,103(16), 2013.
    Simmons, C. B., Koh, T. S., Shaji, N., Thalakulam, M., Klein, L. J., Qin, H., Luo, H., Savage, D. E., Lagally, M. G., Rimberg, A. J., Joynt, R., Blick, R., Friesen, M., Coppersmith, S. N., and Eriksson, M. A. Pauli spin blockade and lifetime-enhanced transport in a si/sige double quantum dot. Physical Review B,82(24),2010.
    Simmons, C. B., Thalakulam, M., Rosemeyer, B. M., Van Bael, B. J., Sackmann, E. K., Savage, D. E., Lagally, M. G., Joynt, R., Friesen, M., Coppersmith, S. N., and Eriksson, M. A. Charge sensing and controllable tunnel coupling in a si/sige double quantum dot. Nano Letters,9(9)3234-3238,2009.
    Simmons, C. B., Thalakulam, M., Shaji, N., Klein, L. J., Qin, H., Blick, R. H., Savage, D. E., Lagally, M. G., Coppersmith, S. N., and Eriksson, M. A. Single-electron quantum dot in si/sige with integrated charge sensing. Applied Physics Letters,91(21),2007.
    Sleator, T. and Weinfurter, H. Realizable universal quantum logic gates. Physical Review Letters,74(20):4087-4090, 1995.
    Slinker, K. A., Lewis, K. L. M., Haselby, C. C., Goswami, S., Klein, L. J., Chu, J. O., Coppersmith, S. N., Joynt, R., Blick, R. H., Friesen, M., and Eriksson, M. A. Quantum dots in si/sige 2degs with schottky top-gated leads. New Journal of Physics,7,2005.
    Switkes,M. DECOHERENCE AND ADIABATIC TRANSPORT IN SEMICONDUCTOR QUANTUM DOTS. Phd, stanford university,1999.
    Wang, L. J., Cao, G., Tu, T., Li, H. O., Zhou, C., Hao, X. J., Su, Z., Guo, G. C., Jiang, H. W., and Guo, G. P. A graphene quantum dot with a single electron transistor as an integrated charge sensor. Applied Physics Letters, 97(26),2010.
    Xiao, M., House, M. G., and Jiang, H. W. Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Physical Review Letters,104(9),2010a.
    Xiao, M., House, M. G., and Jiang, H. W. Parallel spin filling and energy spectroscopy in few-electron si metal-on-semiconductor-based quantum dots. Applied Physics Letters,97(3),2010b.
    Yuan, M. Y., Pan, F., Yang, Z., Gilheart, T. J., Chen, F., Savage, D. E., Lagally, M. G., Eriksson, M. A., and Rimberg, A. J. Si/sige quantum dot with superconducting single-electron transistor charge sensor. Applied Physics Letters, 98(14),2011.
    Bednarek, S., Lis, K., and Szafran, B. Quantum dot defined in a two-dimensional electron gas at a n-AlGaAs/GaAs heterojunction:Simulation of electrostatic potential and charging properties. Physical Review B,77(11):115320, 2008.
    Best, J. S. Schottky-barrier height of au on n-gal-xalxas as a function of alas content Applied Physics Letters, 34(8):522-527,1979.
    Matagne, P. and Leburton, J. P. Three-dimensional analysis of the electronic structure of cylindrical vertical quantum dots. Physical Review B,65(23),2002.
    Mazzeo, G., Yablonovitch, E., and Jiang, H. W. Germanium electrostatic quantum dot with integrated charge detector in an mos structure.2010, arXiv:1008.5168 [cond-mat.mes-hall].
    Sanjay, P. and James, R. Gate control of single-electron spins in gaas/algaas semiconductor quantum dot. In Pro-ceedings of the COMSOL Conference. Boston,2008.
    Stopa, M. Quantum dot self-consistent electronic structure and the coulomb blockade. Physical Review B, 54(19):13767-13783,1996.
    Zhang, L. X. Engineering exchange interaction in coupled spin-qubit quantum dots. Ph.D. thesis, UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN,2008.
    Zhang, L. X., Matagne, P., Leburton, J. P., Hanson, R., and Kouwenhoven, L. P. Single-electron charging and detection in a laterally coupled quantum-dot circuit in the few-electron regime. Physical Review B,69(24),2004.
    Zhang, X. C., Mazzeo, G., Brataas, A., Xiao, M., Yablonovitch, E., and Jiang, H. W. Tunable electron counting statistics in a quantum dot at thermal equilibrium. Physical Review B,80(3),2009.
    Buizert, C., Koppens, F. H. L., Pioro-Ladriere, M., Tranitz, H. P., Vink, I. T., Tarucha, S., Wegscheider, W., and Vandersypen, L. M. K. Insitu reduction of charge noise in gaas/al(x)ga(1-x)as schottky-gated devices. Physical Review Letters,101(22),2008.
    Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D. G., Nakamura, Y., Tsai, J. S., and Oliver, W. D. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Physics,7(7):565-570,2011.
    Dovzhenko, Y., Stehlik, J., Petersson, K. D., Petta, J. R., Lu, H., and Gossard, A. C. Nonadiabatic quantum control of a semiconductor charge qubit. Physical Review B,84(16),2011.
    Fujisawa, T., Austing, D. G., Tokura, Y, Hirayama, Y., and Tarucha, S. Allowed and forbidden transitions in artificial hydrogen and helium atoms. Nature,419(6904):278-281,2002.
    Hayashi, T., Fujisawa, T., Cheong, H. D., Jeong, Y. H., and Hirayama, Y. Coherent manipulation of electronic states in a double quantum dot. Physical Review Letters,91(22),2003.
    Koch, J., Yu, T. M., Gambetta, J., Houck, A. A., Schuster, D. L, Majer, J., Blais, A., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. Charge-insensitive qubit design derived from the cooper pair box. Physical Review A, 76(4),2007.
    Nakamura, Y., Pashkin, Y. A., and Tsai, J. S. Coherent control of macroscopic quantum states in a single-cooper-pair box. Nature,398(6730):786-788,1999.
    Nakamura, Y., Pashkin, Y. A., Yamamoto, T., and Tsai, J. S. Charge echo in a cooper-pair box. Phys Rev Lett, 88(4):047901,2002.
    Paik, H., Schuster, D. L, Bishop, L. S., Kirchmair, G., Catelani, G., Sears, A. P., Johnson, B. R., Reagor, M. J., Frunzio, L., Glazman, L. I., Girvin, S. M., Devoret, M. H., and Schoelkopf, R. J. Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture. Physical Review Letters, 107(24),2011.
    Petersson, K. D., Petta, J. R., Lu, H., and Gossard, A. C. Quantum coherence in a one-electron semiconductor charge qubit. Physical Review Letters,105(24),2010.
    Petta, J. R., Johnson, A. C, Marcus, C. M., Hanson, M. P., and Gossard, A. C. Manipulation of a single charge in a double quantum dot. Physical Review Letters,93(18),2004.
    Rigetti, C., Gambetta, J. M., Poletto, S., Plourde, B. L. T., Chow, J. M., Corcoles, A. D., Smolin, J. A., Merkel, S. T., Rozen, J. R., Keefe, G. A., Rothwell, M. B., Ketchen, M. B., and Steffen, M. Superconducting qubit in a waveguide cavity with a coherence time approaching 0.1 ms. Physical Review B,86(10),2012.
    Schreier, J. A., Houck, A. A., Koch, J., Schuster, D. I., Johnson, B. R., Chow, J. M., Gambetta, J. M., Majer, J., Frunzio, L., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. Suppressing charge noise decoherence in superconducting charge qubits. Physical Review B,77(18),2008.
    Shinkai, G., Hayashi, T., Ota, T., and Fujisawa, T. Correlated coherent oscillations in coupled semiconductor charge qubits. Physical Review Letters,103(5),2009.
    Ashhab, S., Johansson, J. R., Zagoskin, A. M., and Nori, F. Two-level systems driven by large-amplitude fields. Physical Review A,75(6),2007.
    Bason, M. G., Viteau, M., Malossi, N., Huillery, P., Arimondo, E., Ciampini, D., Fazio, R., Giovannetti, V., Mannella, R., and Morsch, O. High-fidelity quantum driving. Nature Physics,8(2):147-152,2012.
    Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A., and Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science,320(5874):349-352,2008.
    Berns, D. M., Rudner, M. S., Valenzuela, S. O., Berggren, K. K., Oliver, W. D., Levitov, L. S., and Orlando, T. P. Amplitude spectroscopy of a solid-state artificial atom. Nature,455(7209):51-U32,2008.
    Burkard, G. Splitting spin states on a chip. Science,327(5966):650-651,2010.
    Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K., Fitch, G., Cory, D. G., Nakamura, Y., Tsai, J. S., and Oliver, W. D. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Physics,7(7):565-570,2011.
    Hicke, C., Santos, L. F., and Dykman, M. I. Fault-tolerant landau-zener quantum gates. Physical Review A,73(1), 2006.
    Kayanuma, Y. Stokes phase and geometrical phase in a driven two-level system. Physical Review A, 55(4):R2495-R2498,1997.
    Landau, L. D. Zur theorie der energieubertragung. Phys. Z. Sowjet,2:46-51,1932.
    Oliver, W. D. and Valenzuela, S. O. Large-amplitude driving of a superconducting artificial atom. Quantum Infor-mation Processing,8(2-3):261-281,2009.
    Petta, J. R., Lu, H., and Gossard, A. C. A coherent beam splitter for electronic spin states. Science, 327(5966):669-672,2010.
    Press, D., Ladd, T. D., Zhang, B. Y, and Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature,456(7219):218-221,2008.
    Ribeiro, H., Petta, J. R., and Burkard, G. Harnessing the gaas quantum dot nuclear spin bath for quantum control. Physical Review B,82(11),2010.
    Rudner, M. S., Shytov, A. V., Levitov, L. S., Berns, D. M., Oliver, W. D., Valenzuela, S. O., and Orlando, T. P. Quantum phase tomography of a strongly driven qubit. Physical Review Letters,101(19),2008.
    Saito, K. and Kayanuma, Y. Nonadiabatic electron manipulation in quantum dot arrays. Physical Review B,70(20), 2004.
    Shevchenko, S. N., Ashhab, S., and Nori, F. Landau-zener-stuckelberg interferometry. Physics Reports,492(1):1-30, 2010.
    Sillanpaa, M., Lehtinen, T., Paila, A., Makhlin, Y, and Hakonen, P. Continuous-time monitoring of landau-zener interference in a cooper-pair box. Physical Review Letters,96(18),2006.
    Sun, G. Z., Wen, X. D., Mao, B., Yu, Y., Chen, J., Xu, W. W., Kang, L., Wu, P. H., and Han, S. Y. Landau-zener-stuckelberg interference of microwave-dressed states of a superconducting phase qubit. Physical Review B,83(18),2011.
    Zener, C. Non-adiabatic crossing of energy levels. Proceedings of the Royal Society of London Series a-Containing Papers of a Mathematical and Physical Character,137(833):696-702,1932.
    Aspuru-Guzik, A. and Walther, P. Photonic quantum simulators. Nature Physics,8(4):285-291,2012.
    Bauerle, C., Bunkov, Y. M., Fisher, S. N., Godfrin, H., and Pickett, G. R. Laboratory simulation of cosmic string formation in the early universe using superfluid he-3. Nature,382(6589):332-334,1996.
    Blatt, R. and Roos, C. F. Quantum simulations with trapped ions. Nature Physics,8(4):277-284,2012.
    Bloch, I., Dalibard, J., and Nascimbene, S. Quantum simulations with ultracold quantum gases. Nature Physics, 8(4):267-276,2012.
    Buluta, I. and Nori, F. Quantum simulators. Science,326(5949):108-111,2009.
    Caneva, T., Fazio, R., and Santoro, G. E. Adiabatic quantum dynamics of the lipkin-meshkov-glick model. Physical Review B,78(10),2008.
    Daley, A. J., Pichler, H., Schachenmayer, J., and Zoller, P. Measuring entanglement growth in quench dynamics of bosons in an optical lattice. Physical Review Letters,109(2),2012.
    Damski, B. The simplest quantum model supporting the kibble-zurek mechanism of topological defect production: Landau-zener transitions from a new perspective. Physical Review Letters,95(3),2005.
    Damski, B. and Zurek, W. H. Adiabatic-impulse approximation for avoided level crossings:From phase-transition dynamics to landau-zener evolutions and back again. Physical Review A,73(6),2006.
    Dziarmaga, J. Dynamics of a quantum phase transition:Exact solution of the quantum ising model. Physical Review Letters,95(24),2005.
    Dziarmaga, J. Dynamics of a quantum phase transition and relaxation to a steady state. Advances in Physics, 59(6):1063-1189,2010.
    Hendry, P. C., Lawson, N. S., Lee, R. A. M., Mcclintock, P. V. E., and Williams, C. D. H. Generation of defects in superfluid he-4 as an analog of the formation of cosmic strings. Nature,368(6469):315-317,1994.
    Houck, A. A., Tureci, H. E., and Koch, J. On-chip quantum simulation with superconducting circuits. Nature Physics, 8(4):292-299,2012.
    Kibble, T. W. B. Topology of cosmic domains and strings. Journal of Physics a-Mathematical and General, 9(8):1387-1398,1976.
    Polkovnikov, A., Sengupta, K., Silva, A., and Vengalattore, M. Colloquium:Nonequilibrium dynamics of closed interacting quantum systems. Reviews of Modern Physics,83(3):863-883,2011.
    Pyka, K., Keller, J., Partner, H. L., Nigmatullin, R., Burgermeister, T., Meier, D. M., Kuhlmann, K., Retzker, A., Plenio, M. B., Zurek, W. H., del Campo, A., and Mehlstaubler, T. E. Topological defect formation and spontaneous symmetry breaking in ion coulomb crystals. Nature Communications,4,2013.
    Ruutu, V. M. H., Eltsov, V. B., Gill A. J., Kibble, T. W. B., Krusius, M., Makhlin, Y. G., Placais, B., Volovik, G. E., and Xu, W. Vortex formation in neutron-irradiated superfluid he-3 as an analogue of cosmological defect formation. Nature,382(6589):334-336,1996.
    Sabbatini, J., Zurek, W. H., and Davis, M. J. Phase separation and pattern formation in a binary bose-einstein con-densate. Physical Review Letters,107(23),2011.
    Sadler, L. E., Higbie, J. M., Leslie, S. R., Vengalattore, M., and Stamper-Kurn, D. M. Spontaneous symmetry breaking in a quenched ferromagnetic spinor bose-einstein condensate. Nature,443(7109):312-315,2006.
    Trotzky, S., Chen, Y. A., Flesch, A., McCulloch, I. P., Schollwock, U., Eisert, J., and Bloch, I. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional bose gas. Nature Physics,8(4):325-330, 2012.
    Ulm, S., Rossnagel, J., Jacob, G., Degunther, C., Dawkins, S. T., Poschinger, U. G., Nigmatullin, R., Retzker, A., Plenio, M. B., Schmidt-Kaler, F., and Singer, K. Observation of the kibble-zurek scaling law for defect formation in ion crystals. Nature Communications,4,2013.
    Viehmann, O., von Delft, J., and Marquardt, F. Observing the nonequilibrium dynamics of the quantum transverse-field ising chain in circuit qed. Physical Review Letters,110(3),2013.
    Weiler, C. N., Neely, T. W., Scherer, D. R., Bradley, A. S., Davis, M. J., and Anderson, B. P. Spontaneous vortices in the formation of bose-einstein condensates. Nature,455(7215):948-U37,2008.
    Yusupov, R., Mertelj, T., Kabanov, V. V., Brazovskii, S., Kusar, P., Chu, J. H., Fisher, I. R., and Mihailovic, D. Coherent dynamics of macroscopic electronic order through a symmetry breaking transition. Nature Physics, 6(9):681-684,2010.
    Zurek, W. H. Cosmological experiments in superfluid-helium. Nature,317(6037):505-508,1985.
    Zurek, W. H., Dorner, U., and Zoller, P. Dynamics of a quantum phase transition. Physical Review Letters,95(10), 2005.
    Deng, G. W., Wei, D., Johansson, J. R., Zhang, M. L., Li, S. X., Li, H. O., Cao, G., Xiao, M., Tu, T., Guo, G. C., Jiang, H. W., Nori, R, and Guo, G. P. Circuit qed with a graphene double quantum dot and a reflection-line resonator. 2013, arXiv:1310.6118 [cond-mat.mes-hall].
    Frey, T., Leek, P. J., Beck, M., Blais, A., Ihn, T., Ensslin, K., and Wallraff, A. Dipole coupling of a double quantum dot to a microwave resonator. Physical Review Letters,108(4),2012.
    Hofheinz, M., Wang, H., Ansmann, M., Bialczak, R. C., Lucero, E., Neeley, M., O'Connell, A. D., Sank, D., Wenner, J., Martinis, J. M., and Cleland, A. N. Synthesizing arbitrary quantum states in a superconducting resonator. Nature,459(7246):546-549,2009.
    Hofheinz, M., Weig, E. M., Ansmann, M., Bialczak, R. C., Lucero, E., Neeley, M., O'Connell, A. D., Wang, H., Martinis, J. M., and Cleland, A. N. Generation of fock states in a superconducting quantum circuit. Nature, 454(7202):310-314,2008.
    Johnson, B. R., Reed, M. D., Houck, A. A., Schuster, D. I., Bishop, L. S., Ginossar, E., Gambetta, J. M., DiCarlo, L., Frunzio, L., Girvin, S. M., and Schoelkopf, R. J. Quantum non-demolition detection of single microwave photons in a circuit. Nature Physics,6(9):663-667,2010.
    Lupascu, A., Saito, S., Picot, T., De Groot, P. C., Harmans, C. J. P. M., and Mooij, J. E. Quantum non-demolition measurement of a superconducting two-level system. Nature Physics,3(2):119-123,2007.
    Nogues, G., Rauschenbeutel, A., Osnaghi, S., Brune, M., Raimond, J. M., and Haroche, S. Seeing a single photon without destroying it. Nature,400(6741):239-242,1999.
    Ono, K., Austing, D. G., Tokura, Y, and Tarucha, S. Current rectification by pauli exclusion in a weakly coupled double quantum dot system. Science,297(5585):1313-1317,2002.
    Petersson, K. D., McFaul, L. W., Schroer, M. D., Jung, M., Taylor, J. M., Houck, A. A., and Petta, J. R. Circuit quantum electrodynamics with a spin qubit. Nature,490(7420):380-383,2012.
    Shulman, M. D., Dial, O. E., Harvey, S. P., Bluhm, H., Umansky, V., and Yacoby, A. Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science,336(6078):202-205,2012.
    Taylor, J. M., Petta, J. R., Johnson, A. C., Yacoby, A., Marcus, C. M., and Lukin, M. D. Relaxation, dephasing, and quantum control of electron spins in double quantum dots. Physical Review B,76(3),2007.
    Toida, H., Nakajima, T., and Komiyama, S. Circuit qed in a double quantum dot system. Physics of Semiconductors, 1566:267-268,2013.
    Wallraff, A., Schuster, D. I., Blais, A., Frunzio, L., Majer, J., Devoret, M. H., Girvin, S. M., and Schoelkopf, R. J. Approaching unit visibility for control of a superconducting qubit with dispersive readout. Physical Review Letters,95(6),2005.
    Wang, H., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lucero, E., Neeley, M., O'Connell, A. D., Sank, D., Wei-des, M., Wenner, J., Cleland, A. N., and Martinis, J. M. Decoherence dynamics of complex photon states in a superconducting circuit. Physical Review Letters,103(20),2009.
    Wang, H., Hofheinz, M., Ansmann, M., Bialczak, R. C., Lucero, E., Neeley, M., O'Connell, A. D., Sank, D., Wenner, J., Cleland, A. N., and Martinis, J. M. Measurement of the decay of fock states in a superconducting quantum circuit. Physical Review Letters,101(24),2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700