高炉热风炉蓄热室传热数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热风炉是现代化高炉炼铁工艺中的重要设备之一,其任务是稳定地向高炉提供热风。建造适合高炉炼铁生产的热风炉,提高热风炉的传热效率,可有效提高进入高炉的热风风温,降低焦比,进而增加高炉炼铁产量并降低炼铁生产成本。热风炉蓄热室内的传热计算对热风炉的设计有重要作用,建立热风炉蓄热室传热数学模型可为热风炉的设计提供依据,因此,开展热风炉蓄热室传热数学模型研究具有重要意义。
     通过对热风炉传热特点的分析,建立高炉热风炉蓄热室传热数学模型。传热数学模型的研究主要围绕热风炉的设计和校核计算进行,包括稳态传热数学模型和非稳态传热数学模型。稳态传热数学模型主要用于解决设计计算问题,涉及燃料燃烧和设计计算模型,可根据蓄热室的整体传热计算确定热风炉尺寸、蓄热面积、蓄热室半径等;非稳态传热数学模型包括柱坐标系下的一维非稳态传热数学模型,以及直角坐标系和柱坐标系下的二维非稳态传热数学模型,通过计算温度场的分布特征来进行热风炉的校核计算,判别热风炉设计的合理性,以及调整设计参数来满足设计要求。
     采用混合有限差分算法对一维非稳态传热数学模型的微分方程进行差分,采用追赶法(TDMA算法)对数学模型进行数值求解,使得计算精度比基于显式差分或隐式差分的求解方法更高;采用交替隐式差分法对二维非稳态传热数学模型进行差分后,采用TDMA算法进行模型的数值求解,克服了其它求解方法的稳定性受时间步长限制的不足。
     与文献中的应用实例对比分析来验证热风炉蓄热室传热数学模型及求解方法的正确性。以文献中给定的燃料种类、燃料成分、蓄热室内气体流速、格砖物性等参数为输入参数,进行的设计计算,得到的热风炉尺寸、蓄热面积与文献结果基本吻合;相应的校核计算得到了热风炉蓄热室内格砖、烟气和热风的温度分布情况,计算结果与文献基本吻合,表明建立的模型和求解方法是正确有效性。
     因此,本文建立的热风炉蓄热室传热数学模型可为热风炉的设计提供依据,并能为热风炉设计优化提供手段。
Hot stove is one of the most important equipments in the modern blast furnace ironmaking process, and its task is to supply hot air to the blatst fiirnce steadily. Building suitable hot stove can improve the effieciecy of heat transfer and the temperature of the entering gas and reduce coke ration, increase the yield of the blast furnace and decrease the cost of ironmaking, and produce huge economic benefits. Calculation of heat transfer in the regenerator of the hot stove is crucial to the design of the hot stove, which can be based on the heat transfer mathematical model of the regenerator, so the research of the heat transfer mathematical model has important signifinace.
     Analyzing the heat transfer characteristics of the hot sove, the heat transfer mathematical model of the regenerator is buildt, the research of this model is mainly to design the hot stove and verify the resluts .There are two models: the steady heat transfer mathematical model and the non-steady heat transfer mathematical model. The steady model includes the mathematical model of fuel combustion calculation and the mathematical model of design calculation, the models are mainly to slove the the problems of size of the hot stove, area and the radius of the regenerator etc; the non-steady model includes one-dimensional non-steady model in cylindrical coordinates and two-dimensional non-steady model in rectangular and cylindrical coordinates, checking whether the design of the hot stove is suitable by observing the distribution of the temperature, and adjusting the design parameters to meet the design requirements.
     On the basis of the mixed finite difference algorithm is used for the differential equation of the one-dimensional heat transfer mathematical model, adopting the TDMA algorithm to numerically solve the models to abtain a higher accuracy of the calculation than the solution methods of explicit difference or implicit difference; the interleaving implicit difference is used for the two-dimensional non-steady, adopting the TDMA algorithm to numerically solve the model, and overcome the defects of time and stability limits of the other solution methods.
     Comparatively analyzing applied examples in the literatures to verify the accuracy of the heat transfer mathematical model of the regenerator and the solution method. Material variety, fuel composition, gas flow rate in regenerator, physical properties of the lattice brick and so on given by the literatures are used as the inputting parameters to do the design calculation, and the size of the hot stove, area of heat storage are consist with the literatures;corresponding checking calculations are done to get the tempreture distribution condition of the lattice brick, smoke, hot air in regenerator of the hot stove, the results are consist with the literatures, so from the research results mentioned above, it is obvious to find that the models and the solution method are corrent.
     Therefore, the heat transfer mathematical models in the regenerator of the hot stove in this thesis can provide evidences for the design of the hot stove, and provide means for designing optimization of the hot stove.
引文
[1]王维兴.高风温对高炉炼铁的重要作用[J].金属世界,2004,(6):29,30.
    [2]《炼铁设计参考资料》编写组.炼铁设计参考资料[M].北京:冶金工业出版社,1975.
    [3]项钟庸.郭庆弟.蓄热式热风炉[M].北京:冶金工业出版社,1988.
    [4]卫计刚,阮根基,杨志荣.太钢4号高炉提高煤比实践[J].炼铁,2006,25(5):33-35.
    [5]邢改兰.热风炉蓄热室传热过程研究[A].北京:北京科技大学硕士学位论文,2003.
    [6]刘全兴.高炉热风炉操作与煤气知识问答[M].北京:冶金工业出版社,2005.
    [7]王维兴.高风温对高炉炼铁的重要作用[J].金属世界,2004,(6):29,30.
    [8]我国高炉热风炉新技术应用的回顾与展望.http://www.cncscs.com/news_admin/htmlnews/20070305/9808101938.html.2008-4-14.
    [9]舒军.高温内燃式热风炉的发展及特征[J].炼铁,1998,17(1):12-15.
    [10]倪苹魏,恩发,刘彦波.邯钢4号高炉顶燃式热风炉的设计[J].炼铁,1999,12(18):35-36.
    [11]王中乾.高炉工艺过程优化研究[A].重庆:重庆大学硕士学位论文,2002.
    [12]吴存宽,吴彬林.高温空气燃烧技术的发展与应用[J].工业炉,2003,5(25):13-19.
    [13]李洪宇.蓄热室热工特性及优化设计研究[A].云南:昆明理工大学硕士学位论文,2005.
    [14]韩建臻.酒钢高炉操作制度[A].西安:西安建筑科技大学硕士学位论文,2003.
    [15]吴晓松,冯向工,陈万明,等.宣钢5号高炉强化冶炼实践[J].河北冶金,2006,(4):16-18.
    [16]潘志生.梅山2号高炉内燃式热风炉设计运行实践[J].炼铁,2006,25(6):36-38.
    [17]李占国,林左华.唐钢2560m3高炉热风炉设计[J].钢铁,2001,23(1):11-14.
    [18]武振宇,崔文月,杨志国,等.唐钢1号高炉开炉及快速达产实践[J].炼铁,2006,25(3):49-51.
    [19]窦力威,刘泉兴.鞍钢提高风温技术的开发与应用[J].炼铁,2000,19(6):15-32.
    [20]吴晓松,冯向工,陈万明,等.宣钢5号高炉强化冶炼实践[J].河北冶金,2006,(4):16-18.
    [21]钱凯,胡雄光,韩庆.首钢顶燃式热风炉冷风烟气匹配技术.中国金属学会能源与热工2000学术年会论文集[C],北京:冶金工业出版社,2000:534-538.
    [22]倪苹魏,恩发,刘彦波.邯钢4号高炉顶燃式热风炉的设计[J].炼铁,1999,12(18):35-36.
    [23]张向国,于国华,马平胜.莱钢1000m^3高炉采用的新技术[J].山东冶金,2006,28(4):8-10.
    [24]唐兴智,唐冬宁,汪浩,等.高温长寿型顶燃式热风炉的应用[J].工业加热,2005,5(34):44-47.
    [25]方平.包钢1#高炉热风炉的高风温及长寿技术介绍[J].钢铁研究,1999,(106):3-5.
    [26]赵志群,梁晓乾,张继成.马钢300m~3高炉高风温实践[J].包头钢铁学院学报,1999,18(B09):294-296.
    [27]林成城,徐宏辉.热风炉高风温新技术开发[J].钢铁,2005,11(40):9-12.
    [28]赵昌武,傅连春.武钢内燃式高风温热风炉新技术[J].钢铁,2001,36(7):4-9.
    [29]吴秋延.袁熙志.蒋钧,等.攀钢1号高炉热风炉的设计及生产实践[J].炼铁,2005,24(3):34-35.
    [30]郭存莲,刘世儒.邢钢热风炉改造设想方案[J].炼铁,1994,13(6):50-51.
    [31]周耀昌.宝钢3号高炉“热风炉操作预测模型”的探讨[J].宝钢技术,1994,(3):56-60.
    [32]卫计刚,阮根基,杨志荣.太钢4号高炉提高煤比实践[J].炼铁,2006,25(5):33-35.
    [33]叶冰峰.八钢热风炉提高风温的途径及措施[J].新疆钢铁,2004,4(76):11-12,15.
    [34]周殿华,赵合安,杜志超.安钢300m3高炉使用高风温实践[J].河南冶金,1996,(6):31-34.
    [35]叶冰峰.380m~3高炉热风炉系统设计简述[J].新疆钢铁,1997,4(64):7-9.
    [36]唐兴智,唐冬宁,汪浩,等.高温长寿型顶燃式热风炉的应用[J].鞍钢技术,2005,(5):11-15.
    [37]伍秀成,张兴华.柳钢高风温热风炉的特点及生产实践[J].炼铁,1998,11(17)增刊:40-41.
    [38]张法波,冯俊小,高波,等.填充球蓄热室热工特性的研究进展[J].工业加热,2006,3(35):14-16.
    [39]杨俊,杜涛,蔡九菊,等.国外热风炉发展综述[J].沈阳工程学院学报(自然科学版),2005,1(4):18-20.
    [40]张宗诚,苏辉煌.热风炉不稳定传热的数学模型及其求解[J].化工冶金,1982,(1):19-30,32.
    [41]张宗诚,苏辉煌.热风炉传热数学模型的应用—集中不同操作制度的剖析[J].化工冶金,1983,(3):59-66.
    [42]Hausen H,Binder JA.Vereinfachte berehnung der warmeubertragung burch strahlung voneinem gas an eine wand[J].Int J Heat & Mass Transfer,1962,5:317-327.
    [43]Solomentsev,SL.Industrial investigation of a system for controlling the consumption of gas for the purpose of intensifying the heating up of hot blast stove checkers[J].Metallurg,1984,10:18.
    [44]Willmot A J.Digital computer simulation of a thermal regenerator[J].Int J Heat and Mass transfer,1964,(7):1291-1302.
    [45]Willmot A J.The regeneration heat exchanger computer representation[J].International Journal of Heat and MassTransfer,1969,12:997-1014.
    [46]Willmot A J.Digital computer simulation of a thermal regenerator[J].Int J Heat and Mass transfer,1964,(7):1291-1302.
    [47]Kwakemaak H,Stribos RCW,Tijssen P.Optimal operation of thermal regenerators [J].IEEEtrans.on Automatic Transfer,1969,14:728-731.
    [48]Hinchcliffe C,Willmott AJ.Lumped heat-transfer coefficients for thermal regenerators[J].Int.J.Heat Mass Transfer,1981,24(7):1229-1236.
    [49]Mauke K.R,Howse J.W.Model based control a thermal regenerator.Part Ⅰ:dynamic model[J].Computer &Chemical Engineering,2000,24:2519-2531.
    [50]金岩,陈巍,刘泉兴.高炉煤气和助燃空气“双预热”提高风温的研究[J].钢铁,1998,33(6):54-56.
    [51]张胤,刘中兴,贺友多.热风炉蓄热室内传热过程计算[J].包头钢铁学院学报,2001,20(1):4-7.
    [52]陈义胜,张捷宇,那树人,等.热风炉蓄热室内气流分布的计算机模拟研究[J].钢铁,2000,35(8):11-14.
    [53]陈义胜,张捷宇,那树人,等.热风炉冷风分布的计算机模拟研究(Ⅰ)[J].包头钢铁学院学报.1999,18(1):16-21.
    [54]陈义胜,张捷宇,那树人,等.热风炉冷风分布的计算机模拟研究(Ⅱ)[J].包头钢铁学院学报,1999,18(2):108-110.
    [55]聂红,李文忠,谢安国.热风炉蓄热室温度场热态模拟[J].鞍山钢铁学院学报,2001,24(2):118-122.
    [56]罗海兵,陈维汉.蓄热式换热器传热过程的数值模拟[J].化工装备技术,2004,4(25):24-29.
    [57]陈兰,唐恩.热风炉蓄热室温度场分布的数值模拟[J].炼铁,2004,23(6):38-40.
    [58]罗圣,鲁俭,陈义胜,等.蓄热式热风炉操作制度的研究[J].包头钢铁学院学报,2005,23(2):107-112.
    [59]我国高炉发展的概况.http:?/info.datang.net/G/G0245.htm.2008-4-10
    [60]Butterfield P,Schofield JS,Young PA.Hot blast stoves(Part Ⅰ)[J].J.Iron & Steel Institute,1961,199:229-240.
    [61]Hausen H.Uber die theorie des warearstausches in regeneration[J].Zangew.Math Mech,1929,3:173-200.
    [62]Hausen H.Naherbungsverfahren zur berechung das wareastausches in regeneration[J].Zangew.Math Mech,1931,2:105-114.
    [63]Patankar S V.Numerical transfer and fluid[M].Flow.USA:McGraw HILL Book Company,1990.
    [64]Tamura N,Nose K,Konishi M.A modeling approach to the energy saving of hot blast stove system[J].Ironmaking Proceeding,1986,45:459-554.
    [65]Beentjes PA,Wokke S,van Breda J.Benefits of automation of hot blast stove operation[J].Iron and Steel Engineer,1991,68(3):45-49.
    [66]崔金鹤.高炉冷却壁热态实验及温度场模拟[A].河南:郑州大学硕士学位论文,2006.
    [67]薛庆国.高炉炉墙的传热学研究[A].北京:北京科技大学博士学位论文,2001.
    [68]周筠清.传热学[M].北京:冶金工业出版社,1992.
    [69]夏敏文.热能工程设计手册[M].北京:化学工业出版社,1998.
    [70]陶文铨.传热学[M].北京:高等教育出版社,2001.
    [71]陶文铨.数值传热学[M].西安:西安交通大学出版社,1988.
    [72]杨虎,黄征.球式热风炉耐火球床参数选择[J].新疆钢铁,2005,(2):39-41.
    [73]银汉.现代热风炉设计的若干问题[J].炼铁,2002,21(2):27-30.
    [74]郭存莲,刘世儒.新型五孔格砖的采用及前景[J].河北冶金,1994,(12):6-10.
    [75]杨红芸,才子奇.热风炉设计不应片面追求蓄热面积[J].山西冶金,1999,(2):14-15.
    [76]谢振远,申合琴.热风炉高效单孔格子砖的设计[J].炼铁,1994,13(1):47-49.
    [77]邢改兰,刘应书,吴启常.格子砖热工特性对蓄热室内换热的影响[J].矿冶,2003,9(12):41-45.
    [78]刘高高.热风炉前置预热工艺设计与研究[A].四川:四川大学硕士学位论文,2004.
    [79]林亢.用经验公式代替计算蓄热室换热面积[J].中国建材装备,1998,(1):15.
    [80]张立麒,郑楚光,汪海.热风炉蓄热室内温度场的简化模型[J].冶金能源,2004,23(2):23-26.
    [81]张宗诚,苏辉煌.热风炉不稳定传热的数学模型及其求解[J].化工冶金,1982,(1):19-30,32.
    [82]蒋绍坚,曹小玲,汪洋洋等.蜂窝陶瓷蓄热体传热数学模型及传热系数求解[J].工业炉,2001,23(3):50-53.
    [83]代朝红,温治,冯俊小.蓄热式烧嘴传热过程数学模型[J].工业加热,2002,31(5):35-38.
    [84]蔡九菊,饶荣水,于娟,等.陶瓷球蓄热室传热特性的研究[J].冶金能源,1998,17(5):39-44.
    [85]Launder B E,Spalding D B.Lectures in mathematical models of turbulence[M].Academic Press,London,1972.
    [86]Yakhot V,Orzag S A.Renormalization group analysis of turbulence:basic theory[J].J Scient Comput,1986(1):3-11.
    [87]Gary cornell著,希望图书创作室译.Visual Basic 5.0从入门到精通[M].科学出版社,1998.
    [88]田禾.关于二维非稳态导热的可视化研究[A].天津:天津师范大学硕士论文,2003.
    [89]成兰伯.高炉炼铁工艺及计算[M].北京:冶金工业出版社,1990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700