用户名: 密码: 验证码:
甲醇气相脱水制二甲醚反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国石油和天然气资源紧缺,给新型煤化工带来了新的机遇,二甲醚(DME)是煤化工产业链下游的重要产品,随着工业化技术的完善及煤化工多联产技术的成熟,作为液化石油气、柴油的替代品和环保型化工原料越来越引起人们的关注,被誉为“21世纪的清洁燃料”
     二甲醚由气相甲醇脱水合成的工艺操作简易、可连续运行、易于大型化。该工艺原理是使甲醇蒸气在固定床反应器中通过固体酸性催化剂,进行气固相反应,然后生成二甲醚。该反应的动力学研究可以指导反应器的设计放大,反应器的数学模拟也可以为优化操作提供参考依据。
     首先对两种甲醇脱水催化剂的催化性能进行比较,优选出了性能较好的催化剂MD-2。建立了在MD-2催化剂上甲醇气相脱水生成二甲醚的本征动力学模型。在此动力学模型的基础上,建立了甲醇脱水催化剂上的扩散-反应模型,探讨了一定条件下颗粒内甲醇浓度分布的情况。针对某22万吨/年甲醇制二甲醚反应器以及新型年产40万吨二甲醚管壳型反应器,建立反应器数学模型并通过模拟计算讨论了不同操作条件以及不同催化剂颗粒尺寸对反应器性能的影响。
     在压力0.1-1.0MPa,温度240-340°C,空速为0.9-6.0h-1等操作范围内,通过等温积分反应器对粒度为80~100目的γ-A12O3催化剂上甲醇制取二甲醚反应的本征动力学进行了研究,建立了以各组分分压表示的Langmuir-Hinshelwood解离吸附本征动力学模型。使用Levenberg-Marquardt方法进行参数估值,获取本征动力模型中的参数。统计检验表明,该本征动力学模型是适宜的。
     针对工业颗粒催化剂,建立了气相甲醇脱水生成二甲醚反应的二维扩散-反应模型。使用有限元法对模型求解,得到了脱水催化剂内扩散效率因子。通过实验测定了宏观反应速率数据,对扩散-反应模型进行了检验。结果表明,甲醇内扩散效率因子的实验值和计算值的平均绝对误差为7.72%,说明二维扩散-反应模型计算甲醇气相脱水生成二甲醚反应的内扩散效率因子是可行的。
     在实验条件范围内,甲醇内扩散效率因子在0.57~0.83之间,表明内扩散对反应有一定程度的影响,通过模型计算得到催化剂粒内甲醇的浓度分布。
     针对某22万吨/年甲醇制二甲醚反应器,建立了多段绝热段间换热固定床数学模型,通过比较发现,工业反应器的实际床层温度值和模拟所得催化剂床层温度值吻合良好,证明该反应器数学模型是可靠的。讨论了进口甲醇温度、进口甲醇流量、催化剂颗粒大小等参数的变化对工业反应器中甲醇气相脱水生成二甲醚反应结果和催化床轴向温度分布的影响,内扩散效率因子随床层高度分布的情况,便于优化该工业反应器的操作。
     提出了40万吨/年二甲醚大型管壳反应器,建立了气相甲醇脱水生成二甲醚的管壳反应器的数学模型,模拟计算管壳反应器内甲醇和二甲醚的浓度分布、床层轴向的温度分布以及甲醇内扩散效率因子随床层的分布。
     根据管壳反应器的数学模型,探讨了不同操作条件对该反应器的影响。在进口温度250~290℃、甲醇流量2000~3600kmol/h、压力0.7~1.5MPa、沸腾水温度270~310℃范围内,反应器进口温度对反应结果影响不大;随着甲醇流量的增加,管壳型反应器中催化剂床层的最高温度、出口二甲醚摩尔分率和甲醇转化率都略有减小,但二甲醚的日生产量明显增加。反应器进口压力升高,对催化剂床层的最高温度、出口二甲醚摩尔分率、甲醇转化率以及二甲醚的日产量影响并不明显。沸腾水温度对于反应的甲醇转化率和催化剂床层最高温度的影响均较为显著。随着沸腾水的温度的上升,反应器出口二甲醚摩尔分率、甲醇转化率以及二甲醚的日产量都增加,同时床层热点温度迅速上升。随着催化剂颗粒的增大,床层最高温度呈下降趋势,反应器出口二甲醚的摩尔分率、甲醇转化率以及二甲醚的日产量都减小。
The shortage of oil and gas brings development opportunities to the new coal chemical industry in our country. With the improvement of the industrial technology and maturity of coal chemical industry poly-generation technology, dimethyl ether can replace liquefied petroleum gas and diesel oil as an environmental friendly chemical raw material. It is an important downstream product which has been hailed as "clean fuel of the21century" of the coal chemical industry chain.
     Gas phase methanol dehydration to dimethyl ether is an easy operating and continuous process which is suitable to large-scale production. The basic principle is that the heterogeneous reaction of methanol steam takes place in fixed bed catalytic reactor over solid acid catalyst and methanol steam is dehydrated to dimethyl ether. The kinetics of methanol dehydration to dimethyl ether reaction and mathematical model of reactor can be used to optimize the operation and guidance the design and magnifying of the reactor.
     The catalytic performance of two kinds of methanol dehydration catalysts was compared and MD-2was selected as the better catalyst. An intrinsic kinetic equation was developed over catalyst MD-2. The isothermal diffusion-reaction model was established based on previous kinetic model, the methanol concentration distribution in the catalyst particle under certain conditions was discussed. According to industrial dimethyl ether reactor of220,000t/y dimethyl ether and a new tube and shell reactor of400,000t/y dimethyl ether, reactor models were developed, the influence of different operation conditions and catalyst particle sizes on the performance of reactor was investigated.
     Dehydration of methanol to dimethyl ether over a commercial γ-AI2O3catalyst was studied using an isothermal integral reactor at the temperature interval240~340℃, liquid hourly space velocity (LHSV) of0.9~6.0h-1, pressures between0.1and1.0MPa. An intrinsic kinetics equation based on the mechanism of Langmuir-Hinshelwood dissociative adsorption was developed for the dehydration reaction. The parameters of the kinetic model were obtained by the levenberg-marquardt method. The residual error distribution and statistic test showed that this intrinsic kinetic model was reliable and acceptable.
     A two-dimensional isothermal diffusion-reaction model was established for cylindrical shaped industrial catalyst based on previous kinetic model. The internal effectiveness factor and the concentration distribution of methanol in the catalyst were obtained by the finite element method. The reaction-diffusion model was verified by the global kinetics data. The calculation data agreed well with the experimental data and the average absolute value of the comparative error is7.72%, so the model can be used to calculate the internal effectiveness factor of the cylindrical shaped methanol dehydration catalyst.
     The range of the internal effectiveness factor of methanol is0.57-0.83under experimental conditions, which means that the reaction was influenced to some extent by internal diffusion. The methanol concentration distribution in catalyst can be obtained by diffusion-reaction model.
     According to the reactor of220,000t/y dimethyl ether, one-dimensional heterogeneous model for the staged adiabatic fixed bed reactor was derived to simulate and discuss the influence of different operation condition. The comparison of simulated bed temperatures with the real bed temperatures tested from the commercial methanol dehydration reactor shows good agreement. This study reveals that the heterogeneous one dimensional reactor model is suitable for simulating this industrial reactor. The influence of different operation conditions such as inlet methanol temperature, inlet methanol flow rates and catalyst particle sizes on the performance of reactor and the axial temperature profile of catalyst bed was investigated. The distribution of the internal effectiveness factor for catalyst particle along the catalytic bed height was also obtained to optimize the operation of this industrial reactor.
     A tube-shell fixed-bed reactor of400,000t/y dimethyl ether was proposed, the mathematical model for tube and shell reactor was established based on previous intrinsic kinetics and diffusion-reaction model. The concentration distribution of the methanol and dimethyl ether, axial temperature profile of the catalyst bed and the distribution of the internal effectiveness factor for catalyst particle along the catalytic bed height can be caluculated by this reactor model.
     The reactor performance was simulated at the inlet temperature interval250-290℃, methanol flow rate of2000~3600kmol/h, boiling water temperature interval270~310℃, pressures between0.7and1.5MPa based on the tube-shell reactor model. The inlet temperature was proved to have little effect on the reactor performance. The hot temperature of catalyst bed, outlet mole fraction of dimethyl ether and methanol conversion were all decreased slightly with the increase of the methanol flow rate, but the daily capacity of dimethyl ether was increased obviously. The increase of the inlet pressure had little effect on the hot temperature of catalyst bed, outlet mole fraction of dimethyl ether, methanol conversion and the daily capacity of dimethyl ether. The boiling water temperature had significant influence on the methanol conversion and the hot temperature of the catalyst bed. With the increase of the boiling water temperature, the outlet mole fraction of dimethyl ether, methanol conversion and the daily capacity of dimethyl ether were all increased. The hot temperature of catalyst bed is on the decline with the increase of the catalyst particle size. The outlet mole fraction of DME, methanol conversion and the daily capacity of dimethyl ether all decreased due to the increase of the catalyst particle size.
引文
[1]2012年石油和化学工业运行情况分析及2013年形势展望[R].北京:中华人民共和国工业和信息部,2013.
    [2]林伯强.中国能源思危[M].北京:科学出版社,2012.
    [3]李斌,符毅.能源与环境约束下的经济增长[J].生态经济.2008,8:62-65.
    [4]中国能源中长期发展战略研究项目组.中国能源中长期(2030、2050)发展战略研究.综合卷[M].北京:科学出版社,2011.
    [5]乔治.奥拉,阿兰.戈佩特,苏耶.普拉卡西.跨越油气时代:甲醇经济[M].北京:化学工业出版社,2011.
    [6]Moradi G R, Nosrati S, Yaripor R. Effect of the hybrid catalysts preparation method upon direct synthesis of dimethyl ether from synthesis gas[J]. Catal Commun.2007, 8(3):598-606.
    [7]Sivebaek I M, Jakobsen J. The viscosity of dimethyl ether[J]. Tribology International. 2007,40:652-658.
    [8]Semelsberger T A, Rodney B, Green H L. Dimethyl ether (DME) as an alternative fuel[J]. Journal of Power Sources.2006,156:497-511.
    [9]Arcoumanis C, Bae C, Crookes R. The potential of dimethyl ether(DME) as an alternative fuel for compression-ignition engines:A review[J]. Fuel.2008,87: 1014-1030.
    [10]Alam M, Fujita O, Ito K. Performance of NOx reduction catalysts with simulated dimethyl ether diesel engine exhaust gas[J]. Proc. Inst. Mech. Eng. Part A:J. Power Energy.2004,218:89-95.
    [11]Sorenson S C. Dimethyl ether in diesel engines:progress and perspectives[J]. J. Eng. Gas Turbines, Power Trans. ASME.2001,123:652-658.
    [12]Rouhi A M, Amoco H. Develop dimethyl ether as alternative diesel fuel[J]. Chem. Eng. News.1995.73:37-39.
    [13]Lei Z G, Zou Z W, Dai C N, et al. Synthesis of dimethyl ether(DME) by catalytic distillation[J]. Chemical Engineering Science.2011,66:3195-3203.
    [14]赵贤俊.二甲醚生产工艺技术现状及发展趋势[J].化学工业.2008,(6):26-30.
    [15]应卫勇.煤基合成化学品[M].北京:化学工业出版社,2010.
    [16]In M Y, Su H P, Hyun G R, et al. Investigation on the fuel spray and emission reduction characteristics for dimethyl ether (DME) fueled muti-cylinder diesel engine with common-rail injection system[J]. Fuel Process. Technol.2011, (92):1280-1287.
    [17]Arcoumanis C. Bae C, Crookes R, et al. The potential of dimethyl ether (DME) as an alternative fuel for compression-ignition engines:a review[J]. Fuel.2008, (87): 1014-1030.
    [18]Basu A, Fleisch T H, Mccarthy C I, et al. Process and fuel for spark ignition engines[P]. US 5632786.
    [19]Basu A, Wainwright J M. DME as a power generation fuel:performance in gas turbines. PETROTECH-2011 Conference, India,2001.
    [20]丁百全,房鼎业,孙岩.一种混相法甲醇脱水制二甲醚的方法[P].中国,专利公开号:CN1613840,2005.
    [21]崔世纯,胡立智,朱东茂.甲醇气相催化剂脱水制二甲醚工艺[J].石油化工.1999,28:43-45
    [22]林荆,谢光全,卢永祥等.由甲醇生产二甲醚的方法fP].中国,专利公开号:CN1125216,1996.
    [23]Jia M,Li W, Xu H,et al.The effect of additives on Cu/HZSM-5 catalyst for DMEsynthesis[J].Catal.Lett.2004,84:31-35.
    [24]Madsen J. Process for the preparation of dimethyl ether[P]. US 7652176,2010.
    [25]Topp-Jongensen J. Process for the preparation of catalysts for use in ether synthesis[P]. US 4536485,1985.
    [26]Slaugh L H. Catalyst for the preparation of dimethyl ether[P]. US 4375424,1983.
    [27]Hu Y F, Nie Z G, Fang D Y. Simulation and model design of pipe-shell reactor for the direct synthesis of dimethyl ether form syngas[J]. J Nat Gas Chem.2008,17:195-200
    [28]刘殿华,华婞,房鼎业.绝热管壳型固定床二甲醚合成反应器的一维数学模型[J].天然气工业.2008,28:137-139.
    [29]Cheng C Y, Zhang H T, Ying W Y, et al. Intrinsic kinetics of one-step dimethyl ether synthesis from hydrogen-rich synthesis gas over bi-functional catalyst[J]. Korean J. Chem. Eng.2011,28:1511-1517.
    [30]Lu W, Teng L, Xiao W. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor[J]. Chem. Eng. Sci.2004,59:5455-5464.
    [31]刘殿华,徐江,张海涛等.三相搅拌反应釜中合成气直接合成二甲醚[J].化工学报.2002,53(1):103-106.
    [32]郭俊旺,牛玉琴,张碧江.气-液-固三相合成二甲醚技术进展[J].天然气化工 1996,21(4):38-43.
    [33]赵玉龙,张碧江.高压搅拌釜中H2、CO在不同液相介质中的溶解度和体积传质系数的研究[J].化学反应工程与工艺.1996,12(2):189-195.
    [34]Ogawa T. Inoue N. Shikada T, et al. Direct dimethyl ether synthesis[J]. J. Nat. Gas Chem.2003.23(9):921-924.
    [35]赵贤俊.二甲醚生产工艺技术现状及发展趋势[J].化学工业.2008.26(6):26-30.
    [36]聂兆广,刘宏伟,刘殿华等.三相床中含氮合成气一步法合成二甲醚的工艺条件[J].华东理工大学学报.2004,30(1):11-14.
    [37]Guo J W, Niu Y Q, Zhang B J. Global kinetics study of LPDME process from syngas[J]. J. Nat. Gas Chem.2000,9(4):331-340.
    [38]王继元,任晓乾,曾崇余.CO2加氢合成二甲醚过程的热力学分析fJ].石油与天然气化工.2004,33(5):309-312.
    [39]柯思明,刘殿华,曹发海等.三相搅拌釜反应器中二甲醚加氢合成二甲醚[J].天然气化工.2000,25(2):15-18.
    [40]刘志坚,廖建军.二氧化碳加氢合成二甲醚(CuO-ZnO-Al2O3/HZSM-5)催化剂的研究[J].工业催化.2002,10(2):46-49.
    [41]杨燕,夏代宽,唐文龙.二氧化碳催化加氢合成二甲醚的研究[J].工业催化.2002,10(3):42-46.
    [42]黎汉生,任飞,王金福.浆态床一步法二甲醚产业化技术开发研究进展[J].化工进展.2004,23(9):921-924.
    [43]Jutharat K, Piyasan P, Joongjai P, et al. Dehydration of methanol to dimethyl ether over nanocrystalline Al2O3 with mixed γ-and x-crystalline phases[J]. Catal. Commun.2008, 9:1955-1958.
    [44]Raoof F, Taghizadeh M, Eliassi A, et al. Effects of temperature and feed composition on catalytic dehydration of methanol to dimethyl ether over y-alumina[J]. Fuel.2008,87: 2967-2971.
    [45]Pop G, Bozga G, Ganea R, et al. Methanol conversion to dimethyl ether over H-SAPO-34 catalyst[J]. Ind. Eng. Chem. Res.2009,48 (15):7065-7071.
    [46]Vishwanathan V, Jun K W, Kim J W, et al. Vapour phase dehydration of crude methanol to dimethyl ether over Na-modified H-ZSM-5 catalysts[J]. Appl. Catal. A:General. 2004,276:251-255.
    [47]Vishwanathan V, Roh H S, Kim J W, et al. Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether[J]. Catal. Lett. 2004,96:23-28.
    [48]Kim S D, Baek S C, Lee Y J, et al. Effect of γ-alumina content on catalytic performance of modified ZSM-5 for dehydration of crude methanol to dimethyl ether[J]. Appl. Catal. 2006,309:139-143.
    [49]Kim S M, Lee Y J, Bae J W, et al. Synthesis and characterization of a highly active alumina catalyst for methanol dehydration to dimethyl ether[J]. Appl. Catal. A:General. 2008.348:113-120.
    [50]全基元,卢炫锡.从甲醇制备二甲醚的方法[P].中国,专利公开号:CN 1741980,2006.
    [51]Semelsberger T A, Ott K C, Borup R L, et al. Role of acidity on the hydrolysis of dimethyl ether (DME) to methanol[J]. Appl. Catal. B:Environ.2005,61:281-287.
    [52]Kumar V S, Padmasri A H, Satyanarayana C V. et al. Nature and mode of addition of phosphate precursor in the synthesis of alumninum phosphate and its influence on methanol dehydration to dimethyl ether[J]. Catal. Lett.2006,7:745-751.
    [53]Ivanova S, Vanhaecke E, Louis B, et al. Efficient synthesis of dimethyl ether over HZSM-5 supported on medium-surface-area β-SiC foam[J]. Chem. Sus. Chem.2008,1: 851-857.
    [54]Mollavali M, Yaripour F, Mohanmmadi S, et al. Relationship between surface acidity and activity of solid-acid catalysts in vapour phase dehydration of methanol[J]. Fuel. Process. Technol.2009,90:1093-1098.
    [55]Khandan N, Kazemeini M and Aghaziarati M. Determining an optimum catalyst for liquid-phase dehydration of methanol to dimethyl ether[J]. Appl. Catal. A:General. 2008,349:6-12.
    [56]崔世纯,胡力智,朱东茂等.甲醇气相催化脱水制二甲醚工艺[J].石油化工.1999,28:43-45.
    [57]蒋山.SUZ-4分子筛上二甲醚制备的研究[D].大连:大连理工大学,2004.
    [58]常俊石,李金来,蒋建明等.宽温型甲醇脱水制二甲醚催化剂及其制备方法[P].中国,专利公开号:CN101380585,2009.
    [59]解峰,黎汉生,赵学良等.甲醇在活性A1203催化剂表面的吸附与脱水反应[J].催化学报.2004,25:403-408.
    [60]沈检一,傅玉川.用于合成二甲醚的改性氧化铝催化剂[P].中国,专利公开号CN1613558,2005.
    [61]慈志敏,储伟.气相催化法甲醇脱水合成二甲醚的工艺和催化剂研究[J].四川大学学报.2004,36:28-31.
    [62]夏建超,毛东森.氟改性对氧化铝酸性及催化性能的影响[J].石油化工.2005,34:445-446.
    [63]谭猗生,赵霞.复合催化剂中H-ZSM-5酸性对合成气制二甲醚的影响[J].分子催化.1999,13:246-252.
    [64]瞿伦玉,龚剑H4SiW12O40-La2O3/γ-A12O3催化甲醇脱水制备二甲醚[J].分子科学学报,2001,17:90-103.
    [65]许磊,刘忠明,朱书魁.一种用于甲醇制备二甲醚的均温型催化剂及用法[P].中国,专利公开号CN1820849,2006.
    [66]Xu M T. Lunsford J H, Goodman D W, et al. Synthesis of dimethyl ether (DME) from methanol over solid-acid catalysts[J]. Appl. Catal. A:General.1997.149:289-301.
    [67]Eliassi A, Savadkoohi L, Kargari A. Effects of various process parameters on temperature profile of adiabatic fixed bed reactor for production of dimethyl ether (DME) from methanol[J]. Chem. Eng. Comm.2007,194:1495-1502.
    [68]Fu Y C, Hong T, Chen J P, et al. Surface acidity and the dehydration of methanol to dimethyl ether[J]. Thermochimica Acta.2005,434:22-26.
    [69]汤红池,张海涛,应卫勇等.甲醇气相脱水制二甲醚催化剂[J]华东理工大学.2011,37:133-138.
    [70]李荣,张梁,张海涛等.甲醇气相脱水制二甲醚本征动力学研究[J].天然气化工2009,34:9-12.
    [71]吴萍,程程远,张海涛等.甲醇在加压条件下脱水生成二甲醚的动力学研究[J].计算机与应用化学.2008,25:1207-1210.
    [72]房鼎业,薛从军.甲醇在CM-3-1催化剂上脱水生成二甲醚的本征动力学[J].燃料化学学报.1997,25:271-276.
    [73]王晓东,张梁,张海涛等.甲醇气相脱水制二甲醚宏观动力学研究fJ].天然气化工2010,35:1-12.
    [74]Kallo D, Knozinger H. The dehydration of alkohol via an aluminumoxide[J]. Chem. Ing. Tech.1967,39:676-680.
    [75]Figueras F, Nohl A, Mourgues L, et al. Dehydration of methanol and tert-butyl alcohol on silica-alumina[J]. Trans. Faraday Soc.1971,67:1155-1163.
    [76]Schmitz G. Dehydration of methanol over silica-alumina[J]. Chim. Phys.1978,75: 650-655.
    [77]KlusaEek K, Schneider P. Stationary catalytic kinetics via surface concentrations from transient data methanol dehydration[J]. Chem. Eng. Sci.1982,37:1523-1528.
    [78]Bercic G, Levee J. Intrinsic and global reaction rate of methanol dehydration over y-Al2O3 pellets[J]. Ind. Eng. Chem. Res.1992,31:1035-1040.
    [79]Sinicyna O A, Cumakova V N, Moskovskaya I F. Dehydration of methanol to dimethyl ether on zeolite[J]. Kinet. Catal.1986,27:1160-1162.
    [80]Lu W Z, Teng L H, Xiao W D. Simulation and experiment study of dimethyl ether synthesis from syngas in a fluidized-bed reactor[J]. Chem. Eng. Sci.2004,59: 5455-5464.
    [81]林荆,陈鹏,谢家碧.CM-3-1催化剂上甲醇脱水生成二甲醚的动力学研究[J].天然气化工.1996,21:9-32.
    [82]房鼎业,高崇.甲醇脱水制二甲醚的动力学与催化剂粒内效率因子fJ].华东理工大学学报.1996,22:518-523.
    [83]胡惠民,栗同林.甲醇脱水制二甲醚过程的动力学[J].天然气化工.1990,2:17-20.
    [84]姚佩芳,工少宇,刘国际等.甲醇合成催化剂内扩散效率因子三种模型数值解的比较 I.未中毒催化剂内扩散效率因子[J].燃料化学学报.1993.21(3):245-251.
    [85]程程远,张海涛,应卫勇等.合成气一步法制二甲醚双功能催化剂的内扩散效率 银子[J].华东理工大学学报.2010,36:743-748.
    [86]Pan T S, Zhu B C. Study on diffusion-reaction process inside a cylindrical catalyst pellet[J]. Chem. Eng. Sci.1998,53:933-946.
    [87]Li T, Xu M S, Zhu B C, et al. Reaction-diffusion model for irregularly shaped ammonia synthesis catalyst and its verification under high pressure[J]. Ind. Eng. Chem. Res.2009, 48:8926-8933.
    [88]应卫勇,房鼎业,朱炳辰.C207铜基催化剂常压甲醇分解反应动力学(Ⅱ)催化剂效率因子正交配置解[J].校化学工程学报.1991,5(4):327-333.
    [89]潘天舒,孙启文,房鼎业.甲醇合成平行反应体系催化剂效率因子的求解(Ⅱ)二维有限元法[J].计算机与应用化学.1994,11:220-224.
    [90]沈琛,马宏方,应卫勇.甲醇脱水制二甲醚内冷管式反应器数学模拟[J].计算机与应用化学.2011,28:139-142.
    [91]Bercic G, Levee J. Catalytic dehydration of methanol to dimethyl ether, kinetic investigation and reactor simulation[J]. Ind. Eng. Chem. Res.1993,32:2478-2484.
    [92]Fazlollahnejad M, Taghizadeh M, Eliassi A. Experimental study and modeling of an adiabatic fixed-bed reactor for methanol dehydration to dimethyl ether[J]. Catalysis Kinetics and Reactors.2009,17:630-634.
    [93]Hosseini S Y, Nikou. Modeling of industrial fixed abed reactor to produce dimethyl ether from methanol and determination of optimun operating conditions[J]. Journal of American Science.2012,8:218-225.
    [94]Farsi M, Eslamloueyan R, Jahanmiri A. Modeling, simulation and control of dimethyl ether synthesis in an industrial fixed-bed reactor[J]. Chemical Engineering and Processing:Process intensification.2011,50:85-94.
    [95]Gerhard E, Reactions at solid surfaces[M]. New Jersey:John Wiley & Sons,2009.
    [96]House J E, Principles of chemical kinetics[M]. Oxford:Elsevier's Science & Technology Rights Department,2007.
    [97]Reid R C, Prausnitz J M, Pouling B C. The Properties of gases and liquilds[M]. New York:McGraw Hill,1987.
    [98]朱炳辰.化学反应工程[M].北京:化学工业出版社,2007.
    [99]Fuller N E, Schentter P D, Giddings J C. A new method for prediction of binaary gas-phase diffusion coefficients[J]. Ind. Eng. Chem.1966,58(5):19-27.
    [100]Curtiss C F, Hirschfelder J O. Transport properties of multicomponent gas mixture[J]. J. Chem. Phys.1949,17:553-555.
    [101]Mason E A, Malinauskas A P. B E R. Flow and diffusion of gases in porous media[J]. J. Chem. Phys.1967,46:3199-3216.
    [102]Jackson R. Transport in Porous Catalyst[M]. New York:Elsevier.1977.
    [103]李涛,徐懋生,朱炳辰等.不规则形状A301氨合成催化剂内扩散有效因子[J].化工学报.2002,53(12):1260-1264.
    [104]Finlayson B A. Nonlinear analysis in chemical engineering[M]. New York: McGraw-Hill Co.,1992.
    [105]潘天舒,应卫勇,房鼎业等.多孔催化剂效率因子的多组分扩散模型(V)表面中毒并伴有平衡死区圆柱状催化剂效率因子的有限元解[J].化工学报.45(1):58-64.
    [106]Copelowitz I, Aris R. Communications on the theory of diffusion and reaction[J]. Chem. Eng. Sci.1970,25(5):885-909.
    [107]马沛生等.石油化工基础数据手册-续编[M].北京:化学工业出版社,1993.
    [108]Dixon A G. Heat transfer in fixed beds at very low (<4) tube-to-particle diameter ratio[J]. Ind. Eng. Chem. Res.1997,36:3053-3064.
    [109]王宇,马宏方,应卫勇等.合成气制二甲醚管壳型反应器的二维数学模型与分析[J].过程工程学报.2010,10(5):933-938.
    [110]Ergun S. Fluid flow through packed columns[J]. Chem. Eng. Prog.1952,48:89-94

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700