铁酸铋系列多铁材料的制备及电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,多铁材料引起了人们的极大兴趣。其中,BiFeO_3(BFO)由于在室温下同时具有铁电性和弱铁磁性,被认为在信息存储、集成电路、磁传感器以及自旋电子器件等方面有诱人的应用前景。
     本文采用优化的固相烧结工艺,制备出纯相的BFO陶瓷。在对Bi_2O_3-Fe_2O_3二元体系的相图和热重-差热分析(TG-DTA)的基础上,以固相烧结作为核心的工艺流程,确定了制备纯相、平整、光滑的BFO陶瓷大靶的优化工艺。另外,本文以制备出的陶瓷为靶材,采用射频磁控溅射工艺在Pt(111)/Ti/SiO_2/Si(001)衬底上沉积BFO薄膜,研究了退火条件对薄膜结构的影响,在大量实验的基础上,找到最佳的磁控溅射BFO薄膜的工艺流程。
     本论文系统研究了B位Ti掺杂对BFO陶瓷和薄膜性能的影响。随着Ti掺量的增加,BFO陶瓷的晶体结构逐渐向斜方变化,晶粒尺寸越来越小,铁电-顺电相变温度(T_c)逐渐降低。掺Ti后BFO材料的漏电流减小,剩余极化值增大。Ti掺杂后,BFO薄膜的微观形貌、漏电流、剩余极化和疲劳性都得到改善。Ti掺杂量为10%时薄膜样品的电性能最好,在200kV/cm电场下,漏电流密度仅为7.6×10~(-8)A/cm~2;在500kV/cm的电场下,剩余极化2P_r为21.02μc/cm~2;经过3×10~9次极化反转后,剩余极化值仍然在初始值的90%以上。
     本论文首次系统研究了A位Dy掺杂对BFO陶瓷和薄膜性能的影响。当Dy含量为20%时,BFO陶瓷的晶体结构明显变化。随着Dy掺量增加,晶粒尺寸越来越小,铁电-顺电相变温度(T_c)逐渐降低。Dy掺量为10%时陶瓷的漏电流最小,剩余极化值最大。Dy掺杂量为10%时,薄膜样品的电性能最好,在200kV/cm电场下,漏电流密度仅为3.6×10~(-8)A/cm~2,;在300kV/cm的电场下,剩余极化2P_r为13.33μc/cm~2。
     结合前面的研究,本论文还对BFO陶瓷进行A、B位同时掺杂,研究了A、B位共掺的BFO陶瓷的性能。结果显示,A、B位共掺抑制了不纯相的生成,进一步提高了BFO陶瓷的铁电性能。最佳的掺杂方式和掺量为A位Dy和B位Ti同时掺杂,掺量均为10%。另外,本论文还通过射频磁控溅射,将A位掺杂BFO薄膜和B位掺杂BFO薄膜组成双层膜,研究了该双层膜的电性能,并对结果进行了理论分析。
     最后,本论文还提出了一个具有退极化场的铁电双层膜模型。给出了有退极化场和无退极化场时极化的空间分布和电滞回线的图象,研究了退极化场和界面耦合对二级相变铁电双层膜极化的影响。结果表明,铁电耦合时,退极化的作用使各层的极化趋于更均匀,界面耦合对极化的空间分布和电滞回线的形状都有很大的影响;反铁电耦合时,随着反铁电耦合的增强层内的极化增大,但退极化场导致层内极化的降低。当退极化场相对于层间耦合较强时,反铁电耦合的双层膜的层内极化取向一致。界面耦合和退极化场之间存在竞争关系。
     总而言之,本论文研究的主要结果和创新如下:
     1、获得了制备BFO陶瓷的固相烧结较佳工艺条件。采用快速升温、多次烘烤、单独排胶和带压烧结等方法制备出了纯相、致密、平整的BFO陶瓷。得到了最佳掺杂方式和掺杂量:A位Dy与B位Ti共掺,掺量各为10%。
     2、采用射频溅射工艺制备了BFO系列铁电单层和双层薄膜,探索了A位Dy掺杂、B位Ti掺杂薄膜的优化工艺,制备出结构均匀、铁电性较强及漏电流密度小的BFO薄膜。
     3、提出了具有退极化场的铁电双层膜模型,得到了退极化场的表达式。研究发现退极化场和界面耦合对二级相变铁电双层膜自发极化的空间分布和电滞回线有重要影响,铁电耦合时退极化场的作用使各层的极化趋于均匀,反铁电耦合时退极化场导致层内极化降低。
Mutiferroics have been widely investigated recently. Among them, BiFeO_3 (BFO)shows coexistent ferroelectric order and magnetic order and considered to have importantpotential application in information storage, transducer, modulators, spin electronics anddriver system.
     In this thesis, pure BFO ceramics were prepared by optimized solid-state reactiontechnology. The effects of the dilute nitric acid percolate, sintering temperature andsintering time were addressed, based on the phase diagram of Bi_2O_3-Fe_2O_3 binary systemand TG-DTA analysis. Otherwise, we fabricated BFO thin films on Pt(111)/Ti/SiO_2/Si(001)substrates by RF-magnetron sputtering. And the effects of annealing conditions on thestructure of films were investigated.
     The doping effects of B-site titanium substitution of BFO series ceramics wereinvestigated. With the increase of Ti content, the average grain sizes of the BFO ceramicsand the ferroelectric transition temperature decreased. The leakage current density and theremnant polarization of the BFO ceramics are improved due to the decreased oxygenvacancies by Ti~(4+) doping. The doping effects of B-site titanium substitution of BFO seriesfilms were also investigated. With the increase of Ti content, the ferroelectric transitiontemperature decreased. The leakage current density and the remnant polarization of theBFO ceramics are improved. 10% TiO_2 excess shows the best leakage current density andremnant polarization.
     Based on it, the doping effects of A-site dysprosium substitution of BFO series filmswere also investigated. Best electric properties are obtained for the sample when thecontent of Dy is 10%, with the leakage current density being 3.6×10~(-8)A/cm~2 at200kV/cm, remnant polarization 2P_r being 13.33μc/cm~2 at 300kV/cm. Best electricproperties are obtained for the sample when the content of Dy is 10%.
     A site, Dy~(3+) and B site, Ti~(4+) co-doped multiferroic Bi_(1-x)Dy_xFe_(0.9)Ti_(0.1)O_3 ceramics were successfullyprepared. The effect of ion doping on the microstructure, morphology, and the electric properties wasinvestigated. The result suggested that the co-doped BFO ceramic by Dy~(3+) and Ti~(4+) at A and B sitesshowed advantages in application over the pure BFO, doped BDFO and BFTO ceramics, respectively.The BFO ceramic with 10% Dy_2O_3 and TiO_2 excess shows the best ferroelectric properties.
     A ferroelectric bilayers model with considering depolarization field is proposed. The effect ofdepolarization field and interracial coupling on the polarization of second-order ferroelectric bilayersbased on the model investigated. The spatial profiles of spontaneous polarization and hysteresis loopswith and without depolarization field are obtained. Our results show that interracial coupling has greatinfluence on spatial profiles of spontaneous polarization and the shape of the hysteresis loop. Inaddition, the influence of the depolarization field is to make spontaneous polarization profile morehomogeneous in ferroelectric bilayers or superlattices and reduce the polarization in antiferroelectricbilayers or superlattices.
     The innovations of the thesis are as follows:
     1. Obtain the optimized solid-state reaction technology on preparation of pure ordoped BFO ceramics.
     2. Put forward the opitimized fabrication conditions to get BFO thin films withexcellent properties by rf-sputtering.
     3. propose a ferroelectric bilayers model with considering depolarization field. The effect ofdepolarization field and interracial coupling on the polarization of second-order ferroelectric bilayersbased on the model investigated.
引文
[1] Hill N. A., Why are there so few magnetic ferroelectrics? Journal of Physical Chemistry B, 2000, 104(29): 6694-6709.
    [2] 钟维烈,铁电体物理学.北京:科学出版社,2000,p1-18
    [3] Goodenough J. B., Jahn-Teller phenomena in solids. Annual Review of Materials Science, 1998, (28): 1-27.
    [4] Goodenough J. B., Gopalakrishnan J., Ramesha K., Dense hydrogen and disproportionation. Journal. of Solid State Chemistry, 1998, 138(2): 369-371.
    [5] Aliouane N., Prokhnenko O., Rule K. C., et al., Magnetic order and ferroelectricity in RMnO_3 multiferroic manganites: coupling between R- and Mn-spins, Journal of Physics Condensed Matter, 2008, 20(43):434215
    [6] Liu X. M., Fu S. Y., Huang C. J., Synthesis and magnetic characterization of novel CoFe_2O_4-BiFeO_3 nanocomposites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2005, 121(3): 255-260.
    [7] Talbayev D., Laforge A. D., Trugman S. A., et al., Magnetic exchange interaction between rare-earth and Mn ions in multiferroic hexagonal manganites. Physical Review Letters, 2008, 101(24): 247601.
    [8] Lapteva T. V., Tarasenko S. V., Savchenko A. S., et al., Surface dynamics of a nongyrotropic multiferroic with quadratic magnetoelectric interaction. Bulletin of the Russian Academy of Sciences: Physics, 2008, 72(10): 1426-1428.
    [9] Kimura T. and Tokura Y., Magnetoelectric phase control in a magnetic system showing cycloidal/conical spin order. Journal of Physics Condensed Matter, 2008, 20(43): 4342O4.
    [10] Scott J. F., Data storage: Multiferroic memories. Nature Materials, 2007, 6(4): 256-257.
    [11] Singh A. and Chatterjee R., Magnetization induced dielectric anomaly in multiferroic LaFeO_3-PbTiO_3 solid solution. Applied Physics Letters, 2008, 93(18): 182908.
    [12] Sawamura S., Wakiya N., Sakamoto N., et al., Modification of ferroelectric properties of BaTiO_3-CoFe_2O_4 multiferroic composite thin film by application of magnetic field. Japanese Journal of Applied Physics, 2008, 47(9): 7603-7606.
    [13] Cheng J.R., Li N., Cross L.E., Structural and dielectric properties of Ga-modified BiFeO_3-PbTiO_3 crystalline solutions. Journal of Applied Physics, 2003, 94(8): 5153-5157.
    [14] Tokura Y. and Hwang H. Y., Condensed-matter physics: Complex oxides on fire. Nature Materials, 2008, 7(9): 694-695.
    [15] Hill N. A., Why are there so few magnetic ferroelectrics? Journal of Physical Chemistry B, 2000, 104(29): 6694-6709
    [16] Bea H., Gajek M., Bibes M., et al., Spintronics with multiferroics. Journal of Physics Condensed Matter, 2008, 20(43): 434221.
    [17] Chu Y. -H., Martin L. W., Holcomb M. B., et al., Controlling magnetism with multiferroics. Materials Today, 2007, 10(10): 16-23.
    [18] Chaudhury R. P., Yen F., Delacruz C. R., et al., Thermal expansion and pressure effect in MnWO4. Physica B: Condensed Matter, 2008, 403(5-9): 1428-1430
    [19] Fukuda T. and Kakeshita T., Giant magnetic field induced strain in ferromagnetic shape memory alloys and its condition. Materials Science and Technology, 2008, 24(8): 890-895.
    [20] Jodlauk S., Becker P., Mydosh J. A., et al., Pyroxenes: A new class of multiferroics. Journal of Physics Condensed Matter, 2007, 19(43): 432201.
    [21] Yang F., Tang M.H., Ye Z., et al., Eight logic states of tunneling magnetoelectro resistance in multiferroic tunnel junctions. Journal of Applied Physics, 2007, 102(4): 044504.
    [22] Teowee G., Mccarthy K., Mccarthy E, et al., Dielectric and ferroelectric properties of sol-gel derived BiFeO_3 films. Integrated Ferroelectrics, 1997, 18(1-4): 329-337.
    [23] Palkar V. R. and Pinto R. BiFeO_3 thin films: Novel effects. Indian Academy of Sciences, 2002, 58(5): 1003-1008.
    [24] Wang J., Neaton J. B., Zheng H., et al., Epitaxial BiFeO_3 multiferroic thin film heterostructures. Science, 2003, 299(5613): 1719-1722.
    [25] Wang J., Zheng H., Ma Z., et al., Epitaxial BiFeO_3 thin films on Si. Applied Physics Letters, 2004, 85(13): 2574-2576.
    [26] Zhang S. T., Lu M. H., Wu D., et al., Larger polarization and weak ferromagnetism in quenched BiFeO_3 ceramics with a distorted rhombohedral crystal structure. Applied Physics Letters, 2005, 87(26): 262907.
    [27] Dho J., Qi X., Kim H., et al., Large electric polarization and exchange bias in multiferroic BiFeO_3. Advanced Materials, 2006, 18(11): 1445-1448.
    [28] Liu H. and Wang X., Large electric polarization in BiFeO_3 film prepared via a simple sol-gel process. Journal of Sol-Gel Science and Technology, 2008, 47(2): 154-157.
    [29] Yun K. Y., Ricinschi D., Kanashima T., et al., Giant ferroelectric polarization beyond 150μC/cm~2 in BiFeO_3 thin film. Japanese Journal of Applied Physics, 2004, 43(5 A): 647-648.
    [30] Jona F. and Shirane G., ferroelectric crystals. New York: Dover Publications, 1993.
    [31] Sosnowska I., Schafer W., Kockelmann W., et al., Crystal structure and spiral magnetic ordering of BiFeO_3 doped with manganese. Applied Physics A: Materials Science and Processing, 2002, 74: 1040-1042.
    [32] Fischer R, Polomskya M., Sosnowska I., Temperature dependence of the crystal and magnetic structure of BiFeO_3. Journal of Physics Condensed Matter, 1980, 13: 1931-1940.
    [33] Kim H. H., Dho J. H., Qi X., et al., Growth and characterization of BiFeO_3 film for novel device applications. Ferroelectrics, 2006, 333: 157-163.
    [34] Sosnowska I. and Zvezdin A. K., Origin of the long period magnetic ordering in BiFeO_3.Journal ofMagnetism and Magnetic Materials, 1995,140: 167-168.
    [35] Gippius A. A., Khozeev D. F., Morozova E. N., et al, Observation of spin modulated magnetic structure at Bi- and Fe-sites in BiFeO_3 by nuclear magnetic resonance. Physica Status Solidi (A) Applied Research, 2003, 196: 221-224.
    [36] Zalesskii A. V., Frolov A. A., Zvezdin A. K., et al., Effect of spatial spin modulation on the relaxation and NMR frequencies of Fe nuclei in a ferroelectric antiferromagnet BiFeO_3. Journal of Experimental and Theoretical Physics, 2002, 95(1): 101-105.
    [37] Zhang X. Y, Dai J. Y., Lai C. W., Synthesis and characterization of highly ordered BiFeO_3 multiferroic nanowire arrays. Progress in Solid State Chemistry, 2005, 33(2-4): 147-151.
    [38] Ederer C, Spaldin N., Effect of epitaxial strain on the spoontaneous polarization of thin film ferroelectrics. Physical Review Letters, 2005, 95(25): 257601.
    [39] Kalinin S. V., Suchomel M. R., Davies P. K., et al., Potential and impedance imaging of polycrystalline BiFeO_3 ceramics. Journal of the American Ceramic Society, 2002, 85(12): 3011-3017.
    [40] Mahesh K. M., Palkar V. R., Srinivas K., et al, Ferroelectricity in a pure BiFeO_3 ceramic. Applied Physics Letters, 2000, 76(19): 2764-2766.
    [41] Wang Y P., Zhou L., Zhang M. F., et al, Room-temperature saturated ferroelectric polarization in BiFeO_3 ceramics synthesized by rapid liquid phase sintering. Applied Physics Letters, 2004,84(10): 1731-1733.
    [42] Yuan G. L., Yang Y, Or S. W., Aging-induced double ferroelectric hysteresis loops in BiFeO_3 multiferroic ceramic. Applied Physics Letters, 2007, 91(12): 122907.
    [43] Wang Y P., Yuan G. L., Chen X. Y, et al, Electrical and magnetic properties of single-phased and highly resistive ferroelectromagnet BiFeO_3 ceramic. Journal of Physics D: Applied Physics, 2006, 39(10): 2019-2023.
    [44] Chen F., Zhang Q. F., Li J. H., et al., Sol-gel derived multiferroic BiFeO_3 ceramics with large polarization and weak ferromagnetism. Applied Physics Letters, 2006, 89(9): 092910.
    [45] Yun K. Y., Noda M., Okuyama M., Prominent ferroelectricity of BiFeO_3 thin films prepared by pulsed-laser deposition. Applied Physics Letters, 2003, 83(19): 3981-3983.
    [46] Li J., Wang J., Wuttig M., et al., Dramatically enhanced polarization in(001), (101), and (111) BiFeO_3 thin films due to epitiaxial-induced transitions. Applied Physics Letters, 2004, 84(25): 5261-5263.
    [47] Sousa D. R. and Moore J. E., Electrical control of magnon propagation in multiferroic BiFeO_3 films. Applied Physics Letters, 2008, 92(2): 022514.
    [48] Ma H. and Chen L., Construction of the misfit strain-temperature phase diagrams of epitaxial BiFeO_3 thin film. Computational Materials Science, 2008, 44(1): 82-85.
    [49] Xu G., Hiraka H., Shirane G., et al., Low symmetry phase in(001) BiFeO_3 epitaxial constrained thin films. Applied Physics Letters, 2005, 86(18): 182905.
    [50] Yu B., Li M., Wang J., et al., Enhanced electrical properties in multiferroic BiFeO_3 ceramics co-doped by La~(3+) and V~(5+). Journal of Physics D: Applied Physics, 2008, 41(18): 185401.
    [51] Cheng Z. X., Wang X. L., Kimura H., et al., La and Nb codoped BiFeO_3 multiferroic thin films on LaNiO_3 and IrO_2 substrates. Applied Physics Letters, 2008, 92(9): 092902.
    [52] Khomchenko V. A., Kiselev D. A., Selezneva E. K., et al., Weak ferromagnetism in diamagnetically-doped Bi_(1-x)A_xFeO_3(A=Ca, Sr, Pb, Ba) multiferroics. Materials Letters, 2008, 62(12-13): 1927-1929.
    [53] Hu J., Ling H.-Q., Chang C.-K., et al., Preparation of Bi_(1-x)Re_xFeO_3 ceramics by tartaric acid method. Journal of Shanghai Jiaotong University(Science), 2008, 13: 164-167.
    [54] Wang Y. and Nan C.W., Effect of Tb doping on electric and magnetic behavior of BiFeO_3 thin films. Journal of Applied Physics, 2008, 103(2): 024103.
    [55] Lee Y. -H., Wu J. -M., Lai C.-H., Influence of La doping in multiferroic properties of BiFeO_3 thin films. Applied Physics Letters, 2006, 88(4): 042903.
    [56] Zhang S. T., Pang L. H., Zhang Y., et al., Preparation, structures, and multiferroic properties of single phase Bi_(1-x)La_xFeO3(x=0-0.40) ceramics. Journal of Applied Physics, 2006, 100(11): 114108.
    [57] Huang F., Lu X., Lin W., et al., Effect of Nd dopant on magnetic and electric properties of BiFeO_3 thin films prepared by metal organic deposition method. Applied Physics Letters, 2006, 89(24): 242914.
    [58] Mishra R. K., Pradhan D. K., Choudhary R. N. P., et al., Dipolar and magnetic ordering in Nd-modified BiFeO_3 nanoceramics. Journal of Magnetism and Magnetic Materials, 2008, 320(21): 2602-2607.
    [59] Gao F., Cai C., Wang Y., preparation of La-doped BiFeO_3 thin films with Fe~(2+) ions on Si substrates. Journal of Applied Physics, 2006, 99(9): 094105.
    [60] Li M., Ning M., Ma Y., et al., Room temperature ferroelectric, ferromagnetic and magnetoelectric properties of Ba-doped BiFeO_3 thin films. Journal of Physics D: Applied Physics, 2007, 40(6): 1603-1607.
    [61] Wang D. H., Goh W. C., Ong C. K., Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO_3 at room temperature. Applied Physics Letters, 2006, 88(21): 212907.
    [62] Jun Y. K., Moon W. T., Chang C. M., et al., Effects of Nb-doping on electric and magnetic properties in multi-ferroic BiFeO_3 ceramics. Solid State Communications, 2005, 135(1-2): 133-137.
    [63] Zhu X. H., Ba H., Bibes M., et al., Thickness-dependent structural and electrical properties of multiferroic Mn-doped BiFeO_3 thin films grown epitaxially by pulsed laser deposition. Applied Physics Letters, 2008, 93(8): 082902.
    [64] Jun Y. K. and Hong S. H., Dielectric and magnetic properties in Co-and Nb-substituted BiFeO_3 ceramics. Solid State Communications, 2007, 144(7-8): 329-333.
    [65] Bhattacharjee S., Tripathi S., Pandey D., Morphotropic phase boundary in (1-x)BiFeO_3-xPbTiO_3: Phase coexistence region and unusually large tetragonality. Applied Physics Letters, 2007, 91(4): 042903.
    [66] Kumar M. M., Srinivas A., Kumar G. S., et al., Investigation of the magnetoelectric effect in BiFeO_3-BaTiO_3 solid solutions. Journal of Physics Condensed Matter, 1999, 11(41): 8131-8139.
    [67] Uma B., Rao M., Srinivasan G., Magnetization and ferromagnetic resonance studies on rf sputtered amorphous BiFeO_3-CuFe_2O_4 compourids. Journal of Magnetism and Magnetic Materials, 1992, 111(3): 249-254.
    [68] Cheon C. I., Kim J. S., Jang P. W., Ferroelectric and magnetic properties of PrFeO_3-PbTiO_3 and PrFeO_3-BiFeO_3-PbTiO_3 thin films. Japanese Journal of Applied Physics, 2002, 41(11): 6777-6780.
    [69] Kim J. S., Cheon C. I., Kang H. J., et al., High temperature properties of multiferroic BiFeO_3-DyFeO_3-BaTiO_3 solid solutions. Journal of the European Ceramic Society, 2007, 27(13-15): 3951-3954.
    [70] Hong B. S., Ford S. J. and Mason T.O., Equilibrium property measurements in electroceramics. Key Eng. Mater, 1997, 125: 163-185.
    [71] Fruth V., Mitoseriu L., Berger D., et al., Preparation and characterization of BiFeO_3 ceramic. Progress in Solid State Chemistry, 2007, 35: 193-202.
    [72] Yu J., Yasutomo A., Naokiyo K., et al., Containerless solidification of BiFeO_3 oxide under microgravity. Part of the SPIE Conference on Materials Research in Loe Gravity Ⅱ, 1999, 3792: 226-233.
    [73] Toropov N. A., Barzakovskii V. P., Lapin V. V., et al., Diagrammy sostoyaniya silikatnykhsistem: spravochnik(Phase Diagrams of SilicateSystems: Reference Book), issue 1: Dvoinye sistemy(Binary Systems), Moscow: Nauka, 1965.
    [74] Filip V. S., Smolyaninov N. P., Fesenko E. G.., et al., Kristallografiya, 1960, 5(6): 958.
    [75] Achenbach G. D., James W. J. and Gerson R., J. Am. Ceram. Soc., 1967, 15(6): 437.
    [76] Morozov M. I., Lomanova N. A., Gusarov V. V., Specific features of BiFeO_3 formation in a mixture of bismuth and iron oxides. Russian Journal of General Chemistry, 2003, 73(11): 1676-1680.
    [77] Ramirez M. O., Krishnamurthi M., Denev S., et al., Two-phonon coupling to the antiferromagnetic phase transition in multiferroic BiFeO_3. Applied Physics Letters, 2008, 92(2): 022511.
    [78] Wang Y., Jiang Q. -H., He H. -C., et aL, Multiferroic BiFeO_3 thin films prepared via a simple sol-gel method. Applied Physics Letters, 2006, 88(14): 142503.
    [79] Liu H. and Wang X., Study on the Ce substitution effects of BiFeO_3 films prepared by a sol-gel process. Solid State Communications, 2008, 148(5-6): 203-205.
    [80] Das R. R., Kim D. M., Baek S. H., et al., Synthesis and ferroelectric properties of epitaxial BiFeO_3 thin films grown by sputtering. Applied Physics Letters, 2006, 88(24): 242904.
    [81] Zheng R., Gao X., Wang J., et al., Multiferroic BiFeO_3 thin films buffered by a SrRuO_3 layer. Journal of the American Ceramic Society, 2008, 91(2): 463-466.
    [82] Wang Y. and Nan C. W., Enhanced ferroelectricity in Ti-doped multiferroic BiFeO_3 thin films. Applied Physics Letters, 2006, 89(5): 052903.
    [83] Kumar M. and Yadav K. L., The effect of Ti substitution on magnetoelectric coupling at room temperature in the BiFe_(1-x)Ti_xO_3 system. Journal of Physics Condensed Matter, 2006, 18: L503-L508.
    [84] Ternon C., Thery J., Baron T., et al., Structural properties of films grown by magnetron sputtering ofa BiFeO_3 target. Thin Solid Films, 2006, 515(2): 481-484.
    [85] Fukumura H., Harima H., Kisoda K., et al., Raman scattering study of multiferroic BiFeO_3 single crystal. Journal of Magnetism and Magnetic Materials, 2007, 310(2): 367-369.
    [86] Yang Y., Sun J. Y., Zhu K., et al., Structure properties of BiFeO_3 films studied by micro-Raman scattering. Journal of Applied Physics, 2008, 103(9): 093532.
    [87] Haumont R., Kreisel J., Bouvier R, Raman scattering of the model multiferroic oxide BiFeO_3: Effect of temperature, pressure and stress. Phase Transitions, 2006, 79(12): 1043-1064.
    [88] Yuan G. L., Or S. W., Liu Z. G., Reduced ferroelectric coercivity in multiferroec Bi_(0.825)Nd_(0.175)FeO_3 thin film. Journal of Applied Physics, 2007, 101(2): 024106.
    [89] Noguchi Y., Chishima Y., Tamada M., et al., Influence of defects on the leakage current properties in PbTiO_3 and BiFeO_3 single crystals. Institute of Electrical and Electronics Engineers Inc, 2007, NJ08855-1331.
    [90] Scott J.F.,铁电存储器.朱劲松,吕笑梅,朱旻译.北京:清华大学出版社,2000:77
    [91] 刘梅冬,许毓春.压电铁电材料与器件.武汉:华中理工大学出版社,1990:98-102
    [92] Hongri L., Zuli L., Kailun Y., Effects of substitution of Ti for Fe in BiFeO_3 films prepared by sol-gel process. Physica B: Condensed Matter, 2007, 400(1-2): 252-256.
    [93] Qi X., Dho J., Tomov R., et al., Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO_3. Applied Physics Letters, 2005, 86(6): 062903.
    [94] Pabst G. W., Martin L. W., Chu Y. H., et al., Leakage mechanisms in BiFeO_3 thin films. Applied Physics Letters, 2007, 90(7): 072902.
    [95] Habouti S,, Solterbech C. H. and Essouni M., UV assisted pyrolysis of solution deposited BiFeO_3 multiferroic thin films. Journal of Sol-Gel Science and Technology, 2007, 42(3): 257-263.
    [96] Yang H., Jain M., Suvorova N. A., et al., Temperature-dependent leakage mechanisms of Pt/BiFeO_3/SrRuO_3 thin film capacitors. Applied Physics Letters, 2007, 91(7): 072911.
    [97] Sun J. L., Li Y. W., Li T. X., et al., The leakage current in BiFeO_3 films derived by chemical solution deposition. Ferroelectrics, 2006, 345: 83-89.
    [98] Yuan G. L. and Siu W. O., Enhanced piezoelectric and pyroelectric effects in single-phase multiferroic Bi_(1-x)Nd_xFeO_3(x=0-0.15) ceramics. Applied Physics Letters, 2006, 88(6): 062905.
    [99] Zheng R. Y., Sim C. H., Wang J., et al., Effects of SRO buffer layer on multiferroic BiFeO_3 thin films. Journal of the American Ceramic Society, 2008, 91(10): 3240-3244.
    [100] Shimakawa Y., Kubo Y., Tauchi Y., et al., Crystal and electronic structures of Bi_(4-x)La_xTi_3O_(12) ferroelectric materials. Applied Physics Letters, 2001, 79(17): 2791-2793.
    [101] Liu Z. L., Wang C. C., Chen M., et al., Effects of Pr_6O_(11) doping on the microstructures and properties of Bi_4Ti_3O_(12) ferroelectric ceramics. Materials Letter, 2004, 58: 3648-3651.
    [102] Uchida H., Ueno R., Funakubo H., et al., Crystal structure and ferroelectric properties of rare-earth substituted BiFeO_3 thin films. Journal of Applied Physics, 2006, 100(1): 014106.
    [103] Dean J.A.,兰氏化学手册.尚久方,操时杰,辛无名等译.北京:科学出版社,1991:3-123-130
    [104] Benfang Y., Meiya L., Jun L., et al., Effects of ion doping at different sites on electrical properties of multiferroic BiFeO_3 ceramics. Journal of Physics D: Applied Physics, 2008, 41: 065003-1-4.
    [105] Das S. R., Bhattacharya P., Choudhary R. N. P., et al., Effect of la substitution on structural and electrical properties of BiFeO_3 thin film. Journal of Applied Physics, 2006, 99(6): 066107-1-3.
    [106] Tagantsev A. K., Kholkin A. L., Colla E. L., et al., Integrated Ferroelectrics, 1995, 10: 189.
    [107] Lee Y. H., Lee C. C, Liu Z. X., et al, Epitaxial growth of the La-substituted BiFeO_3 thin films. Electrochemical and Solid-State Letters, 2006, 9(5): 38-40.
    [108] Kawae T., Tsuda H. and Morimoto A., Reduced leakage current and ferroelectric properties in Nd and Mn codoped BiFeO_3 thin films. Applied Physics Express. 2008, 1(5): 0516011-0516013.
    [109] Huang A., Shannigrahi S. R. and Lin V. K., Structural, electrical, and magnetic properties of Bi_(0.98)La_(0.02)Fe_(0.7)Sc_(0.3)O_3 thin film prepared on LaAlO_3 substrates using a chemical solution process. Electrochemical and Solid-State Letters, 2008, 11(9): 47-49.
    [110] Hu G. D., Fan S. H., Yang C. H., et al, Low leakage current and enhanced ferroelectric properties of Ti and Zn codoped BiFeO_3 thin film. Applied Physics Letters, 2008, 92(19):192905-l-3.
    [111] Tenne D. A., Bruchhausen A., Lanzillotti-Kimura N. D., Probing Nanoscale Ferroelectricity by Ultraviolet Raman Spectroscopy. Science, 2006, 313(15): 1614-1616.
    [112] O'Neill D, Bowman R.M., Gregg J.M, Dielectric enhancement and Maxwell-Wagner effects in ferroelectric superlattice structures. Appl. Phys. Lett. 2000, 77(10):1520-1522
    [113] Qu B. D., Evstigneev M., Johnson D. J., Dielectric properties of BaTiO_3/SrTiO_3 multilayered thin films prepared by pulsed laser deposition. Applied Physics Letters, 1998, 72(2): 1394-1396.
    [114] Junquera J. and Ghosez P., Critical thickness for ferroelectricity in perovskite ultrathin films. Nature, 2003,422(3): 506-508.
    [115] Dawber M., Lichtensteiger C, Cantoni M., Unusual behavior of the ferroelectric polarization in PbTiO_3/SrTiO_3 superlattices. Physical Review Letters, 2005, 95(6): 177601-177603.
    [116] Glinchuk M. D., Eliseev E. A., Stephanovich V. A., The depolarization field effect on the thin ferroelectric films properties. Physica B: Condensed Matter, 2002, 322(5): 356-361.
    [117] Wang J. and Zhang T. Y., Influence of depolarization field on polarization states in epitaxial ferroelectric thin films with nonequally biaxial misfit strains. physical review B, 2008, 77(4): 014104.
    [118] Yang B., Zhang D. M., Zheng C. D., Hysteresis loops of first-order ferroelectric bilayers or superlattices and their size effect.journal of physical D: Applied physics, 2007,40(4): 5696-5702.
    [119] Kretschmer R. and Binder K., Surface effects on phase transitions in ferroelectrics and dipolar magnets.physical review B, 1979,20(3): 1065.
    [120] Chew K. H., Ong L. H., Osman J., Hysteresis loops of ferroelectric bilayers and superlattices. Applied Physics Letters, 2000, 77(5): 2755-2757.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700