装备试验评估中的变动统计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着武器装备和各类机电产品复杂度的提高,产品性状在全寿命周期中的动态变化过程也日趋复杂,相应的试验评估手段也更加多样化。这就需要融合多种数据(不同阶段、不同来源)对在研产品性状的动态变化过程进行恰当的建模与分析。在装备试验评估领域中,较为典型的就是多阶段可靠性增长试验评估、多批次和多信源条件下的武器战技指标评估。这些问题都体现出显著的“变动统计”的特点,相应统计推断结果的准确性,关系到装备接收、使用的风险。围绕装备试验评估领域中的变动统计问题开展相关研究具有重要的理论意义和应用价值。
     论文以装备试验评估领域中的变动统计问题为背景,首次系统地研究了变动统计的基本理论问题,并在多阶段可靠性增长试验评估、多批次或多信源条件下的命中概率融合评估两个主要领域中,针对四大类典型问题展开了具体细致的研究工作,提出了若干创新性的变动统计方法。主要研究内容与成果如下:
     1.装备试验评估中的变动统计基本理论系统地回顾了变动统计的发展历程与研究现状,提出了变动统计的主要特征。通过与其他相关研究领域的比较,提出了变动统计的基本内涵以及需要面对的几个关键的理论问题,给出了所涉及的数据预处理方法,归纳提出了三大类基本的变动统计方法:基于约束关系的多总体融合估计、基于线性模型的变动总体建模与预测、基于Bayes方法的多源验前信息融合,并对每种方法的特点和应用前景进行了分析和讨论。
     2.多阶段延缓纠正可靠性增长试验评估方法分析了指数寿命型产品在这一过程中的可靠性指标变化规律。提出采用MCMC(Markov Chain Monte Carlo)方法计算顺序约束条件下的Bayes验后分布,具有较好的操作性和较高的计算精度。提出增长因子法中的一种新的变量转换原则,仅利用随机序关系和变量期望值之间的比例关系推导了变量转换方法,尽可能降低了人为因素所带来的转换原则的随意性。比较了顺序约束方法和增长因子法的特性,讨论了两类方法的选择原则。建立了各阶段失效强度之间的广义线性模型,并采用Bayes动态预测方法进行递推估计,适用于试验阶段数较多的情况。
     3.多阶段含延缓纠正可靠性增长试验评估方法提出描述此类可靠性增长过程的两类模型MS-NHPP-I和MS-NHPP-I(IMulti-Stage Non-Homogeneous Poisson Process Type I & II),同时阐明了两类模型的特点、适用范围和选择原则。对于MS-NHPP-I模型,提出对阶段末尾的失效强度建立顺序约束关系。对于MS-NHPP-II模型,提出对相邻阶段衔接处的失效强度建立顺序约束关系,并采用基于Metropolis-Hastings原则的MCMC方法计算Bayes验后分布。针对多台设备同时投试的情况,提出选取特定时间的均值函数值建立比例关系,利用增长因子建立多阶段分析流程。最后,分析了两类模型中各阶段参数之间的线性关系,建立了比例强度假设下的线性模型,给出了参数估计和模型检验方法。
     4.基于多批次试验信息的命中概率融合评估方法首先,针对单批次同总体数据,提出了复杂条件下(子母弹、小子样、目标旋转等)的导弹命中概率计算方法。在子母弹命中概率评估中,提出了数值积分与统计模拟相结合的计算方法。在小子样命中概率评估中,提出了二维正态分布变量的Bootstrap方法和经验Bayes方法。在此基础上,针对多批次异总体数据,分析了多批次试验过程中各个分布参数随批次的变动情况,建立了两个方向上的均值参数和方差参数的顺序约束关系,并采用MCMC方法计算上述复杂约束条件下的参数验后分布,实现了多批次异总体数据的融合估计。
     5.基于多源试验信息的命中概率融合评估方法定义了有验前样本容量约束的现场样本边缘分布的ML-II(Maximun Likelihood Type II)估计以及相应的边缘密度函数值,分别记为SCML-II(prior sample Size Constrained ML II)和SCMD(prior sample Size Constrained Marginal Density),提出了基于修正权值混合验后分布的正态随机变量分布参数的融合估计方法,改进了基于仿真可信度的正态分布参数融合估计方法,所得估计值具有较小的MSE和较强的抑制“淹没”的能力。提出了多元正态分布参数估计中的SCML-II估计和SCMD值,较好地解决了两向相关情况下的命中概率融合估计问题。改进了传统的多源验前信息融合结构,在混合验前分布中加入无信息验前,并在混合验后融合权重中采用上述定义的SCMD值,从而提高了多源试验信息融合方法的适应能力。
With the increasing complexity of weapons and sorts of mechatronic products, the dynamic changing process of products lifecycle properties has become more complicated, which brings diverse test evaluation means. Sorts of data (multistage and multi-source) should be synthesized to realize the proper modeling and analysis of products performance changing during development phase. In the domain of equipments test evaluation, the typical problems are multistage reliability growth test evaluation and multi-batch or multi-source weapons tactical and technical indices evaluation. Both problems show distinct features of dynamic population statistics, and the corresponding statistical inferences veracity will greatly affect the risk of equipments acceptance and usage. It has great theoretical significance and application value to carry out studies of dynamic population statistics in the domain of equipments test evaluation.
     For the dynamic population statistics problems in equipments test evaluation, the essential theoretical problems are systematically studied for the first time. In both important domains of multistage reliability growth evaluation and multi-batch or multi-source hit probability synthetic evaluation, concrete and detailed studies are given to four types of representative problems, and several innovative approaches are proposed. The leading contents and outcomes are as follows.
     1. The basic theory of dynamic population statistics in equipments test evaluation. After a systematical review of developments of dynamic population statistics, the essential features of dynamic population statistics are presented. By compare with other related subjects, the thesis grasps its basic connotation and several key theoretical problems. The preprocessing methods involved are analyzed, and three elementary approaches of dynamic population statistics are summarized and presented with discussion of their features and prospects: constraints based multi-population integrated estimation, linear model based dynamic population forecasting and Bayesian based multi-source prior information fusion.
     2. Evaluation approaches of multistage reliability growth test with delayed fix mode. The reliability changing rules of exponential life type products are analyzed firstly. The MCMC (Markov Chain Monte Carlo) method is introduced to the computation of the ordinal constrained Bayesian posterior, and it’s easy to operate with high precision. Different acquisition ways of improvement factor and different conversion rules of adjacent stages failure rates are compared and discussed. In the improvement factor approach, a new conversion principle is put forward, which uses only the proportional relation and stochastic order relation and can restrain the arbitrary decision by human. Both approaches by improvement factor and ordinal constraint respectively are compared, and the general choosing rules are discussed. For the case of more stages, the linear model and Bayesian dynamic forecasting are introduced to realize the incursive estimation of failure rates.
     3. Evaluation approaches of multistage reliability growth test with hybrid fix modes (instant & delayed fix modes). Two models for such process are presented: MS-NHPP-I&II (Multi-Stage Non-homogeneous Poisson Process Type I&II), followed with their features, application domains and choosing rules. For MS-NHPP-I, the ordinal constraints of failure intensities are established at stage terminals. For MS-NHPP-II, ordinal constraints of failure intensities are established at stage conjunctions. The Bayesian posterior is computed by MCMC based on Metropolis-Hastings principle. For multiple equipments tested simultaneously, the proportional relations are established on the mean value function at a particular point. And then by improvement factor, the multistage analysis diagram is established. Finally, by analysis of the linear relation of stage parameters in both models, the linear model is established based on the proportional intensity assumption, followed with parameters estimations and model check approaches.
     4. Evaluation approaches of hit probability based on multi-batch test data. Firstly, the computations of missile hit probability are analyzed under complex conditions (cluster warhead, small sample size, target rotation, etc.) For the cluster warhead, a method of numerical integral mixed with statistical simulation is proposed. For small sample size, the altered Bootstrap and empirical Bayesian methods are presented for the bivariate normal variable. Based on the above, the distribution parameters variations are analyzed for the multi-batch test, and the ordinal constraints of the mean and variance parameters of both directions are established accordingly. By MCMC, the parameter posteriors can be obtained under complex constraints thus to realize the multi-batch test data fusion.
     5. Evaluation approaches of hit probability based on multi-source test data. The thesis defines the prior sample size constrained ML-II (Maximum Likelihood Type II) estimation of the field data and the corresponding marginal density, denoted respectively as SCML-II (prior sample Size Constrained ML-II) and SCMD (prior sample Size Constrained Marginal Density). A novel way of fusion estimation of normal distribution parameters is presented based on mixed posterior with modified weights. Based on it, the simulation credibility based test evaluation method is improved for smaller MSE (Mean Square Error) and stronger capacity to restrain from obliteration phenomenon. As a further extension, the SCML-II and SCMD of multivariate normal distribution parameters are put forward to solve the hit probability computation with bidirectional correlation. Finally, the conventional fusion structure of multi-source prior information is improved for better applicability by adding the non-informative prior to the mixed prior and using SCMD in the mixed posterior weights.
引文
[1]张金槐,蔡洪. Bayes小子样理论的应用研究——回顾与展望[J],飞行器测控技术, 1998, 17(1):1-4.
    [2]何国伟.评估电子产品平均寿命的一种变动统计方法[J],电子学报, 1981, 9:70-74.
    [3]周源泉,翁朝曦.可靠性增长[M],科学出版社, 1992.
    [4]周源泉.电子产品MTBF增长的Bayes方法[J],电子学报, 1983, 11(2):40-41.
    [5]张金槐.指数寿命型可靠性增长试验的Bayes分析[J],飞行器测控学报, 2003, 22(2):49-53.
    [6]张金槐.分布参数可变时的Bayes估计[J],飞行器测控学报, 2001, 20(4):34-38.
    [7]张金槐.多层验前信息下多维动态参数的Bayes试验分析[J],飞行器测控学报, 2005, 24(1):51-54.
    [8]张士峰,杨万君.异总体统计问题的Bayes分析[J],战术导弹技术, 2003:33-37.
    [9] Louit D. M., Pascual R.,Jardine A. K. S. A practical procedure for the selection of time to failure models based on the assessment of trends in maintenance data[J], Reliability Engineering and System Safety, 2009, 94(10):1618-1628.
    [10] London D.修匀数学[M],徐诚浩译,上海科学技术出版社, 1995.
    [11]邹心遥,姚若河.小子样统计理论及IC可靠性评估[J],控制与决策, 2008, 23(3):241-245.
    [12]赵宇,黄敏,王智.一种用于变环境数据的可靠性增长分析模型[J],航空学报, 2002, 23(2):111-114.
    [13]冯静.小子样复杂系统信息融合方法与应用研究[D],国防科技大学, 2004.
    [14]韩庆田,刘梦军.导弹贮存可靠性预测模型研究[J],战术导弹技术, 2002(3):32-36.
    [15]阮金元,阮新.产品贮存可靠性数据收集和处理方法及贮存失效率预测模型的建模方法研究[J],标准化报道, 2000, 21(1):7-11.
    [16]周源泉.可靠性工程的若干方向[J],强度与环境, 2005, 32(3):33-38.
    [17]周源泉.质量可靠性增长与评定方法[M],北京航空航天大学出版社, 1997.
    [18] Quigley J.,Walls L. Confidence intervals for reliability-growth models with small sample-size[J], IEEE Transactions on Reliability, 2003, 52(2):257-262.
    [19] Kelly D. L.,Smith C. L. Bayesian inference in probabilistic risk assessment—The current state of the art[J], Reliability Engineering and System Safety, 2008, 94:628-643.
    [20] Crow L. H. AMSAA discrete reliability growth model[R], AMSAA Methodology Office Note, 1983:1-83.
    [21] Fries A. Discrete reliability-growth models based on a learning-curve property[J], IEEE Transactions on Reliability, 1993, 42(2):303-306.
    [22] Fries A.,Sen A. A survey of discrete reliability-growth models[J], IEEE Transactions on Reliability, 1996, 45(4):582-604.
    [23] Sen A. Estimation in a discrete reliability growth model under an inversesampling scheme[J], Ann. Inst. Statist. Math., 1997, 49(2):211-229.
    [24] Sen A. Estimation of current reliability in a Duane-based reliability growth model.[J], Technometrics, 1998, 40(4):334-344.
    [25] Donovan J.,Murphy E. A new reliability growth model: its mathematical comparison to the Duane model[J], Microelectronics Reliability, 2000, 40:533-539.
    [26] Gibson G. J.,Crow L. H. Reliability fix effectiveness factor estimation[C], Proceedings Annual Reliability and Maintainability Symposium, 1989:171-176.
    [27] Brown M.,Proschan F. Imperfect repair[J], Applied Probability, 1983, 20(4):851-859.
    [28] Kijima M. Some results for repairable systems with general repair[J], Journal of Applied Probability, 1989, 26:89-102.
    [29] Guo R.,Love C. E. Statistical analysis of an age model for imperfectly repaired systems[J], Quality and Reliability Engineering International, 1992, 8(2):133-178.
    [30] Krivtsov V. V. A Monte Carlo approach to modeling and estimation of the generalized renewal process in repairable system reliability analysis[D], University of Maryland, 2000.
    [31] Finkelstein M. Virtual age of non-repairable objects[J], Reliability Engineering and System Safety, 2009, 94:666-669.
    [32] Calabria R., Guida M.,Pulcini G. A reliability-growth model in a Bayes-decision framework[J], IEEE Transactions on Reliability, 1996, 45(3):505-510.
    [33]宫二玲,谢红卫,李鹏波等.指数寿命可靠性增长评估中增长因子的确定方法[J],国防科技大学学报, 2008, 30(6):53-56.
    [34] Sarhan A. M. Reliability equivalence factors of a general series-parallel system[J], Reliability Engineering and System Safety, 2009, 94:229-236.
    [35] Hall J. B.,Mosleh A. A reliability growth projection model for one-shot systems[J], IEEE Transactions on Reliability, 2008, 57(1):174-181.
    [36] Chiu K.-C., Huang Y.-S.,Lee T.-Z. A study of software reliability growth from the perspective of learning effects[J], Reliability Engineering and System Safety, 2008, 93:1410-1421.
    [37] Crow L. H. An extended reliability growth model for managing and assessing corrective actions[C], RAMS, 2004:73-80.
    [38] Calabria R.,Pulcini G. Bayes inference for the modulated power law process[J], Comm. Statist.-Theory and Methods, 1997, 26(10):2421-2438.
    [39] Lakey M. J.,Rigdon S. E. The modulated power law process[C], Proceedings of the 45th Annual Quality Congress, 1992:559-563.
    [40] Calabria R.,Pulcini G. Inference and test in modeling the failure repair process of repairable mechanical equipments[J], Reliability Engineering and System Safety, 2000, 67(1):41-53.
    [41] Attardi L.,Pulcini G. A new model for repairable systems with bounded failure intensity[J], IEEE Transactions on Reliability, 2005, 54(4):572-582.
    [42] Guida M.,Pulcini G. Bayesian analysis of repairable systems showing a bounded failure intensity[J], Reliability Engineering and System Safety, 2006, 91(7):828-838.
    [43] Guo R. Modeling imperfectly repaired system data via grey different equations with unequal-gapped times[J], Reliability Engineering and System Safety, 2007, 92:378-391.
    [44] Yadav O. P., Singh N., Chinnam R. B., et al. A fuzzy logic based approach to reliability improvement estimation during product development[J], Reliability Engineering and System Safety, 2003, 80:63-74.
    [45] Jiang R.,Murthy D. N. P. Impact of quality variations on product reliability[J], Reliability Engineering and System Safety, 2009, 94:490-496.
    [46] Surucu B.,Sazak H. S. Monitoring reliability for a three-parameter Weibull distribution[J], Reliability Engineering and System Safety, 2009, 94:503-508.
    [47] Chiquet J., Eid M.,Limnios N. Modelling and estimating the reliability of stochastic dynamical systems with Markovian switching[J], Reliability Engineering and System Safety, 2008, 93:1801-1808.
    [48] Hsieh M.-H., Jeng S.-L.,Shen P.-S. Assessing device reliability based on scheduled discrete degradation measurements[J], Probabilistic Engineering Mechanics, 2009, 24:151-158.
    [49] Zio E. Reliability engineering: Old problems and new challenges[J], Reliability Engineering and System Safety, 2009, 94:125-141.
    [50] Oakes D. Survival Analysis[J], Journal of American Statistical Association, 2000, 95(449):282-285.
    [51] Dellaportas P.,Smith A. F. M. Bayesian Inference for Generalized Linear and Proportional Hazards Models via Gibbs Sampling[J], Appllied Statistics, 1993, 42(3):443-459.
    [52] Lawless J. F. Regression methods for Poisson process data[J], Journal of American Statistical Association, 1987, 82(399):808-815.
    [53] Winkelmann R.,Zimmermann K. F. Recent developments in count data modelling - theory and application[J], Journal of Economic Surveys, 1995, 9(1):1-24.
    [54] Cameron A. C.,Trivedi P. K. Regression Analysis of Count Data[M], Cambridge University Press, 1998.
    [55] Tan F., Jiang Z.,Bae S. J. Generalized linear mixed models for reliability analysis of multi-copy repairable systems[J], IEEE Transactions on Reliability, 2007, 56(1):106-114.
    [56] Cox D. R.,Lewis P. A. W. The statistical analysis of series of events[M], Chapman and Hall, 1966.
    [57] Vallarino C. R.,Jose S. Fitting the log-linear rate to Poisson processes[C], Proceedings Annual Reliability and Maintainability Symposium, 1989:257-261.
    [58] Hamada M. S., Wilson A. G., Reese C. S., et al. Bayesian Reliability[M], Springer Press, 2008.
    [59] Cozzolino J. M. Conjugate Distributions for Incomplete Observations[J], Journal of American Statistical Association, 1974, 69(345):264-266.
    [60] Barlow R. E.,Scheuer E. M. Reliability growth during a development testing program[J], Technometrics, 1966, 8(1):53-60.
    [61]周源泉,郭建英.故障分类时顺序约束指数可靠性增长的Bayes精确限[J],仪器仪表学报, 1999, 20(6):626-629.
    [62]周源泉.维修性增长的Bayes方法[J],质量与可靠性, 2005:19-23.
    [63] Mazzuchi T. A.,Soyer R. A Bayes method for assessing product reliability during development testing[J], IEEE Transactions on Reliability, 1993, 42(3):503-510.
    [64] Loader C. R. A Log-Linear Model for a Poisson Process Change Point[J], The Annals of Statistics, 1992, 20(3):1391-1411.
    [65] Kuhl M. E.,Bhairgond P. S. Nonparametric estimation of nonhomogeneousPoisson processes using wavelets[C], Proceedings of the 2000 Winter Simulation Conference, 2000:562-571.
    [66] Leemis L. M. Nonparametric Estimation of the Cumulative Intensity Function for a Nonhomogeneous Poisson Process[J], Management Science, 1991, 37(7):886-900.
    [67] Leemis L. M. Nonparametric estimation and variate generation for a nonhomogeneous Poisson process from event count data[J], IIE Transactions, 2004, 36:1155-1160.
    [68] Smith A. F. M.,Makov U. E. A Quasi-Bayes Sequential Procedure for Mixtures[J], jOurnal of Royal Statistical Society. Series B(Methodological), 1978, 40(1):106-112.
    [69] Touw A. E. Bayesian estimation of mixed Weibull distribution[J], Reliability Engineering and System Safety, 2009, 94:463-473.
    [70] Rosenberg P. S. Hazard Function estimation using B-Splings[J], Biometrics, 1995, 51(3):874-887.
    [71] Pulido H. G., Torres V. A.,Christen J. A. A practical method for obtaining prior distributions in reliability[J], IEEE Transactions on Reliability, 2005, 54(2):262-269.
    [72] Walls L.,Quigley J. Building prior distributions to support Bayesian reliability growth modelling using expert judgement[J], Reliability Engineering and System Safety, 2001, 74:117-128.
    [73] Guida M.,Pulcini G. Automotive reliability inference based on past data and technical knowledge[J], Reliability Engineering and System Safety, 2002, 76(2):129-137.
    [74] Zonnenshain A.,Haim M. Assessment of Reliability Prior Distribution[C], Proceedings Annual Reliability and Maintainability Symposium, 1984:44-47.
    [75] Kasouf G.,Weiss D. An integrated missile reliability growth program, Proceedings Annual Reliability and Maintainability Symposium, 1984:465-470.
    [76] Robinson D.,Dietrich D. A system-level reliability-growth model[C], Proceedings Annual Reliability and Maintainability Symposium, 1988:243-247.
    [77] Willits C. J., Dietz D. C.,Moore A. H. Series-system Reliability-estimation using very small binomial samples[J], IEEE Transactions on Reliability, 1997, 46(2):296-302.
    [78] Hill S. D.,Spall J. C. Sensitivity of a Bayesian analysis to the prior distribution[J], IEEE Transactions on Reliability, 1994, 24(2):216-221.
    [79] Kuo L.,Yang T. Y. Bayesian computation for nonhomogeneous Poisson processes in software reliability[J], Journal of American Statistical Association, 1996, 91(434):763-773.
    [80] Ferdous J., Uddin M. B.,Pandey M. Reliability estimation with Weibull inter failure times[J], Reliability Engineering and System Safety, 1995, 50:285-296.
    [81] Wang W.-L., Hemminger T. L.,Tang M.-H. A moving average non-homogeneous Poisson process reliability growth model to account for software with repair and system structures[J], IEEE Transactions on Reliability, 2007, 56(3):411-421.
    [82] Tian L.,Noore A. Evolutionary neural network modeling for software cumulative failure time prediction[J], Reliability Engineering and System Safety, 2005, 87:45-51.
    [83] Zhou Y.-Q.,Weng Z.-X. AMSAA-BISE model[C], 3rd Japan-China Symposium on Statistics, 1989:179-182.
    [84] Zhou Y.-Q.,Weng Z.-X. The AMSAA-BISE model with gap intervals[J], Journal of Systems Engineering and Electronics, 1990, 1(1):77-83.
    [85] Zhou Y.-Q. Reliability growth for multi-system simultaneous development[J], Applied Mathematics and Mechanics, 1986, 7(9):887-894.
    [86]田国梁.多台系统Weibull过程的Bayes统计推断方法[J],强度与环境, 1993, 1:1-8.
    [87]周源泉,郭建英.可靠性增长幂律模型的Bayes推断及在发动机上的应用[J],推进技术, 2000, 21(1):49-53.
    [88]史全林,周源泉.多台系统幂律过程参数的比较[J],质量与可靠性, 2000, 1:31-34.
    [89]田国梁.多台系统Weibull过程形状参数的假设检验[J],强度与环境, 1989:41-46.
    [90]田国梁. AMSAA模型分组数据的分析方法[J],强度与环境, 1990, 3:1-8.
    [91]张志华,姜礼平.正态分布场合下无失效数据的统计分析[J],工程数学学报, 2005, 22(4):741-744.
    [92]韩明.无失效数据的Bayes和多层Bayes估计[J],数学季刊, 2001, 16(1):65-70.
    [93]韩明.基于无失效数据的可靠度的估计[J],纯粹数学与应用数学, 2002, 18(2):165-169.
    [94]程皖民.基于小子样复杂信息集的可靠性评估方法及其应用研究[D],长沙:国防科学技术大学, 2006.
    [95]程皖民,冯静,周经伦等.长寿命产品在小子样缺失数据下的Bayes可靠性增长分析[J],模糊系统与数学, 2006, 20(6):149-153.
    [96]张士峰,邓爱民.含有屏蔽寿命数据的贝叶斯可靠性分析[J],战术导弹技术, 2001, 3:34-39.
    [97]张士峰,蔡洪.小子样条件下可靠性试验信息的融合方法[J],国防科学技术大学学报, 2004, 26(6):25-29.
    [98]刘松林,师义民,柴建.基于Kullback信息融合方法的串联系统可靠性评估[J],纯粹数学与应用数学, 2006, 22(4):454-458.
    [99]田国梁.二项分布的可靠性增长预测模型[J],强度与环境, 1991:17-25.
    [100]田国梁.二项分布的可靠性增长模型[J],宇航学报, 1992:55-61.
    [101]刘飞.固体火箭发动机可靠性增长试验理论及应用研究[D],国防科技大学, 2006.
    [102]明志茂,张云安,陶俊勇等.基于新Dirichlet先验分布的超参数确定方法研究[J],宇航学报, 2008:2062-2067.
    [103]赵宇,黄敏.变母体变环境数据的可靠性综合评估模型[J],北京航空航天大学学报, 2002, 28(5):597-600.
    [104]杜振华.研制阶段产品可靠性综合评估技术研究[D],北京航空航天大学, 2003.
    [105]赵宇.基于变母体变环境数据的飞行器可靠性评估的模型和方法[D],北京航空航天大学, 2004.
    [106]张金槐. Bayes可靠性增长分析中验前分布的不同确定方法及其剖析[J],质量与可靠性, 2004:10-13.
    [107]吴祺,闫志强,谢红卫.复杂系统可靠性增长的动态建模方法[J],计算机仿真,2007, 24(11):312-315.
    [108]闫霞.可修系统贮存可靠性的统计评定[D],中科院数学与系统科学研究所, 2003.
    [109]张湘平.小子样统计推断与融合理论在武器系统评估中的应用研究[D],国防科学技术大学博士学位论文, 2003.
    [110]张金槐,唐雪梅. Bayes方法[M],国防科学技术大学出版社, 1993.
    [111] Salsburg D.女士品茶:20世纪统计怎样变革了科学[M],邱东等译,中国统计出版社, 2004.
    [112]唐见兵.作战仿真系统可信性研究[D],国防科学技术大学博士学位论文, 2009.
    [113]张淑丽,叶满昌.导弹武器系统仿真可信度评估方法[J],计算机仿真, 2006, 23(5):48-52.
    [114]李鹏波.仿真可信性及其在导弹系统一体化研究中的应用[D],国防科学技术大学博士学位论文, 1999.
    [115] Li Q., Wang H.,Liu J. Small sample Bayesian analyses in assessment of weapon performance[J], Journal of Systems Engineering and Electronics, 2007, 18(3):545-550.
    [116]张士峰,蔡洪. Bayes分析中的多源信息融合问题[J],系统仿真学报, 2000, 12(1):54-57.
    [117]张本,陆军.子母弹抛撒技术[J],四川兵工学报, 2006, 3:26-29.
    [118]程云门.评定射击效率原理[M],解放军出版社, 1986.
    [119]潘承泮.武器系统射击效力[M],兵器工业出版社, 1994.
    [120]张金槐.命中概率的一致最小方差无偏估计[J],国防科技大学学报, 1984:65-76.
    [121]杨经卿.评定飞航导弹单发命中概率的方法研究[J],战术导弹技术, 1995:1-9.
    [122]周新华.导弹系统命中概率检验方法研究[J],飞行试验, 1993, 9(3):22-27.
    [123]王兆胜.远程炮武器系统射击精度研究与射击精度战技指标论证[D],南京理工大学, 2003.
    [124]修智宏,杨美健.统计试验法在火箭深弹命中概率计算中的应用,海军大连舰艇学院学报, 2002, 25(1):37-38.
    [125]王兆胜,刘志强,刘全文.子母弹射击精度的仿真研究[J],火力与指挥控制, 2007, 32(3):76-78.
    [126]胡正东,曹渊,张士峰等.特小子样试验下导弹精度评定的Bootstrap方法[J],系统工程与电子技术, 2008, 30(8):1493-1497.
    [127]宋天莉,王明海.导弹命中精度评定中贝叶斯方法的应用[J],飞行力学, 2000, 18(3):46-49.
    [128]冯静,周经纶,孙权. Bayes分析中多源验前信息融合的ML-II方法[J],数学的实践与认识, 2006, 36(6):340-343.
    [129] Box G. E. P.,Jenkins G. M.时间序列分析:预测与控制[M],顾岚译,中国统计出版社, 1997.
    [130] Ross S. M.随机过程[M],何声武等译,中国统计出版社, 1997.
    [131]张永强,冯静,刘琦等.基于Poisson-Normal过程性能退化模型的可靠性分析[J],系统工程与电子技术, 2006, 28(11):1775-1778.
    [132]徐利治等.现代数学手册(随机数学卷)[M],华中科技大学出版社, 2000.
    [133]吴翊,李永乐,胡庆军.应用数理统计[M],国防科技大学出版社, 1995.
    [134]任若恩,王惠文.多元统计数据分析——理论、方法、实例[M],国防工业出版社, 1997.
    [135]韩崇昭,朱洪艳,段战胜.多源信息融合[M],清华大学出版社, 2006.
    [136]谢红卫,汪浩,苏建志.数据融合的技术观点[J],系统工程理论与实践, 1994(6):13-18.
    [137]胡正东,李鹏奎,张士峰等.基于Bayes网络的惯导系统多源试验信息融合方法[J],宇航学报, 2008, 29(1):215-219.
    [138]刘鸿翔,田国梁.尺度参数不相等时多个Weibull过程的统计分析[J],湖北教育学院学报, 2003, 20(5):1-6.
    [139]王黎明.变点统计分析问题及其应用[J],内蒙古统计, 2004(3):32-34.
    [140]张志华,王胜兵,金家善.现场可靠性数据的变点分析[J],系统工程与电子技术, 2006, 28(6):937-940.
    [141]郭建英,周源泉.可靠性增长数据突变点的辨识方法[J],系统工程与电子技术, 1998(12):98-102.
    [142]钱峰,田蔚风,金志华等.惯性器件长期贮存性能可靠性灰色马氏链预测[J],上海交通大学学报, 2004, 38(10):1761-1763.
    [143]周源泉.估计逐次提高试制产品精度的Bayes方法[J],电子学报, 1984, 12(4):51-56.
    [144]蔡洪,张士峰,张金槐. Bayes试验分析与评估[M],国防科学技术大学出版社, 2004.
    [145]傅惠民.解非线性方程组的一元化方法[J],机械强度, 1999, 21(3):205-207.
    [146]傅惠民.整体推断的极大似然方法[J],机械强度, 2002, 24(1):1-5.
    [147] Nelder J. A.,Wedderburn R. W. M. Generalized linear models[J], J. R. Statist. Sco., 1972, A(135):370-384.
    [148]张孝令,刘福升,张承进等.贝叶斯动态模型及其预测[M],山东科学技术出版社, 1992.
    [149]齐静.动态Poisson模型及其贝叶斯预测[D],中山大学硕士论文, 2005.
    [150]陈传勇.双参数动态Gamma分布模型及贝叶斯预测[J],贵州师范大学学报(自然科学版), 2004, 22(4):64-66.
    [151] Berger J. O. Statistical Decision Theory and Bayesian Analysis[M], Springer-Verlag Press, 1985.
    [152]任开军,吴孟达,刘琦.先验分布融合的KULLBACK信息方法[J],装备指挥技术学院学报, 2002, 13(41):90-92.
    [153] Benton A. W.,Crow L. H. Integrated reliability growth testing[C], Proceedings Annual Reliability and Maintainability Symposium, 1989:160-166.
    [154] Yan Z.-Q.,Xie H.-W. The Reliability Growth Evaluation for Exponential Life Model Based on Linear Model Bayesian Recursive Estimation[C], Proceedings of First International Conference of Modelling and Simulation(Vol.5), 2008:460-463.
    [155] Fahrmeir L. Multivariate Statistical Modeling Based on Generalized Linear Model[M], New York: Springer-Verlag., 1994.
    [156] Tua W.,Piegorsch W. W. Empirical Bayes Analysis for a Hierarchical Poisson Generalized Linear Model[J], Journal of Statistical Planning and Inference, 2003,111:235-248.
    [157]葛颜祥,刘福升,张孝令.动态Poisson模型及Bayes预测[J],系统工程理论与实践, 1997(2):84-87.
    [158]胡明祥.鱼雷可靠性增长试验和分析方法研究[D],西北工业大学, 2006:60-62.
    [159] Yan Z.-Q., Li X.-X., Xie H.-W., et al. Bayesian synthetic evaluation of multistage reliability growth with instant and delayed fix modes[J], Journal of Systems Engineering and Electronics, 2008, 19(6):1287-1294.
    [160]陈家鼎.生存分析与可靠性[M],北京大学出版社, 2005.
    [161] Kuhl M. E., Lada E. K., Steiger N. M., et al. Introduction to modeling and generating probabilistic input processes for simulation[C], Proceedings of the 2006 Winter Simulation Conference, 2006:19-35.
    [162] Guida M., Calabria R.,Pulcini G. Bayes inference for a non-homogeneous Poisson process with power intensity law[J], IEEE Transactions on Reliability, 1989, 38(5):603-609.
    [163]张金槐. Bayes可靠性增长分析中验前分布的不同确定方法及其剖析[J],质量与可靠性, 2004.
    [164] Yu J.-W., Tian G.-L.,Tang M.-L. Predictive analyses for nonhomogeneous Poisson processes with power law using Baysian approach.[J], Computational Statistics & Data Analysis, 2007, 51:4254-5268.
    [165] Lee L.,Lee S. K. Some results on inference for the Weibull process[J], Technometrics, 1978, 20(1):41-45.
    [166]刘飞,王中伟,张为华.指数寿命产品可靠性增长试验Bayes分析[J],国防科技大学学报, 2006, 28(4):128-132.
    [167]苏良军.高等数理统计[M],北京大学出版社, 2007.
    [168]党晓玲.柔性制造系统可靠性增长管理与分析技术研究[D],国防科学技术大学博士学位论文, 1999.
    [169] Chen Z. Bayesian and empirical Bayes approaches to power law process and microarray analysis[D], University of South Florida, 2004.
    [170] Calabria R., Guida M.,Pulcini G. A reliability-growth model in a Bayes-decision framework[J], IEEE Transactions on Reliability, 1996, 45(3):505-620.
    [171]徐培德,谭东风.武器系统分析[M],国防科技大学出版社, 2001.
    [172]朱近,夏德深,戴奇燕等.侵彻子母弹对跑道封锁概率与打击效果评估[J],火力与指挥控制, 2007, 32(4):106-108.
    [173]雷宁利,唐雪梅.侵彻子母弹对机场跑道的封锁概率计算研究[J],系统仿真学报, 2004, 16(4):2030-2032.
    [174]张志华,姜礼平.成败型产品的Bayes鉴定试验方案研究[J],海军工程大学学报, 2004, 16(1):9-13.
    [175]杨华波,夏青,张士峰等. Bayes修正幂验前方法在制导精度评定中的应用[J],宇航学报, 2009, 30(6):2237-2242.
    [176]徐德坤.弹道导弹命中精度评定方法及其应用研究[D],国防科学技术大学博士学位论文, 2007.
    [177]李鹏波,谢红卫,张金槐.考虑验前信息可信度时的Bayes估计[J],国防科学技术大学学报, 2003, 25(4):107-110.
    [178]黄寒砚,段晓君,王正明.考虑先验信息可信度的后验加权Bayes估计[J],航空学报, 2008, 29(5):1245-1251.
    [179]段晓君,王刚.基于复合等效可信度加权的Bayes融合评估方法[J],国防科学技术大学学报, 2008, 30(3):90-94.
    [180]何晓群.多元统计分析[M],中国人民大学出版社, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700