板坯连铸的高温性能研究及组织模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸技术是钢铁生产中的重要技术,研究连铸坯的高温性能对指导生产具有十分重要的意义。在连铸坯的生产中,钢种的高温性能是判断铸坯是否产生裂纹的重要指标,也是对连铸过程进行数值仿真的重要参数,对改善其凝固冷却速度,制定二冷动态轻压下的相关参数具有重要价值。本论文的主要任务是对板坯连铸机生产的低合金钢A和耐候钢B连铸坯进行热物理性能测试和高温力学性能测试,并将所得的钢种物性参数应用到连铸坯温度场仿真和组织模拟模型中,并结合实际工艺进行了分析。
     在Gleeble-1500D热模拟机上进行从600℃到1300℃的高温拉伸实验,获得了两个钢种的力学性能参数。以断面收缩率为主要指标找出了这两种钢的高温脆性温度区,低合金钢A二次脆性区出现在725~900℃左右,耐候钢B二次脆性区出现在775~950℃左右,确定了低合金钢A和耐候钢B连铸坯在二冷区及矫直点处的温度尽可能分别控制在950℃以上和1000℃以上。
     采用热膨胀仪DIL402和综合热分析仪STA449对两个钢种进行热膨胀性能测试和差热分析试验,获得了两个钢种不同温度下的热膨胀性能、潜热、固相线和液相线等热物理性能参数,为研究连铸过程的铸坯的凝固特性提供了宝贵的资料和依据。
     运用实验得到的钢种物性参数和连铸板坯表面温度测试的结果,确定出合适的边界条件,应用到板坯连铸二次冷却计算机仿真软件中,对钢厂板坯连铸机的二冷制度进行了优化,根据优化后的实际生产结果,证明所得钢种物性参数对二冷制度的优化有十分重要的作用。
     同时钢种物性参数和铸坯表面温度测试结果也是连铸坯组织模拟的重要基础数据。本文将元胞自动机(CA)和有限差分法(FD)结合起来,建立了连铸坯凝固时内部等轴晶和柱状晶的随机形核和生长模型,元胞自动机模拟凝固组织,有限差分法计算温度分布和溶质扩散。通过该模型对三种不同工况下连铸坯凝固组织的模拟,再现了连铸坯内部组织的演变规律,对晶粒的随机形核、晶粒的择优生长、竞争生长以及晶粒的随机取向有比较好的体现。分析了不同工艺因素对等轴晶和柱状晶竞争生长的影响,模拟结果与工艺实践和理论分析一致。
Continuous casting is one of the most active technologies in steel industry, and the high-temperature properties of continuous cast slab are very important for guiding its production process. The high-temperature physical and mechanical properties parameters are also very important during the slab continuous cast process despite improving solidification cooling system, judging cracks in casting slab and establishing parameters of dynamic soft reduction in continuous casting. Paper select steel A and B slab casting in One Iron and Steel Company to test part of mechanical behavior and physical property of steel casting blank under high temperature; on the mathematical model of heat transfer and stress variety in slab continuous casting process.
     The test and measurement on two steel grades temperature expansion and differential thermal analysis are made according to the actual situation. Through these test and analysis the two steels high temperature physical property of casting slab like temperature expansion, heat capacity, latent heat, solidus curve and liquid line etc are achieved. In different speed of heating, we obtained the heat capacity of casting slab in the heating process and cooling process.
     Mechanical property variations with the temperature changing from 600 degree centigrade to 1300 degree centigrade are gotten through the Tension test t on the Gleeble-1500D and the steel high temperature brittleness zone especial the third one are determined according to the reduction rate of the cross-section. The second brittle zone of steel B is about between 775 degree centigrade and 950 degree centigrade. The second brittle zone of steel A is about between 725 degree centigrade and 900 degree centigrade.
     The steel properties have been used to defining suitable bound conditions which are very useful for the casting slab secondary cooling simulation software. Then with the simulation an optimal of the secondary cooling system in the continuous slab casting at No.4 steel making and rolling plant of One Iron and Steel Corp. The practical production shows good results after the optimal, it proved that the steel properties have very important meaning to optimal of the secondary cooling system.
     Also the steel properties and surface temperature tests of casting slab results are very important basis data of continuous casting slab’s microstructure simulation. The Cellular Automaton (CA) is coupled with Finite Difference Method (FDM) here to establish the stochastic nucleation and growth model. The CA is used to simulate the solidification structure, where the FDM is used to calculate the temperature and solute diffusion. Three different casting condition have been simulated by the model, the results show good in agreement with the regulation of microstructure evolvement rule and the stochastic nucleation、preferred growth、competitive growth and random orientation of grain. The effects of processing parameters on the competition growth between columnar and equiaxed grains are analyzed. The results are in agreement with practical process and theoretical analysis.
引文
[1]史宸兴.实用连铸冶金技术[M].北京:冶金工业出版社, 1998.
    [2]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社, 1994.
    [3] Ian Christmas.钢铁工业面临的挑战[C]. 2005中国钢铁年会论文集,北京:冶金工业出版社, 2005:1-6.
    [4]潘艳华.中高碳钢方坯连铸二次冷却技术的研究[D].重庆:重庆大学硕士论文, 2005.
    [5] Dario Fabro. Development and Achievement of Casting Technologies[C]. The International Conference on Continuous Casting of Steel in Developing Countries. Beijing, 2004:36-40.
    [6]张兴中.我国连续铸钢技术的发展状况和趋势[J].钢铁研究学报, 2004. 16(6):1-6.
    [7]郭戈.连铸过程控制理论与技术[M].北京:冶金工业出版社, 2003:2-21.
    [8] K.M rwald. SMART/ASTC技术的冶金、操作和经济效果[J].钢铁, 2003. 38(7):21-25.
    [9]芮健康. KMM可编程调节器在连铸二冷水控制中的应用[J].冶金自动化, 1992. 16(6):50-51.
    [10]叶枫.连铸工艺操作[J].连铸, 1999:41-45.
    [11] Shangyi Li, Zubin Wang. Present and futnre status of the Chinese steel industry in 21st century [J]. Iron and Steel Engineer, 1999. (8):56-59.
    [12]陈雷.连续铸钢[M].北京:冶金工业出版社, 1994.
    [13]蔡开科.连铸技术发展[J].炼钢, 2001. 17(3):6-14.
    [14]中国金属学会连续铸钢专业委员会.我国连铸技术的现状与展望[C],中国冶金第5期(总第48期), 2000:14-18.
    [15]蒲海清.依靠科技进步调整结构[J].炼钢, 2000. 16(3):1-4.
    [16]易本熙.提高我国连铸水平大力发展高效连铸技术[J].钢铁, 1999. 34:481-485.
    [17]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社, 1994.
    [18]陈登福.薄板连铸坯的温度与应力状态的研究[D].博士学位论文.重庆:重庆大学. 1997.
    [19]胡燕.连铸板坯凝固传热数学模型的研究与应用.硕士学位论文[D].重庆:重庆大学, 2005.
    [20] E.A. Miziker. Modelling of microstructural evolution in Bridgman specimens [J], 1967. 239:1747-1753.
    [21] Aldo Ramacciotti. Modeling of columnar-to-equiaxed transition in solidified Al-Si alloys [J]. Steel research, 1988. 59(10), 438-448.
    [22] B.Sarler, R.Vertnik, S.Saletic et al. A simulation system for continuous casting of steel [J]. Berg- Huttenmannische Monatshefte, 2005. 150:300–306.
    [23]冯科,徐楚韶,陈登福等.板坯连铸结晶器铜板温度场的数值仿真[J].特殊钢, 2005. 26(1):12-15.
    [24]伍成波.冶金过程数理模型[D].重庆:重庆大学出版社, 1998.
    [25]陈火红. Marc有限元实例分析教程[M].北京:机械工业出版社, 2002.
    [26]阚前华,常志宇. MSC.Marc工程应用实例分析与二次开发[M].北京:中国水利水电出版社, 2006.
    [27]陈火红,于军泉,席源山. MSC.Marc/Mentat 2003基础与应用实例[M].科学出版社, 2004.
    [28]陈家祥,炼钢常用数据图表手册[M].北京:冶金工业出版社, 1984:240-244, 388-393.
    [29]廖建云,韩志伟,冯科.双辊薄带连铸凝固过程的数值模拟与分析[J].计算机辅助工程, 2006,15(9)增刊:444-446.
    [30]潘艳华.中高碳钢方坯连铸二次冷却技术的研究[D].硕士学位论文,重庆:重庆大学. 2005.
    [31]韩志伟.板坯连铸二冷计算机仿真通用软件的开发及应用[D].硕士论文,重庆:重庆大学, 2001.
    [32] D.F. Chen, L. Huang, M.J. Long. Thermal Simulation on Mechanical Properties of Steel Q345 for Continuous Casting Slab [C]. The Fifth International Conference on Physical and Numerical Simulation of Materials Processing, 2007:510-514.
    [33]袁伟霞.中碳钢高温力学性能研究及在连铸生产中的应用[J].炼钢, 1999. 15(1):28-31.
    [34]李殿明.高拉速方坯内部裂纹产生原因分析[J].连铸, 1999(3):18-21.
    [35]柳向椿,赵国燕,蔡开科.钢中碳含量对连铸板坯纵裂纹的影响[J].冶金研究, 2005:242-246.
    [36] Stefano Barozzi. Computer Control and Optimization of Secondary Cooling during Continuous Casting [J]. Iron and Steel Engineering, 1986. (11):21-26.
    [37] Bealy M E. Simulation of Cooling Condition in Secondary Cooling Zones in Continuous Casting Process [J]. Iron making and Steelmaking, 1995. 22(3):246-255.
    [38] Lankford WT. Some Considerations of Strength and Ductility in the Continuous Casting Process [J]. Metallurgical Transactions, 1982. 3(4):1331-1357.
    [39] K.Yasumoto, Y.Maehara, Y.Ohmori. Effects of Sulphur on Hot Ductility of Lowcarbon Steel Austenite [J]. Materials Science and Technology, 1985. 1(2):111-116.
    [40] B.Mintz, J.J.Jonas. Influence of Strain Rate on Production of Deformation Induced Ferrite and Hot Ductility of Steels [J]. Materials Science and Technology, 1994. 10(8):721-727.
    [41] Kunio Yasumoto, Yasuhiro Maehara, Tsuneaki Nagamichi. Efects of Thermo-Mechanical History on Surface Cracking of As-cast Low-carbon low-Alloy Steels Slabs [J]. ISIJ International, 1998. 29(11):933-939.
    [42]张毅.铸造工艺CAD及其应用[M].北京:机械工业出版社, 1994.
    [43]杨明波,潘复生,丁培道.铸件凝固组织模拟的研究进展[J].兵器材料科学与工程, 2001.24(3):31-34.
    [44]王同敏.金属凝固过程微观模拟研究[D].博士学位论文.沈阳:大连理工大学, 2000.
    [45]郭洪民,危仁杰,杨湘杰.一种改进的模拟凝固微观组织的宏微观耦合模型[J].特种铸造及有色合金, 2003(5):35-40.
    [46]何燕,张立文,牛静. CA法及其在材料介观模拟中的应用[J].金属热处理, 2005. 30(5):45-49.
    [47]张林,张彩碚.材料凝固时晶粒生长-粗化的二维元胞自动机模型[J].东北大学学报, 2007. 28(2):14-19.
    [48]李强,李殿中,钱百年.凝固过程中枝晶组织形貌演变模拟进展[J].材料导报, 2004. 18(4):55-58.
    [49]刘永刚,陈军,潘冶等. Al-4.5%Cu合金凝固过程显微组织的数值模拟[J].中国有色金属学报, 2002. 12(6):59-63.
    [50]何燕,张立文,牛静.利用元胞自动机方法模拟多金属材料的动态再结晶过程[J].金属热处理,2003(5):35-40.
    [51]柳百成,荆涛.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社, 2001.
    [52]单博炜,魏雷,林鑫等.采用元胞自动机法模拟凝固微观组织的研究进展[J].铸造, 2006(4):439-443.
    [53] Oldfield W.A. Quantitative Approach to casting solidification [J].Freezing of CastIron ASMTrans, 1966. 59(2):945-960.
    [54] Hunt JD. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectic [J]. Mater.Sci.Eng, 1984. 65:75-83.
    [55] Thevoz Ph, Desbiolies JL, Rappaz M.Modeling of Equiaxed Microstructure For mation in Casting [J].Metall Trans. A, 1989. 20:311-321.
    [56] Rappaz M, Thevoz Ph.Solute Diffusion Model for Exquiaxed Dendritic growth [J].ActaMetall, 1987. 35(7):1487-1497.
    [57] Wang CY, Beckermann C. Equiaxed Dendritic Solidification with Convection Multiscale/Multiphase Modeling [J]. MetaMater. Trans. A, 1996. 27(9):2754-2764.
    [58]熊玉华,刘林.铸件凝固组织形成的计算机模拟[J].材料导报, 1999, 13(3):20-21.
    [59] Rappaz M, Gandin ChA, ThevozPh, etal. Predication of Grain Structure in Various Solidification Process [J]. Metall.Mater. Trans. A, 1996. 27(3):695-705.
    [60] Gandin ChA,Desbiolies JL,Rappaz M,etal.Grain Texture Evaluation during Columnar Growth of Dendritic Alloys [J]. Metall. Mater. Trans. A, 1999. 30(12):3153-3162.
    [61]胡爱文,赵维民,张新宇等.铸件凝固微观组织数值模拟研究的新进展[J].铸造, 2003. 52(11):24-27.
    [62] ZHU MF, Hong CP. A modified cellular automaton model for the simulation of dendritic growth in solidification of alloys [J]. ISIJ Int. 2001. 41(5):436-445.
    [63] ZHU MF, Kim JM, Hong CP. Modeling of globularand dendritic structure evolution in solidification of an Al-7mass%Si alloy [J]. ISIJ Int, 2001. 41(9):992-998.
    [64] LEE PD, ATWOODRC, DASHWOOD RJ, et al. Modeling of porosity formation in direct chill cast aluminum-magnesium alloys [J]. Mat Sci and Eng, 2002. 328(1):213-222.
    [65]许庆彦,柳百成.采用Cellular Automaton法模拟铝合金的微观组织[J].中国机械工程, 2001(12):328-332.
    [66]陈家祥.炼钢常用数据图表手册[M].北京:冶金工业出版社, 1984.
    [67] S. K. Choudhary. Mathematical modeling of heat transfer phenomena in continuous casting of steel [J], ISIJ International, 1993. 33 (7):764-774.
    [68]许庆太,张楠,傅强等.连铸坯凝固组织和缺陷的冷酸蚀法宏观检验[J].炼钢, 2003. 19(5):26-31.
    [69]刘新生,徐国伦,白连臣等.准沸腾碳素焊条钢的连铸坯质量[J].炼钢, 2006. 22(5):37-40.
    [70]张明如.连铸坯的组织与高温力学性能[J].马钢科研, 1996(2).
    [71] Kurz W, Fisher D J. Fundmentals of solidification [M]. Third revised edition. Switzerland: Trans Tech Publications, 1989:23-29.
    [72]荆涛.凝固过程数值模拟[M].北京:电子工业出版社, 2002(5).
    [73] Lipton J, Glicksman M E, Kurz W. Dendrite growth into undercooled alloy melts [J]. Mater Sci Eng, 1984. 65:57-63.
    [74] Kurz W, Giovanola B, Trivedi R. Theory of microstructural development during rapid solidification [J].Acta Metall, 1986. 34(5):823~830.
    [75]康秀红,杜强,李殿中等.用元胞自动机与宏观传输模型耦合方法模拟凝固组织[J].金属学报, 2004. 40(5):452-456.
    [76]熊守美,许庆彦,康进武等.铸造过程模拟仿真技术[M].北京:机械工业出版社, 2004.9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700