哈茨木霉Chit37基因与Thi4基因的克隆与表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丝状土壤真菌哈茨木霉(Trichoderma harzianum)作为一种优秀的生防因子具有广泛的作用谱,在生物防治和环境保护方面发挥着重要作用。为了从基因组水平上探讨其生防机理并挖掘生防相关新基因,本实验室以胶态几丁质为唯一碳源,构建哈茨木霉(T. harzianum)菌丝体时期诱导表达的cDNA文库并获得1,386条EST序列(序列号:DY761370~DY762921),通过生物信息学分析成功获得了2条新基因(几丁质酶基因Chit37和噻唑生物合成酶基因Thi4 ), GenBank序列接受号分别为DQ647957和DQ647956。
     Chit37基因的氨基酸序列含有几丁质酶18家族保守活性位点“FDGIDIDIE”,该基因家族因具有降解几丁质活性而在植物病害生物防治、海洋垃圾降解及资源的再生利用过程中发挥着重要作用,全新碱性几丁质酶基因Chit37的开发和研究将丰富基因资源,为高效工程菌的构建提供重要材料。Chit37基因原核表达优化条件为0.1mmol/L IPTG诱导培养8h,这一结果对于后续研究及大规模发酵具有重要的指导意义。通过穿梭质粒pYES2实现基因Chit37在酿酒酵母(S. cerevisiae)H158中的外源表达,考虑到非翻译区域对表达产物的可能影响,使用两种目的片段Chit37-I(包含非翻译区的全长序列)和Chit37-II(只含有开放读码框序列);半定量RT-PCR结果表明,Chit37-I在诱导后96h和108h表达量较高,而Chit37-II则在诱导后84h和96h mRNA转录水平较高。DNS法检测转化子发酵周期,当接种比例为1:100时CHIT37-I和CHIT37-II转化子的产酶高峰分别为第108h和96h,最适反应温度、pH值及底物浓度均为40℃、5.0及5%,CHIT37-II具有发酵周期短、酶活性高且对底物浓度适应范围广等特点而在大规模发酵生产中更具优势,对于非翻译区作用的探讨将有助于今后对Chit37基因的合理利用。
     构建表达载体pPKTCP,利用根癌农杆菌介导法转入生防真菌哈茨木霉(T. harzianum)中,分子生物学检测表明,Chit37基因以单拷贝形式整合到哈茨木霉基因组DNA中且都能够稳定遗传,转化子对病原菌的抑制率显著高于原始菌株,对六种病原菌的拮抗能力由强至弱分别是核盘菌(S. sclerotiorum)、立枯丝核菌(R. solani)、尖镰孢菌(F. oxysporum)、齐整小核菌(S. rolfsii)、茄腐镰刀菌(F. moniliforme)、和灰霉病菌(B. cinerea)。这一结果说明CHIT37具有抗真菌活性并在哈茨木霉生物防治过程中发挥着重要作用,转化子可直接以菌剂形式应用于病害防治,具有非常重要的理论意义和实际应用价值,并有助于促进生物防治的产业化进程。
     Thi4基因与Thi4家族具有较高的同源性,该基因家族的功能与逆境胁迫相关,作为维生素B1生物合成途径中的关键酶而间接参与有机体新陈代谢,同时噻唑作为多种农药内核被广泛应用于农业生产。因此,Thi4基因的研究对生物法大量生产维生素B1、生物合成新型超高效农药及环境可持续发展都具有十分重要的意义。基因原核表达优化条件为0.1mmol/L IPTG诱导4h;将基因构建到穿梭质粒pYES2上实现在酿酒酵母(S. cerevisiae)H158中的外源表达,Northern杂交分析表明该基因可经半乳糖诱导转录表达,酵母高效工程菌株的构建为工业化生产酶制剂提供了材料和依据。
Trichoderma harzianum is a filamentous soil fungus known as an effective biocontrol agent for a wide range of economically important airborne and soilborne plant pathogens. It plays a key role in biocontrol and environmental protection. To discover biocontrol mechanism in the level of genome and explore genes associated with biocontrol, an induced cDNA library of T. harzianum T88 mycelium was constructed by using colloidal chitin as sole carbon source and 1,386 ESTs were obtained (accession no. DY761370~DY762921). A novel endochitinase gene Chit37 and a novel thiazole biosynthetic enzyme gene Thi4 were obtained successfully by this means. The sequences of two genes were published on the GenBank with the accession numbers of DQ647957 and DQ647956.
     The animo acids sequence of gene Chit37 shared higher sequence identities with chitinase 18 family and contained a highly conserved motif (FDGIDIDIE) which corresponded to a catalytic domain. This family hydrolyze chitin so that it palys a very important role in agricultural biocontrol, ocean wastes degradation and resources recycling. The exploitation of novel chitinase gene Chit37 will supply the valuable materials for construction of efficient engineering strains. The gene Chit37 was expressed in E. coli BL21 (DE3) and the optimal induced conditions was 0.1mmol/L IPTG, 8h. This result will be significant to the preceeding research and large scale fermentation. Heterologous expression of the gene in S. cerevisiae H158 was carried out. Northern blotting analysis demonstrated that the gene was expressed at the transcription level. Considering the possible effects of untranslated regions (UTRs), two kinds of fragments of Chit37 were used in this study, the full-length gene (Chit37-I) and the coding region of the gene (Chit37-II). Semi-quantitative RT-PCR indicated that Chit37-I exhibited high expression level on 96h and 108h after galactose induction, while Chit37-II showed high mRNA transcription level on 84h and 96h. Both of the expressed products secreted to the medium and were measured in active forms. The optimal reaction temperature, pH and substrate concentration of CHIT37-I and CHIT37-II were 40℃, 5.0 and 5 %. However, the optimal culture time was 108h and 96h respectively. The CHIT37-II showed higher activity than CHIT37-I throughout and indicated the advantages in large scale fermentation. Discussions on the action of UTRs will benefit the reasonable utilization in the future.
     Expression vector pPKTCP was constructed and was transformed into T. harzianum mediated by A. tumefaciens. Molecular analysis showed that the T-DNA was integrated into the genome of T. harzianum with a single insert of T-DNA. The transformants were stable through mitotic and meiotic cell divisions. There was significant difference in antifungal activities between original strain of T. harzianum and its transformants. The conidial germination and mycelial growth of S. sclerotiorum, R. solani, F. oxysporum, S. rolfsii, F. moniliforme and B. cinerea were significantly inhibited in varying degrees. This result indicated that CHIT37 had antifungal activity and played a key role in biocontrol of T.
     harzianum. Besides, transformants could be used as inocula against plant diseases. This work has important theoretical significance and practical application value and will promote the industrialization process of biocontrol. Gene Thi4 was found sharing higher sequence identities with Thi4 family. Its function associated with abiotic stress and involved in organismic metabolism as the key enzyme of vitamin B1 biosynthesis. In addition, it was widely used in agricultural production as the framework of many pesticide and herbicide thiazole. Therefore, its molecular cloing and analysis have important significant for mass production of vitamin B1, super-effective pesticides by biological method and environmental sustainable development. The gene Thi4 was expressed in E. coli BL21 (DE3) and the optimal induced conditions was 0.1mmol/L IPTG, 4h. Heterologous expression of the gene in S. cerevisiae H158 was carried out. Northern blotting analysis demonstrated that the gene was expressed at the transcription level. The construction of efficient engineering strain supplied materials and basis for the industrial production of enzyme preparation.
引文
1 Food and Agriculture Organization. The State of Food Insecurity in the World 2006. FAO Agriculture Series. 2007, 38:120~134
    2 J. Schmidhuber, F. Tubiello. Global Food Security under Climate Change. PANS. 2007, 104(50):19703~19708
    3张鑫,叶非.农药与生态环境安全.东北农业大学学报. 2007, 5:99~102
    4杨向黎.化学农药潜在的威胁及发展趋势.农化新世纪. 2008, 4:27~28
    5程燕,周军英,单正军.国内外农药生态风险评价研究综述.农村生态环境. 2005, 21(3):62~66
    6 K. Mechlem, T. Raney. Agricultural Biotechnology and the Right to Food. In F. Francioni, ed. Biotechnologies and International Human Rights. Studies in International Law. Oxford, UK, Hart Publishing. 2007:131~160
    7曾智,孙运军,钱荣华等.我国微生物农药的研究应用现状与前景.农业现代化研究. 2008, 2:128~130
    8 Y. Elad, I. Chet, J. Katan. Trichoderma harzianum, a Biocontrol Agent Effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathology. 1980, 70:119~121
    9 R. Weindling, H. Emerson. The Isolation of Toxic Substance from the Culture Filtrates of Trichoderma. Phytopathology. 1936, 26:1068~1070
    10蔡芷荷,吴清平,许红立等.木霉和粘帚霉的生物防治研究进展.微生物学通报. 1998, 25(5):284~286
    11 S. Haran, H. Schinckler, I. Chet. Molecular Mechanism of Lytic Enzymes Involved in the Biocontrol Activity of Trichoderma harzianum. Microbiol. 1996, 142:2312~2331
    12徐同,钟静萍.木霉对土传病原真菌的拮抗作用.植物病理学报. 1993, 23(1):63~67
    13 R. J. Cook, K. F. Baker. The Nature and Practice of Biological Control of Plant Pathogens M.St. Paul. Minn:The Am. Phytopathol. Soc. Press. 1983, 374~382
    14 Z. Na_ar, M. Kecsk_es. Factors Influencing the Competitive Saprophytic Ability of Trichoderma Species. Microbiol. Res. 1998, 153:119~129
    15 J. A. Vizcaíno, L. Sanz, R. E. Cardoza, et al. Detection of Putative Peptide Synthetase Genes in Trichoderma Species: Application of this Method to the Cloning of a Gene from T. harzianum CECT 2413. FEMS Microbiology Letters. 2005, 244:139~148
    16赵蕾,张华英.木霉菌与种子生物处理.微生物学杂志. 1998, 18(3):50~57
    17田连生,王伟华,石万龙等.利用木霉防治大棚草莓灰霉病.植物保护. 2000, 26(2):47~49
    18杨合同,唐文华, M. Ryder等.木霉对棉花枯萎病菌和黄萎病菌的作用机理.山东科学. 2005, 18(3):9~15
    19杨合同,唐文华, M. Ryder等.木霉及其制剂对棉花真菌病害的防治效果.山东科学. 2005, 18(3):85~90
    20 J. H. Andrews. Biological Control in the Phyllosphere: Realistic or False Hope Can. J. Plant Pathol. 1990, 12:300~307
    21童蕴慧,纪兆林,徐敬友等.灰霉病生物防治研究进展.中国生物防治. 2003, 19(3):1131~1135
    22 G. E. Haraman. Myths and Dogmas of Biocontrol—Changes in Perceptions Derived from Research on Trichoderma harzianum T-22. Plant Dis. 2000, 84:377~931
    23 Y. Elad. Biological Control of Foliar Pathogens by means of Trichoderma harzianum and Potential Modes of Action. Crop Prot. 2000, 19:709~714
    24 T. Benítez, J. Delgado-Jarana, A. Rincón, et al. Biofungicides: Trichoderma as a Biocontrol Agent against Phytopathogenic Fungi. Rec. Res. Dev. Microbiol. 1998, 2:129~150
    25 L. Manczinger, Z. Antal, L. Kredics. Ecophysiology and Breeding of Mycoparasitic Trichoderma Strains. Acta Microbiol. Immunnol. Hung. 2000, 49:1~14
    26于新,田淑慧,徐文兴.木霉菌生防作用的生化机制研究进展.中山大学学报(自然科学版). 2005, 44(12):86~90
    27朱廷恒,邢小平,孙顺娣.木霉T97菌株对几种植物病原真菌的拮抗作用机制和温室防治试验.植物保护学报. 2004, 31(2):139~144
    28徐同.木霉分子生物学研究进展.真菌学报. 1996, 15(2):143~148
    29 H. D. Wells. Trichoderma as a Biocontrol Agent. A. Biocontrol of Plant Diseases. 1998, 1:71~82
    30 M. G. Mortuza, L. L. Ilag. Potential for Biocontrol of (Pat.) Griff. & Maubl. in Banana Fruits by Trichoderma Species. Biological Control. 1999, 15(3):235~240
    31 I. Jacob, M. Ana, C. Ilan. Hyphal Interaction between Trichoderma harzianum and Sclerotinia sclerotiorum and Its Role in Biological Control. Soil Biology & Biochemistry. 1996, 28(6):757~763
    32 I. Yedidia, N. Benhamou, Y. Kapulnik, et al. Induction and Accumulation of PR Proteins Activity during Early Stages of Root Colonization by the Mycoparasite Trichoderma harzianum Strain T-203. Plant Physiology and Biochemistry. 2000, 38(11):863~873
    33 A. Szekeres, L. Kredics, Z. Antal, et al. Isolation and Characterization of Protease Overproducing Mutants of Trichoderma harzianum. FEMS Microbiology Letters. 2004, 233(2):215~222
    34 J. Kovach, R. Petzoldt, E. Harman, et al. Use of Honey Bees and Bumble Bees to Disseminate Trichoderma harzianum 1295-22 to Strawberries for Botrytis Control. Biological Control. 2000, 18(3):235~242
    35陈伯清,潘国庆,高慧等.木霉菌HT-03对草莓灰霉病防治的研究.江苏农业科学. 2004, 4:47~50
    36 Z. X. Zheng, K. Shetty. Effect of Apple Pomace-based Trichoderma Inoculants on Seedling Vigour in Pea (Pisum sativum) Germinated in Potting Soil. Press Biochemistry. 1999, 34(6~7):731~735
    37 L. E. Datnoff, S. Nemec, K. Pernezny. Biological Control of Fusarium Crown and Root Rot of Tomato in Florida Using Trichoderma harzianum and Glomus intraradices. Biological Control. 1995, 5(3):427~431
    38 R. D. Prasad, R. Rangeshwaran, S. V. Hegde, et al. Effect of Soil and Seed Application of Trichoderma harzianum on Pigeonpea Wilt Caused by Fusarium udum under Field Conditions. Crop Protection. 2002, 21(4): 293~297
    39 L. Tsror, R. Barak, B. Sneh. Biological Control of Black Scurf on Potato under Organic Management. Crop Protection. 2001, 20(2):145~150
    40 B. A. Latorre, E. Agosín, M. R. San, et al. Effectiveness of Conidia of Trichoderma harzianum Produced by Liquid Fermentation against Botrytis bunch rot of Table Grape in Chile. Crop Protection. 1997, 16(3):209~214
    41 Y. Elad. Biological Control of Grape Grey Mould by Trichoderma harzianum. Crop Protect. 1994, 13:35~38
    42 Y. Elad, M. L. Gullino, D. Shtienberg, et al. Managing Botrytis cinerea on Tomatoes in Greenhouses in the Mediterranean. Crop Protection. 1995, 14(2):105~109
    43 R. Thangayelu, A. Palaniswami, R. Velazhahan. Mass Production of Trichoderma harzianum for Managing Fusarium wilt of Banana. Agriculture Ecosystems&Environment. 2004, 103(1):259~263
    44 D. J. Adams. Fungal Cell Wall Chitinases and Glucanases. Microbiology. 2004, 150:2029~2035
    45 J. Synowiecki, N. A. Al-Khateek. Production, Properties, and Some New Application of Chitin and Its Derivatives. Crit. Rev. Food Sci. Nutr. 2003, 43:145~171
    46陈少波,吴根福.几丁质酶研究进展.科技通报. 2004, 20(3):258~262
    47 R. A. Muzzarelli. Human Enzymatic Activities Related to the Therapeutic Administration of Chitin Derivatives. Cell. Mol. Life Sci. 1997, 53:131~140
    48 B. Davis. Chitin Chitosan and Crelated Enzymes, Orlando: Academic Press.1984, 161~179
    49 M. C. Chang, P. L. Lai, M. L. Wu. Biochemical Characterization and Site-directed Mutational Analysis of the Double Chitin-binding Domain from Chitinase 92 of Aeromonas hydrophila JP101. FEMS Microbiology Letter. 2004, 232:61~66
    50 F. Hamel, R. Boivin, C. Temblay, et al. Structural and Evolutionary Relationships among Chitinases of Flowing Plants. J. Mol. Evol. 1997, 44:614~624
    51冯俊丽,朱旭芬.微生物几丁质酶的分子生物学研究.浙江大学学报(农业与生命科学版). 2004, 30(1):102~108
    52 Y. Arakane, D. Koga. Purification and Characterization of a Novel Chitinase Isozyme from Yam Tuber. Bioscience Biotechnology Biochemistry. 1999, 63(11):1895~1901
    53 S. L. Wang, W. T. Chang. Purification and Characterization of two Bifunctional Chitinase/Lysozymes Extracellularly Produced by Pseudomonas aeruginosa K2187 in a Shrimp and Shell Powder Medium. AppliedEnvironmental Microbiology. 1997, 63 (2):380~386
    54 T. Tanaka, S. Fujiwara, S. Nishiori, et al. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archae on Pyrococcus kodakaroensis KOD1. Applied Environmental Microbiology. 1999, 65(12):5338~5344
    55 B. Iseli, T. Boller, T. M. Neuhaus. The N-terminal Cysteine-rich Domain of Tobacco ClassⅠChitinase is Easential for Chitin Binding but not for Catalytic or Antifungal Activity. Plant Physiol. 1993, 103:221~226
    56 H. Tsujibo, H. Orikoshi, H. Tanno, et al. Cloning, Sequence, and Expression of a Chitinase Gene from a Marine Bacterium Alteromonas sp. strain O27. J. Bacteriol. 1993, 175 (1):176~181
    57 M. Hardt, A. R. Laine. Mutation of Active Site Residues in the Chitin-bingding Domain ChBDChA1 from Chitinase A1 of Bacillus circulans Alters Substrate Specificity: Use of a Green Fluorescent Protein Binding Assay. ABB. 2004, 426:286~297
    58 K. Brogile, I. Chet, M. Holliday, et al. Transgenic Plants with Enhanced Resistance to the Fungal Pathogen Rhizoctonia solani. Science. 1991, 254:1194~1197
    59 H. Shinshi. Regulation of a Plant Pathogenesis Related Enzyme: Inhibition of Chitinase and Chitinase mRNA Accumulation in Cultured Tobacco Tissues by Auxin and Cytokinin. Proc. Natl. Acad. Sci. USA. 1997, 84:89~93
    60 Q. Zhu. Isolation and Characterization of a Rice Gene Encoding a Basic Chitinase. Mol. Gen. Genet. 1991, 226:289~296
    61于平.几丁质酶基因及其应用新进展.生物学杂志. 2004, 21(3):5~7
    62 M. Ficker, T. Wemmer, R. D. Thompson. A Promoter Directing High Level Expression in Pistils of Transgenic Plants. Plant Mol. Biol. 1997, 35:425~431
    63 L. M. Robert, K. P. Clemens, P. Kathrin. Expression Two Major Genes of Trichoderma atroviride is Triggered by Different Regulatory Signals. Applied Environmental Microbiology. 1999, 65(5):1858~1863
    64 S. Techkarnjanaruk, S. Pongpattanakitshote, A. E. Goodman. Use of a Promoterless lacZ Gene Insertion to Investigate Chitinase Gene Expression in the Marine Bacterium Pseudoalteromonas sp. strain S9. Applied Environmental Microbiology. 1997, 63 (8):2989~2996
    65 C. J. Ulhoa, J. F. Peberdy. Regulation of Chitinase Synthesis in Trichderma harzianum. Journal Germany Microbiology. 1991, 137:2163~2169
    66 K. Morimoto, S. Karita, T. Kimura, et al . Sequencing, Expression and Transcription Analysis of the Clostridium paraputrificum chiA Gene Encoding Chitinase ChiA. Applied Microbiological Biotechnology. 1999, 51:340~347
    67 L. A. Rivas, V. Parro, M. M. Paz, et al. The Bacillus subtilis 168 csn Gene Encodes a Chitosanase with Similar Properties to a Streptomyces Enzyme. Microbiology. 2000, 146:2929~2936
    68 H. Schickler, S. Haran, A. Oppenheim, et al. Innduction of the Trichoderma harzianum Chitinolytic System is Triggered by the Chitin Monomer N-acetylglucosamine. Mycol. Res. 1998, 102 (10):1224~1226
    69 E. Margolles-clark, G. E. Harman, M. Penttila. Enhanced Expression of Endochitinase in Trichoderma harzianum with the cbhI Promoter of Trichoderma reesei. Appl. Environ. Microbiol. 1996, 62:2152~2155
    70 G. Giczey, Z. Kerenyi, G. Dallmann, et al. Homologous Transformation of Trichoderma hamatum with an Endochitinase Encoding Gene, Resulting in Increased Levels of Chitinase Activity. FEMS Microbiology Letters. 1998, 165:247~252
    71 M. Lorito, R. L. Mach, P. Sposato, et al. Mycoparasitic Interaction Relieves Binding of the Cre1 Carbon Catabolite Repressor Protein to Promoter Sequences of the ech42 (Endochitinase-encoding) Gene in Trichoderma harziznum. Proc. Natl. Acad. USA. 1996, 93:14868~14872
    72 M. C. limon, E. M Clark, T. Benitez, et al. Addition of Substrate-binding Domains Increases Substrate-binding Capacity and Specific Activity of a Chitinase from Trichoderma harzianum. FEMS Microbiology Letters. 2001,
    198:57~63
    73 M. C. Limon, J. M. Lora, J. Dela Cruz, et al. Primery Structure and Expression Pattern of the 33-kDa Chitinase Gene from the Mycoparasitic Fungus T. harzianum. Curr. Genet. 1995, 28:478~483
    74 D. L. Cruz, A. Hidalgo, J. M. Lora, et al. Isolation and Characterization of Three Chitinases from Trichoderma harzianum. Eur. J. Biochem. 1992, 206: 859~867
    75孙胜利,喻子牛,贾新成.微生物产几丁质酶的研究和应用进展.微生物学杂志. 2002, 22(5):47~50
    76 Z. K. Punja, T. Raharjo. Response of Transgenic Cucumber and Carrot Plants Expressing Different Chitinase Enzymes to Inoculation with Fungal Pathogens. Plant Diseases. 1996, 80:999~1005
    77 R. Grison, B. Grezes, M. Schneider, et al. Field Tolerance to Fungal Pathogens of Brassica napus constitutively Expressing a Chimeric Chitinase Gene. Nature Biotechnology. 1996, 14:643~646
    78 Y. Takatsu, Y. Nishizaw, T. Hibi, et al. Transgenic Chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura) Expressing a Rice Chitinase Gene Shows Enhanced Resistance to Gray Mold (Botrytis cinerea). Scientia Horticulturae. 1999, 82(1~2):113~123
    79 K. Kishimoto, Y. Nishizaw, Y. Tabei, et al. Detailed Analysis of Rice Chitinase Gene Expression in Transgenic Cucumber Plants Showing Different Levels of Disease Resistance to Gray Mold (Botrytis cinerea). Plant Science. 2002, 162 (5):655~662
    80 J. M. Neuhaus, P. AhlGoy, U. Hinz, et al. High-level Expression of a Tobacco Chitinase Gene in Nicotiana sylvestris. Susceptibility of Transgenic Plants to Cercospora nicotianae Infection. Plant Mol. Biol. 1991, 16:141~151
    81 Q. Zhu, E. A. Maher, S. Masoud, et al. Enhanced Protection against Fungal Attack by Constitutive Coexpression of Chitinase and Glucanase Genes in Transgenic Tobacco. Bio. Technology. 1994, 12:807~812
    82蓝海燕,田颖川,王长海等.表达β-1,3-葡聚糖酶及几丁质酶基因的转基因烟草及其抗真菌病的研究.遗传学报. 2000, 27(1):70~77
    83 E. Jongedijk, H. Tigelaar. Synergistic Activity of Chitinases and Beta-1,3-glucanases Enhances Fungal Resistance in Transgenic Tomato Plants. Euphytica. 1995, 85:173~180
    84许明辉,唐祚舜,谭亚玲等.几丁质酶葡聚糖酶双价基因导入滇型杂交稻恢复系提高稻瘟病抗性研究.遗传学报. 2003, 30(4):330~334
    85 E. Fujimoto. Thiocarbamate Type Heterocyclic Compounds and Its Preparation. JP 53127466, 1978,11,07
    86 M. Yagisawa, M. Kitano, Y. Morinoto. Method for Production of 1,3-thiazolid in-2-ones. EP 0387028. 1990,09,12
    87翁建全,刘会君,谭成侠等. 2-噻唑烷酮的合成研究.浙江工业大学学报. 2005, 33(1):103~105
    88熊兴平.浅谈新杀菌剂噻菌铜的市场前景和发展潜力.湖北植保. 2005, 4:53
    89陈才俊,宋宝安.噻唑类杀虫剂的研究进展.农药. 2005, 44(2):53~55,65
    90程志明.杀虫剂噻虫胺的开发.世界农药. 2004, 26(6):1~3,22
    91孙宝国,田红玉,郑福平等.肉香味含硫化合物的核心分子结构及应用.精细化工. 2005, 22(1):29~31
    92 J. H. Park, P. C. Dorrestein, H. Zhai, et al. Biosynthesis of the Thiazole Moiety of Thiamin Pyrophosphate (Vitamin B1). Biochemistry. 2003, 42:12430~12438
    93 L. Roberta, L. R. Peter. Thiamin Biosynthesis in Escherichia coli: in vitro Reconstitution of the Thiazole Synthase Activity. The Journal of Biological Chemistry. 2004, 279(17):17054~17062
    94 S. Ethan, P. B. Tadhg, E. E. Steven. Structural Biology of Enzymes of the Thiamin Biosynthesis Pathway. Current Opinion in Structural Biology. 2003,
    13:739~747
    95 P. C. Dorrestein, H. Zhai, F. W. McLafferty, et al. The Biosynthesis of the Thiazole Phosphate Moiety of Thiamin: The Sulfur Transfer Mediated by the Sulfur Carrier Protein ThiS. Chemistry & Biology. 2004, 11:1373~1381
    96 N. Kazuto, O. Mari, K. Hiroyuki, et al. Genetic Regulation Mediated by Thiamin Pyrophosphate-binding Motif in Saccharomyces cerevisiae. Molecular Microbiology. 2005, 58(2):467~479
    97 P. C. Dorrestein, H. Zhai, S. V. Taylor, et al. The Biosynthesis of the Thiazole Phosphate Moiety of Thiamin (Vitamin B1): the Early Steps Catalyzed by Thiazole Synthase. J. Am. Chem. Soc. 2004, 126:3091~3096
    98 R. J. Burrows, K. L. Byrne, P. A. Meacock. Isolation and Characterization of Saccharomyces cerevisiae Mutants with Derepressed Thiamine Gene Expression. Yeast. 2000, 16(16):1497~1508
    99 U. M. Praekelt, K. L. Byrne, P. A. Meacock. Regulation of THI4 (MOL1), a Thiamine-biosynthetic Gene of Saccharomyces cerevisiae. Yeast. 1994, 10(4): 481~490
    100 L. M. Dickson, A. J. Brown. mRNA Translation in Yeast during Entry intoStationary Phase. Mol. Gen. Genet. 1998, 259(3):282~293
    101 C. K. Singleton. Identification and Characterization of the Thiamine Transporter Gene of Saccharomyces cerevisiae. Gene. 1997, 199(1~2): 111~121
    102 A. Zurlinden, M. E. Schweingruber. Cloning, Nucleotide Sequence, and Regulation of Schizosaccharomyces pombe thi4, a Thiamine Biosynthetic Gene. Bacteriol. 1994, 176(21):6631~6635
    103 P. Faou, M. Tropschug. Neurospora crassa CyPBP37: a Cytosolic Stress Protein that is able to Replace Yeast Thi4 Function in the Synthesis of Vitamin B1. J. Mol. Biol. 2004, 344(4):1147~1157
    104 T. R. Denise, P. F. Leonardo. Functional Characterization of the thi1 Promoter Region from Arabidopsis thaliana. Journal of Experimental Botany. 2005, 56(417):1797~1804
    105 F. S. Papini-Terzi, R. S. Galhardo, L. P. Farias, et al. Point Mutation is Responsible for Arabidopsis tz-201 Mutant Phenotype Affecting Thiamin Biosynthesis. Plant Cell Physiol. 2003, 44(8):856~860
    106 A. Ribeiro, U. Praekelt, A. D. Akkermans, et al. Identification of agthi1, whose Product is Involved in Biosynthesis of the Thiamine Precursor Thiazole, in Actinorhizal Nodules of Alnus glutinosa. Plant J. 1996, 10(2):361~368
    107 Y. S. Kim, K. Nosaka, D. M. Downs, et al. A Brassica cDNA Clone Encoding a Bifunctional Hydroxymethy Pyrimidine Kinase/ Thiamin-phosphate Pyrophosphorylase Involved in Thiamin Biosynthesis. Plant Mol. Biol. 1998, 37(6):955~966
    108 G. H. Choi, E. T. Marek, L. C. Schardl, et al. sti35, a Stress-responsive Gene in Fusarium spp. Journal of Bacteriology. 1990, 172:4522~4528
    109 U. M. Praekelt, P. A. Meacock. MOL1, a Saccharomyces cerevisiae Gene that is Highly Expressed in Early Stationary Phase during Growth on Molasses. Yeast. 1992, 8:699~710
    110 C. R. Machado, U. M. Praekelt, P. A. Meacock, et al. Dual Role for Yeast THI4 gene in Thiamine Biosynthesis and DNA Damage Tolerance. Journal of Molecular Biology. 1997, 273:114~121
    111 R. Medina-Silva, M. P. Barros, R. S. Galhardo, et al. Heat Stress PromotesMitochondrial Instability and Oxidative Responses in Yeast Deficient in Thiazole Biosynthesis. Research in Microbiology. p. PRELC. 2005
    112 C. R. Machado, R. L. Costa de Oliveira, S. Boiteux, et al. Thi1, a Thiamine Biosynthetic Gene in Arabidopsis thaliana, Complements Bacterial Defects in DNA Repair. Plant and Molecular Biology. 1996, 31:585~593
    113 D. A. Rodionov, A. G. Vitreschak, A. A. Mironov, et al. Comparative Genomics of Thiamin Biosynthesis in Procaryotes. The Journal of Biological Chemistry. 2002, 27(50):48949~48959
    114 P. Bundock, D. R. A. Den, A. Beijersbergen, et al. Trans-kingdom T-DNA Transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 1995, 14:3206~3214
    115 P. Bundock, P. J. Hooykaas. Integration of Agrobacterium tumefaciens T-DNA in the Saccharomyces cerevisiae Genome by Illegitimate Recombi-nation. Proc. Natl. Acad. Sci.USA. 1996, 93:15272~15275
    116 P. Bundock, K. Mroczek, A. A. Winkler, et al. T-DNA from Agrobacterium tumefaciens as an Efficient Tool for Gene Targeting in Kluyveromyces lactis. Mol. Gen. Genet. 1999, 261:115~121
    117方卫国,张永军,杨星勇.根癌农杆菌介导真菌遗传转化的研究进展.中国生物工程杂志. 2002, 22(5):40~44
    118李卫,郭光沁,郑国昌.根癌农杆菌介导的遗传转化研究的若干新进展.科学通报. 2000, 45(8):798~807
    119 E. D. Mullins, X. Chen, P. Romaine, et al. Agrobacterium-mediated Transformation of Fusarium oxysporum: An Efficient Tool for Insertional Mutagenesis and Gene Transfer. Phytopathology. 2001, 91:173~180
    120 R. C. Amey, A. Athey-Pollard. PEG-mediated and Agrobacterium-mediated Transformation in the Mycopathogen Verticillium fungicola. Mycol. Res. 2002, 106(1):4~11
    121王政逸,李德葆.限制酶介导的插入突变及其在丝状真菌中的应用.菌物系统. 2001, 20(1):142~147
    122 P. V. Balhadere, A. J. Foster, N. J. Talbot. Identification of Pathogenicity Mutants of the Rice Blast Fungus Magnaporthe grisea by Insertional Mutagenesis. Mol. Plant-Microbe. Interact. 1999, 12:129~142
    123 D. N. Coleman, H. Wang. Agrobacterium T-DNA: A Silver Bullet forFilamentous Fungi. Nature Biotechnology. 1998, 16:817~818
    124 P. J. Krysan, J. C. Young, M. R. Sussman. T-DNA as an Insertional Mutagen in Arabidopsis. The Plant Cell. 1999, 11:2283~2290
    125 M. J. A. de Groot, P. Bundock, P. J. J. Hooykaas, et al. Agrobacterium tumefaciens-mediated Transformation of Filamentous Fungi. Nat. Biotechnol. 1998, 16:839~842
    126 J. P. Combier, D. Melayah, C. Raffier, et al. Agrobacterium tumefaciens-mediated Transformation as a Tool for Insertional Mutagenesis in the Symbiotic Ectomycorrhizal Fungus Hebeloma cylindrosporum. FEMS Microbiology Letters. 2003, 220:141~148
    127 S. Malonek, F. Meinhardt. Agrobacterium tumefaciens-mediated Genetic Transformation of the Phyopathogenic Ascomycete Calonectria morganii. Curr. Genet. 2001, 40:152~155
    128 L. H. Zwiers, M. A. De Waard. Efficient Agrobacterium tumefaciens-mediated Gene Disruption in the Phytopathogen Mycosphaerella graminicola. Curr. Genet. 2001, 39:388~393
    129 A. G. Pardo, M. Hanif, M. Raudaskoski, et al. Genetic Transformation of Ectomycorrhizal Fungi Mediated by Agrobacterium tumefaciens. Mycol. Res. 2002, 106(2):132~137
    130高兴喜,杨谦,宋金柱等.根癌农杆菌介导的哈茨木霉菌的遗传转化方法.高技术通讯. 2004, 14(161):32~35
    131 S. F. Covert, P. Kapoor, M. Lee, et al. Agrobacterium tumefaciens-mediated Transformation of Fusarium circinatum. Mycol. Res. 2001, 105(3):259~264
    132 X. Chen, M. Stone, C. Schlagnhaufer, et al. A Fruiting Body Tissue Method for Efficient Agrobacterium-mediated Transformation of Agaricus bisporus. Applied and Environmental Microbiology. 2000, 66(10):4510~4513
    133 T. S. P. Mikosch, B. Lavrijssen, A. S. M. Sonnenberg, et al. Transformation of the Cultivated Mushroom Agaricus bisporus (lange) Using T-DNA from Agrobacterium tumefaciens. Curr. Genet. 2001, 39:35~39
    134刘进元.分子生物学实验指导.清华大学出版社, 2002, 11, 128~134
    135 J.萨姆布鲁克, D. W.拉赛尔.分子克隆实验指南(第三版).北京:科学出版社, 2002, 492~499
    136 A. Adams, D. E. Gottschling, C. A. Kaiser, et al. METHODS IN YEASTGENETICS:A Cold Spring Harbor Course Manual. Cold Spring Harbor, New York, USA: Cold Spring Harbor Press, 1998
    137 V. Madhu, P. Singh, W. Anthony. A Method for Plasmid Purifcation directly from Yeast. Analytical Biochemistry. 2002, 307(1):13~17
    138王友如,崔洪志,郭三堆.农杆菌质粒DNA提取方法的优化.生物技术, 2005, 15(4):41~43
    139 F. Trail, J. R. Xu, P. S. Miguel. Analysis of Expressed Sequence Tags from Gibberella zeae (anamorph Fusarium graminearum). Fungal Genetics and Biology. 2003, (38):187~197
    140 D. Utob, P. Hraber, B. Sobral. Comparative Analysis of Expressed Sequences in Phytophthora sojae. Plant Physiol. 2000, (123):243~253
    141 D. Manjula, H. Isabelle, C. Lee. Full-length cDNAs: More Than Just Reaching the Ends. Physiol Genomics. 2001, (6):57~80
    142 W. M. Schmidt, M. W. Mueller. CapSelect: a Highly Sensitive Method for 59 CAP-dependent Enrichment of Full-length cDNA in PCR-mediated Analysis of mRNAs. Nucleic. Acids. Res. 1999, (27):31
    143 S. M. Wang, S. Fears, L. Zhang, et al. Screening Poly (dA/dT)-cDNAs for Gene Identification. Proc. Natl. Acad. Sci. USA. 2000, (97):4162~4167
    144 M. D. Ospina-Giraldo, P. D. Collopy, C. P. Romaine. Classification of Sequences Expressed during the Primordial and Basidiome Stages of the Cultivated Mushroom Agaricus bisporus. Fung. Genet. Biol. 2000, (29):81~94
    145 D. S. Roos. Computational Biology: Bioinformatics-trying to Swim in a Sea of Data. Science. 2001, 291 (5507):1260~1261
    146 W. T. Liu, H .M. Jiao, O. C. Marion, et al. Moth Desaturase Characterized that Produced both Z and E Isomers of 11–tetradecenoic Acids. Insect Biochemistry and Molecular Biology. 2002, (32):1489~1495
    147 A. Yévenes, E. Cardemil. Expression of the Trypanosoma brucei Phosphoenolpyruvate Carboxykinase Gene in Saccharomyces cerevisiae. Biochimie. 2000, (82):123~127
    148 T. Hatanaka, R. Shimizu, D. Hildebrand. Expression of a Stokesia laevis Eposygenease gene. Phytochemistry. 2004, (65):2189~2196
    149 K. Takeo, Y. Ogura, E. Virtudazo, et al. Isolation of a CDC28 Homologuefrom Cruptococcus neoformans that is able to Complement cdc28 Tempertaure-sensitive Mutants of Saccharomyces cerevisiae. FEMS yeast Research. 2004, (4):737~744
    150 N. Miura, S. Kaneko, S. Hosoya, et al. Overexpression of L-glutamine: D-fructose-6-phosphate Amidotransferase Provide Resistance to Methylmercury in Saccharomyces cerevisiae. FEBS Letters. 1999, (458):215~218
    151 B. Favre, N. S. Ryder. Cloning and Expression of Squalene Epoxidase from the Pathogenic Yeast Candida albicans. Gene. 1997, (189):119~126
    152秦玉静,刘世利,鲍晓明等.高效的酵母完整细胞转化法.生物技术. 1997, 7(3):37~38
    153 R. H. Schiestl, R. D. Gietz. High Efficiency Transformation of Intact Cells Using Single Stranded Nucleic Acids as a Carrier. Curr. Genet. 1989, 16(5~6): 339~346
    154胡又佳,高枫,朱春宝等. PEG/LiAc转化酵母细胞方法的改进.生物技术. 1998, 8(5):22~26
    155刘巍峰,高东,鲍晓明等.酿酒酵母可诱导启动子功能特性的研究.山东大学学报(自然科学版). 1998, 33(3):346~350
    156冯波.微生物几丁质酶的研究概况.天津师大学报. 1998, 18(3):50~55
    157 C. Cummings, T. Fowler. Secretion of Trichoderma reeseiβ-glucosidase by Saccharomyces cerevisiae. Curr. Genet. 1996, 29:227~233
    158 R. Leger, L. Joshi, D. Roberts. Ambient pH is a Major Determinant in the Expression of Cuticle-degrating Enzymes and Hydrophobin by Metarhizium anisopliae. Appl. Environ. Microbiol. 1998, 64 (2):709~713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700