基于人工神经网络(ANN)的水质评价与水质模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工神经网络(ANN)是复杂非线性科学和人工智能科学的前沿,其在水污染控制规划领域的应用研究在国内外尚处于初创阶段。本文在较全面分析评述了水质评价与水质模拟研究现状,及在分析阐述了ANN基本原理、算法和各类模式特征的基础上,在国内首次将ANN方法引入水污染控制规划领域,主要在水质评价和水质模拟的人工神经网络建模方法以及模型算法方面进行了一些创新性的工作,为提高水质评价和水质模拟的智能化水平做出了努力。
     本文根据水质综合评价的特点及Hopfield网络优良的模式识别性能,通过对Liapunov能量函数构造的合理设计,提出了水质综合评价Hopfield网络模型,并从数学上严格推证了水质评价Hopfield网络的样本分类性能。实例研究表明:Hopfield模型在相当多评价指标的情况下,仍可很快地给出评价结果,且可达到相当高的精度,同时模型可表述定量和定性的评价指标,增强了评价方法的通用性和适用性。
     针对水质信息的模糊性特征,本文将模糊数学与神经网络相结合,首次提出了水质评价隶属度BP模型。通过对隶属度BP模型、模糊综合指数法和灰色聚类法实例评价结果的比较,本文提出的隶属度BP模型融合了ANN方法和模糊评价方法的优点,有效地克服了模糊综合指数法评价结果偏重和灰色聚类法评价结果偏轻的缺陷,提高了评价结果的准确性和可靠性;该模型可方便地对模糊规则进行增加或删减,比传统的综合指数类评价方法更具灵活性,程序的通用性好,应用方便;隶属度BP模型考虑了环境水质类别变化的连续性,使评价方法更接近客观实际。
     本文根据对污染物在河流中迁移过程分段传递特征的分析,首次提出了模拟污染物在河流中迁移规律的串联ANN模型,该模型是对ANN模型结构的一种改造。根据这一建模思路,建立了BOD-DO耦合BP网络水质模拟模型,以及学习速率采用DBD自适应技术的一维水质综合模拟BP网络模型。实例研究表明:ANN模型对水质模拟的结果比一维水质模型模拟的结果精度更高,验证了本文提出的串联ANN模型结构的有效性和正确性。本论文在第8章提出了优化构造算法的一维水质综合模拟RBF网络模型,为克服BP网络在最小值附近容易产生振荡的不足,以及利用训练样本解决网络结构的自适应优化等问题进行了有益的探索。实例研究表明:该RBF模型具有更高的水质综合模拟泛化能力,提高了ANN水质综合模拟的预测精度,展示了ANN水质模拟模型具有良好的应用前景。
     根据二维水质数学模型数值解法的思路,本文开创性地提出了进行二维水质模拟的广义网络法。该方法根据二维水质扩散三个不同方面问题的特征,采用前馈网络的拓朴结构形式,以河段特征参数神经元直接表达、横向扩散系数三层BP网络
    
     重庆大学博士学位论文
    表达、纵向扩散系数经验公式表达等构造了不同表达方式的输入层神经元,进而依
    不同表达方式的输入神经元构造了广义网络。通过实例研究验证了该ANN二维水
    质模拟方法的准确性与适用性。
     本文研究表明:用ANN模型来进行水质评价和水质模拟或预测在理论上可行,
    在实践上有继续深入研究开发的价值,具有良好的应用前景。本研究为水质模拟研
    究提供了一种新方法,开辟了一条较好的新途径,也为ANN的应用增添了新领域。
Innovative work is done on modeling and algorithm of artificial neural networks (ANN) for water quality assessment and simulation in this dissertation.
    Artificial neural network plays a leading role in the sciences for complex non-linear phenomena and artificial intelligence. Researches on its application in the planning of water pollution control are still in the preliminary stage in the world. On the basis of a comprehensive evaluation and analysis of the present situation of the researches in water quality assessment and simulation, and on the basis of a careful exposition of the basic principles, the algorithm and the varied pattern features of ANN, this dissertation gives an application of ANN approaches in water quality assessment and simulation, which, as the first attempt of its kind, can help to achieve a higher level in the application of artificial intelligence in this field.
    Based on the features of integrated water quality assessment, and the outstanding pattern recognition capacity of Hopfield network, a rational design of the structure of Liapunov energy function, this dissertation proposes the first Hopfield network model for comprehensive water quality assessment, and gives a strict mathematical deduction of the sample-classification performances of this model. Case study reveals that with numerous assessment indexes, Hopfield model can quickly produce assessment results with a high accuracy, and, as it can work with both qualitative and quantitative indexes, has wider areas of application.
    This dissertation combines Fuzzy Mathematics and ANN and produces a membership degree Back-Propagation network (MDBP) for water quality assessment compatible with the fuzzy features of water quality data. Case studies of the results of this model approach, fuzzy integrated index approach, and grey accumulation approach indicate: the proposed MDBP model combines the merits of ANN approach and fuzzy approach, and improves the accuracy and reliability of the assessment results while the results of fuzzy colligation index approach and grey accumulation approach are too high and too low respectively; it has a higher flexibility than conventional integrative index approach and its programs have a better adaptability and more convenient application; its ways of assessment are closer to the reality since it takes into consideration the continuity of the changes of environment water quality.
    Based on an analysis of the section-transmission features of the transference of the
    
    
    pollutants in the rivers, this dissertation creates a series ANN model, an improved ANN model, to simulate the transference of the pollutants in the rivers. In addition, it establishes a model of BOD-DO coupling for water quality simulation based on BP network, and a one-dimensional BP network model with its learning rate using Delta-Bar-Delta (DBD) self-adaptation technology. Case studies show a higher accuracy in the simulated results of ANN model over the one-dimensional model, thus proves the effectiveness, correctness and a bright future for the application of the proposed series ANN model structure.
    To overcome the tendency towards oscillation of the BP network near the minimum value, Chapter 8 proposes a one-dimensional radial basis function (RBF) network model for comprehensive water quality simulation for optimizing structure with algorithm, which is a useful exploration into issues such as the self-adaptive optimization of network structure through training samples. Case studies show that this RBF network has a higher generalization capacity in water quality simulation, thus improves the prediction precision of comprehensive water quality simulation with ANN.
    The numerical value solution of the two-dimensional mathematical model for water quality inspires a broad-sense network method for two-dimensional water quality simulation. This method takes into consideration the characteristics of the three aspects in two-dimensional water quality dispersion, and constructs input neurons of different expressions, the topological structu
引文
[1] 联合国环境规划署.全球环境展望2000.中国环境科学出版社.2001.
    [2] 李复兴,赵飞虹.水资源及其可持续发展—对管理我国水资源问题的探讨. http://www.h2o-china.com.
    [3] 联合国环境规划署.全球环境展望1997.中国环境科学出版社.1997.
    [4] 国家环境保护总局.2000年中国环境状况公报.2000.
    [5] 赵振宇,徐用懋.模糊理论和神经网络的基础与应用.清华大学出版社.1997.
    [6] Young H. Kim. et al. A Dynamic Recurrent Neural-Network-Based Adaptive Observer for a Class of Nonlinear Systems, Automatica, 1997, 33(8): 1539~1543.
    [7] Jun Wang, et al. A Multilayer Recurrent Neural Network for On-Line Synthesis of Minimum-Norm Linear Feedback Control Systems via Pole Assignment, Automatica, 1996,32(3): 435~442.
    [8] Stefen Hui, et al. Solving Minimum Norm Problems Using Penalty Functions and the Gradient Method, Automatica, 1995,31(1): 115~124.
    [9] 沈清,胡德文,时春.神经网络应用技术.国防科技大学出版社.1993.
    [10] Simon Fabri, et al. Dual Adaptive Control of Nonlinear Stochastic Systems Using Neural Network, Automatica, 1998, 34(2): 245~253.
    [11] Marios M. et al. Stable Adaptive Neural Control Scheme for Nonlinear Systems, IEEE Transactions on Automatic Control, 1996, 41(3): 447~451.
    [12] 戴勇,卢颖,张爱茜等.应用径向基函数预测有机化合物的生物活性.环境科学.2000.21(4):11~15.
    [13] Chandramouli V. and Raman H. Multi-reservoir Modeling with Dynamic Programming and Neural Networks. Journal of Water Resources Planning and Management. 2001. Vol. 127(2): 89-98.
    [14] Marina Campolo et al. Forecasting River Flow Rate during Low-flow Period Using Neural Network. Water Resources Research. 1999. Vol.35 (11): 3547-3552.
    [15] Bin Zhang. et al. Prediction of Water Runoff Using Bayesian Concepts and Modular Neural Network. Water Resources Research. 2000. Vol.36 (3): 753-762.
    [16] Loke E. et al. Artificial Neural Networks as a Tool in Urban Storm Drainage. Wat. Sci. Tech. 1997.Vol.36 (8-9): 101-110
    [17] Andre J. et al. Application of Neural Networks on Water Supply Plant and Wastewater
    
    Treatment. Wat. Res. 1996. Vol.30 (11):199-206.
    [18] 万腾州,施东河,倪荣兴等.类神经网路污水厂水质管理预测模式之研究.第4届海峡两岸环境保护学术研讨会论文集.台湾1996.1149-1156.
    [19] Premier G.C, et al. A Comparison of the Ability of Black Box and Neural Network Models of Arx Structure to Represent a Fluidized Bed Anaerobic Digestion Process, Wat. Res. 1999,33(4): 1027~1037.
    [20] Martin Cote, Bernard P.A. Grandjean, Paul Lessard et al. Dynamic Modeling of the Activated Sludge Process: Improving Prediction Using Neural Networks. Wat. Res. 1995. Vol.29(4):610-623.
    [21] Qing Zhang and Stephen J. Stanley. Real-Time Water Treatment Process Control With Artificial Neural Networks. Journal of Environmental Engineering. 1999. Vol. 125(2): 153-160.
    [22] 傅国伟,程声通主编.水污染控制系统规划.清华大学出版社.1985.
    [23] 吴文江等编著.实用数学规划.机械工业出版社.1993.
    [24] 陈玉成等编著.环境数学分析.西南师范大学出版社,1998.
    [25] 张锁春.环境科学中的数学理论与方法.环境科学丛刊.1992.Vol.13(2):12-17.
    [26] 王莲芬,许树柏编著.层次分析法引论.中国人民大学出版社.1990.
    [27] Saaty T.L. The Analytical Hierarchy Process: Planning, Priority Setting, Resource Allocation, McGraw-Hill, New York, 1980.
    [28] 邬伦等编著.地理信息系统教程.北京大学出版社.1994.
    [29] Francesca Albertini et al. Forward Accessibility for Recurrent Neural Network IEEE Transactions on Automatic Control. 1995. Vol.40 (11): 1962-1968.
    [30] Ching Gung Wean and Chih Sheng Lee. A Neural Network Approach to Multi-objective Optimizafon for Water Quality Management in a River Basin. Water Resource Research. 1998. Vol.34 (3):427-435.
    [31] Kohonen T. An Introduction to Neural Computing. Neural Networks. 1988. Vol. 1(1):3-16.
    [32] Lippmann R. P. An Introduction To Computing With Neural Nets. IEEE ASSP Magazine. 1987. April. 4-22.
    [33] 叶怡成.人工神经网络模式应用与实作.台湾儒林图书公司.1995.
    [34] 袁曾仁编著:人工神经网络及其应用.清华大学出版社.1999.
    [35] Rosenblatt F. The Perception: a Probabilistic Model for Information Storage and Organization in the Brain. Psychological Review, 1958. Vol.65 386-408.
    [36] Werbos. P. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences. PhD Dissertation. Harvard University. 1974.
    [37] Rumelhart D. E. and McClelland J. L. Parallel Distributed Processing: Explorations in the
    
     Microstructure of Cognition. Cambridge Bradford Books. MIT Press. 1986. 1-112.
    [38] Specht D. F. Probabilistic Neural Networks. Neural Networks. 1990. Vol. 3.109-118.
    [39] Hecht-Nielsen R. Performance Limits of Optical, Electro-optical, and Electronic Neurocomputers, SPIE: 634. Optical and Hybrid Computing. 1986.277-306.
    [40] Hecht-Nielsen R. Counter Propagation Networks. Proc. of IEEE Inter' Conference on Neural Networks. 1987. Vol.Ⅱ.19-32.
    [41] Kohonen T. Self-organizing Formation of Topologically Correct Feature Maps. Biol. Cybern. 1982. Vol.43.59-69.
    [42] Grossberg S. Adaptive Pattern Classification and Universal Recoding, Feedback, Expectation, Olfaction Illusions. Biol. Cybern. 1976. Vol.23.187-202.
    [43] Carpenter G. A. and Grossberg S. The ART of Adaptive Pattern Recognition by Self-organizing Neural Networks. Computer. 1988. Vol.21 (3): 77-88.
    [44] Hopfietd J. J. Neural Networks and Physical System with Emergent Collective Computational Abilities. Proceedings of the National Academy of Sciences. 1982. Vol.79. 2554-2558.
    [45] Kosko B. Adaptive Bi-Directional Associative Memory. 1987. Appl. Oct. Vol.26. 4947-4959.
    [46] Anderson J. Two Models for Memory Organization Using Interacting Races. Mathematical Biosciences. 1970. Vol.80. 137-160.
    [47] Hopfield J. J. and Tank. D. W. Neural Computation of Decisions in Optimization Problems. Biol. Cybern. 1985. Vol.52. 141-152.
    [48] Van den Bout D. E. and Miller T. K. A Traveling Salesman Objective Function that Works. ICNN-88.1988. Vol.Ⅱ. 299-303.
    [49] Ackley D. H., Hinton G. E. and Sejnowski T. J. A Learning Algorithm for Boltzmann Machines. Cognitive. Sci. 1985. Vol.9. 147-169.
    [50] McCulloch W. S. and Pitts W. H. A Logical Calculus of the Ideas Immanent in Neuron Activity. Bulletin Mathematical Biophysics. 1943. Vol.5. 115-133.
    [51] Hebb D. O. The Organization of Behavior. Wiley. New York. 1949.
    [52] Widrow B. and Hoff W. Adaptive Switching Circuits. Wescon Convention Record. 1960.
    [53] Minsky M. L. and S. Papert. Perceptron. MIT Press. Cambridge MA. 1969.
    [54] Hopfield J. J. and Tank. D. W. Computing with Neural Circuits a Model. Science 1986. Vol.233.625-633.
    [55] 叶常明.环境科学中的非线性理论及其意义.环境科学.1995.Vol.10(3):79-83.
    [56] 陈晓宏,江涛,陈俊合编著.水环境评价与规划.中山大学出版社.2001.
    [57] 叶文虎,栾胜基编著.环境质量评价学.高等教育出版社.1994.
    [58] 中国环境科学学会环境质量评价专业委员会编.环境质量评价方法指南.中国环境科学
    
    出版社.1982.
    [59] 重庆市环境科学研究院,重庆建筑工程学院.长江、嘉陵江重庆段水污染控制规划研究.1992.12.
    [60] 陆雍森编著.环境评价(第二版).同济大学出版社.1999.
    [61] Nemerow N. L. Scientific Stream Pollution Analysis. McGraw-Hill. New York. 1974.
    [62] 徐建平.地面水现状评价W值分级法的改进.上海环境科学.1987.Vol.6(12):33-35.
    [63] Golden J et al. Environmental Impact Data Book. Ann Arbor. Mich: Ann Arbor Science Pub. Inc. 1980.
    [64] Boown R. M. A Water Quality Index DO We Dare Water and Sewage Works. 1970.
    [65] 吴文芳,周定.用污染程度函数判断环境质量的一种方法.环境科学.1985.Vol.6(4):79-81.
    [66] Gilpin A. Environmental Impact Assessment. Cambridge University Press. 1995.1-34.
    [67] 裘小松,徐淑碧.关于水质评价方法的探讨.环境科学.1981.Vol.2(5):65-71.
    [68] 张益智.标准二矩阵在环境质量中的应用.环境科学.1983.Vol.4(6):80-83.
    [69] 劳期团.模糊数学方法在水库水质综合判别中的应用.中国环境科学.1989.Vol.9(3):225-228.
    [70] 李振亮.水质污染评价中的Hamming贴近度评价法.环境工程.1989.Vol.7(6):41-45.
    [71] 马建华等.水质评价的模糊概率综合评价法.水文.1994.(3):26-29.
    [72] 慕金波等.灰色聚类法在水环境质量评价中的应用.环境科学.1991.Vol.12(2):86-90.
    [73] 史晓新,夏军.水环境质量评价灰色模式识别模型及应用.中国环境科学.1997.Vol.17(2):127-130.
    [74] Lee H.K, Oh K.D., Paik D.H, et al. Fuzzy Expert System to Determine Stream Water Quality Classification from Ecological Information. Water Science & Technology. 1997. Vol.36(12):199-206.
    [75] 肖德锋.环境质量评价中的模糊信息熵原理.环境科学学报.1986.Vol.6(2):157-165.
    [76] 陈履安.论环境质量 法评价.环境保护科学.1983.(2):12-17.
    [77] Bin Zhang et al. Prediction of Water Runoff Using Bayesian Concepts and Modular Neural Network. Water Resources Research. 2000. Vol.36 (3): 753-761.
    [78] 薛建军,姚桂基.人工神经网络在水质评价中的应用.水文.1997.(3):37-39.
    [79] 王李管,贾明涛.水质评价的神经网络方法.环境工程.1998.Vol.16.(2):62-65.
    [80] 胡明星,郭玲香,郭达志.湖泊水质富营养化评价的多准则神经网络法.上海环境科学.1998.Vol.17(4):14-16.
    [81] 庄镇泉,王熙法等编著.神经网络与神经计算机.科学出版社.1994.
    [82] Hopfield. J .J. Neurons With Graded Response Have Collective Computational Properties Like Those of Two-State Neurons. Proc. of the National Academy of Science. USA, 81 P117-156. 1984.
    
    
    [83] 谭浩强编著.C程序设计.清华大学出版社.1998.
    [84] Parker D.B. Learning-logic. Technical Report TR-47. Center for Computational Res. in Economics and Management Sci. MIT. 1985.
    [85] Hecht-Nielsen R. Theory of the Back-propagation Neural Networks. Proc. of the International Conference on Neural Networks, 1989. 593-611.
    [86] Hornik, K. Approximation Capability of Multi-layer Feedforward Networks. Neural Networks, 1991. No. 4. 241-257.
    [87] Baum E, Wilezek F. Supervised Learning of Probability Distribution by Neural Networks in: Anderson D ed. Proceeding of the 1987 IEEE Conference on Neural Information Processing Systems--Natural and Synthetic, New York: American Institute of Physics, 1988.52-61.
    [88] Rumelhart D. E., Hinton, G. E., et al. "Learning Internal Representation by Error Propagation" in Parallel Distributed Processing, Rumelhart, D. E. and McClelland, J. L., (Eds.) MIT Press, Cambridge, MA. 1986. 318-362.
    [89] Zaclch L. A. Fuzzy Set. Information and Control. 1965.Vol.8.338-353.
    [90] 汪培庄,韩立岩编著.应用模糊数学.北京经济学院出版社.1989.
    [91] 国家环境保护总局.地表水环境质量标准(GHZB1-1999).1999-07-20.
    [92] 邓峰.水质评价的一种新方法——模糊综合指数法.中国环境科学.1991.Vol.11(1):63-66.
    [93] 孙幼平、熊端贵.模糊数学在水质综合评价中的应用.中国环境科学.1988.Vol.8(2):72-75.
    [94] 张美华、陈宏.几种模糊聚类法在环境质量综合评价中的应用.重庆环境科学.1999.Vol.21(3):13-16.
    [95] 邓聚龙.灰色预测与决策.华中理工大学出版社 1988.
    [96] 傅兴启.地面水水质综合评价的一种新方法——水质标准级别法.中国环境科学.1988.Vol.8(2):66-71.
    [97] 韦鹤平.环境系统工程.同济大学出版社.1993年.
    [98] George A. Rovithakis. Robustifying Nonlinear Systems Using High-Order Neural Network Controllers. IEEE Transactions on Automatic Control. 1999. Vol.44 (1): 102-108.
    [99] Parisini T. et al. A Receding-Horizon Regulator for Nonlinear Systems and a Neural Approximation. Automatic. 1995. Vol.31(10): 1443-1451.
    [100] 谢永明.环境水质模型概论.中国科技大学出版社.1996.
    [101] Streeter H. W. and Phelps E. B. A Study of the Pollution and Natural Purification of the Ohio River: Ⅲ Factor Concerned in the Phenomena of Oxidation and Reaeration. Public Health Bulletin. I925. No. 146. Feb.
    [102] Thomas H A. Pollution Load Capacity of Streams Water and Sewage Works. 1948. Vol.95. 409-423.
    
    
    [103] Dobbins W. E.and Camp T. R. BOD and Oxygen Relationships in Streams. J. Sanitary Engineering Division. ASCE. 1964. Vol.53.53-66.
    [104] O'Connor D. J., Thomann R. V. and Ditoro D. M. Ecologic Models, Chap.5, in Systems Approach to Water Management. McGraw-Hill Book Company. New York. 1976.
    [105] 津田等.河流污染与水生生物的模式圈.地理环境污染译文集.科技文献出版社.1973.
    [106] 安部喜也.河流的自净作用.地理环境污染译文集.科技文献出版社.1973.
    [107] Falk L. L. Waste Dispersion in Receiving Waters. J. Water Pollution Control Federation. 1973. Vol.35.1171-1179.
    [108] Chen C. W and Orlob G. T Ecologic Simulation of Aquatic Environments. System Analysis and Simulation in Ecology. 1975. Vol.3. Academy Press.
    [109] Orlob G. T. Water-Quality Modeling for Decision Making. Journal of Water Resources Planning and Management. 1992. Vol. 118(3): 295-307.
    [110] Lawrence A. B., David M. C. and Ray R. L. EPA-600/3-82-023. U.S.EPA Athens. GA. P. 19. 1982.
    [111] Loux N. T., Brown D. S., Chafin C. R., Allison J. D. and Hassan S. M., Chen J. Speciation and Bioavailability. 1989. Vol. 1.111-121.
    [112] Iwane T., et al. Possible Impact of Treated Wastewater Discharge on Incidence of Antibiotic Resistant Bacteria in River Water. Water Science & Technology. 2001. Vol.43 (2): 91-100.
    [113] Baeza A., et al. Spatial and Temporal Evolution of the Levels of Tritium in the Tagus River in its Passage through Caceres (Spain) and the Alentejo (Portugal). Water Research. 2001. Vol.35 (3): 705-714.
    [114] Anbo Liu, et al. Phenanthrene Desorption from Soil in the Presence of Bacterial Extracellular Polymer: Observations and Model Prediction of Dynamic Behavior. Water Research. 2001. Vol.35 (3): 835-843.
    [115] 周晶壁.长江二维污染场计算.上海环境科学.1989.Vol.8(9).
    [116] 陈鸣钊.用随机过程求污染带数学模型及其参数.上海环境科学,1985.Vol.3(7).
    [117] 王宏等.中小流域综合水质模型系列的建立.重庆环境科学.1995.Vol.17(1).
    [118] 幸治国,龙腾锐,钟成华等.中英国际合作科技项目—长江、嘉陵江重庆段水污染控制规划研究技术分报告集,重庆市环境科学研究所.重庆建筑大学.1992.
    [119] 何秉宇.干旱地区河流动态水质模型研究.水科学进展.1997.Vol.8(1):38-43.
    [120] 黄国如,芮孝芳.官厅水库水质模型研究.水科学进展.1999.Vol.10(1):20-24.
    [121] 金忠青,韩龙喜.一种新的平原河网水质模型——组合单元水质模型.水科学进展.1998.Vol.9(1):35-40.
    [122] Ching-Gung Wean and Chih-Sheng Lee. A Neural Network Approach to Multi-objective
    
    Optimization for Water Quality Management in a River Basin. Water Resources Research. 1998. Vol.34 (3): 121-129.
    [123] Wu-Seng Lung. Fate and Transport Modeling Using a Numerical Tracer, Water Resources Research. 1996. Vol.32(1): 171-178.
    [124] Muhammad Shafqat Ejaz. Modeling for Optimal Management of Agricultural and Domestic Wastewater Loading to Steam. Water Resources Research. 1995. Vol.31(4): 1087-1095.
    [125] Sasikumar K. and Mujumdar P. P. Fuzzy Opimization Model for Water Quality Management of a River System, Journal of Water Resources Planning and Management. 1998. Vol. 124(2): 79-88.
    [126] Donald H. Burn. Water-Quality Management through Combined Simulation-Optimization. Journal of Environmental Engineering. 1989. Vol. 115 (5): 1011-1024.
    [127] Amit K. Sinha, et al. Nonlinear Optimization Model for Screening Multipurpose Reservoir System. Journal of Water Resources Planning and Management. 1999. Vol. 125(4): 229-233.
    [128] S. Alireza Taghavi, et al. Optimal Control of Ground-Water Quality Management: Nonlinear Programming Approach. Journal of Water Resources Planning and Management. 1994. Vol. 120(6): 963-982.
    [129] Daniel J. Fisher, et al. The Relative Acute Toxity of Continuous and Intermittent Exposures of Chlorine and Bromine to Aquatic Organisms in the Presence and Absence of Ammonia. Water Research. 1999. Vol.33 (3): 760-768.
    [130] David A. Pillard, et al. Toxicity of Benzotriazole and Benzotriazole Derivatives to Three Aquatic Species, Water Research. 2001. Vol.35(2): 557-566.
    [131] Jill A. Kostel, et al. Use of a Novel Laboratory Stream System to Study the Ecological Impact of PCB Exposure in A Periphytic Biolayer, Water Research. 1999. Vol.33 (18):3735-3748.
    [132] Fall C., et al. Generalized Model of Pentachlorophenol Distribution in Amended Soil-Water Systems. Water Environ. Research. 2001. Vol. 73(1): 110-117.
    [133] Roast S. D., et al. Toxicity of the Organophosphate Pesticides Chlorpyrifos and Dimethoate to Neomysis Integer. Water Research. 1999. Vol.33 (2): 319-326.
    [134] Zhou H. Y., et al. Bioaccumulation of Organochlorines in Freshwater Fish with Different Feeding Modes Cultured in Treated Wastewater. Water Research. 1999. Vol.33 (12): 2747-2756.
    [135] Okamura H., et al. Fate and Ecotoxicity of the New Anti-Fouling Compound Irgarol 1051 in the Aquatic Environment. Water Research. 2000. Vol.34 (14): 3523-3530.
    [136] Giddings J. M., et al. Acute Toxicity of 4-amino-musk-xylene to Daphnia Magna in Laboratory Water and Natural Water. Water Research. 2000. Vol.34 (8):2215-2222.
    [137] Korami Dembele, et al. Concentration Effects of Selected Insecticides on Brain
    
    Acetylcholinesterase in the Common Carp. Ecotoxicol. Environ. Safety. 2000. Vol.45(1): 49-56.
    [138]邱东如.内分泌扰乱化学品对动物的影响和作用机制.环境科学研究.2000.Vol.13(6):52-57.
    [139] Liltveed H., et al. Effect of High Intensity Light on Ultraviolet-Irradiated and Non-Irradiated Fish Pathogenic Bacteria. Water Research. 2000. Vol.34 (2): 481-486.
    [140]程晓东.河流底泥重金属不同形态的生物有效性.农业环境保护.2001.Vol.20(1):19-24.
    [141]梁涛.颗粒态铜对鱼体的生物有效性.环境科学进展.1999.Vol.7(4):70-74.
    [142] Richard N. Palmer, et al. Optimization of Water Quality Monitoring Networks. Journal of Water Resources Planning and Management. 1985. Vol. 111 (4): 478-493.
    [143] Sharp W. E. A Topological Optimum Water Sampling Plan for River and Streams. Water Resources Research. 1971. Vol.7 (6): 753-761.
    [144] Tanner IL, et al. Food Chain Organisms In Hypersaline Industrial Evaporation Ponds, Water Environ. Research. 1999 Vol.71 (4): 494-501.
    [145] Zhou H. Y., et al. Accumulation of Sediment-Sorbed Pcbs in Tilapia. Water Research. 2000. Vol.34 (11): 2905-2914.
    [146] Andrews K. Takyi and Barbara J. Lence. Surface Water Quality Management Using a Multiple-Realization Chance Constrained Method. Water Resources Research. 1999. Vol.35(5): 1657-1669.
    [147] Michael D. Sohn, et al. Reducing Uncertainty in Site Characterization Using Bayes Monte Carlo Methods. Journal of Environmental Engineering. 2000. Vol. 126 (10): 893-902.
    [148]李兰.河流水质纵向弥散系数的频域反演.水利学报.1998.Vol.8(3):61-71.
    [149]李兰,李志永,刘军才.BOD_5-DO参数反问题耦合模型.水科学进展.2000.Vol.11(3):29-34.
    [150]李兰.二维水质分布式模型和混合系数反演.中国学术期刊文摘.1998.Vol.4(7):887-887.
    [151] Yin Y. Y., et al. Fuzzy Relation Analysis for Multicriteria Water Resources Management. Journal of Water Resources Planning and Management. 1999. Vol. 125 (1): 41-47.
    [152]叶常明.水环境数学模型的研究进展.环境科学进展.1993.Vol.1(1):74-81.
    [153]夏军.河流水质灰色非线性规划的理论与应用.水利学报.1993.Vol.3(12):1-12.
    [154]曾光明.河流水质系统灰色模型的识别、模拟和应用冲国环境科学.1994.Vol.14(1):57-61.
    [155]雒文生,宋星原.用耦合模型法进行水质随机模拟研究.水利学报.1995.Vol.5(3):12-20.
    [156]王黎,马光文.Streeter-Phelps模型参数估计的遗传算法.水科学进展.1997.Vol.8(1):32-37.
    [157] Goonetilleke A., et al. The Role of Geographical Information Systems in Urban Hydrological Modeling. Lecturers School of Civil Engineering. Queensland University Of Technology. 1999.
    [158] William Dixon et al. Optimized Selection of River Sampling Sites. Water Research. 1999. Vol.33 (4): 971-987.
    
    
    [159] Neelakantan T. R., Pundarikanthan N. V. Neural Network-Based Simulation-Optimization Model for Reservoir Operation. Journal of Water Resources Planning and Management. 2000. Vo1.126 (2): 57-64.
    [160] Sharad Kumar Jain. Development of Integrated Sediment Rating Curves Using ANNs. Journal of Hydraulic Engineering. 2001. Vol. 127 (1): 30-37.
    [161] Vladan Babovic, et al. Neural Network as Routing for Error Updating of Numerical Models. Journal of Hydraulic Engineering. 2001. Vol. 127 (3): 181-193.
    [162] Alaa H. Aly, Richard C.Peralta. Optimal Design of Aquifer Systems under Uncertainty Using a Neural Network and a Genetic Algorithm. Water Resources Research. 1999. Vol.35(8): 2523-2531.
    [163] Azziz A. R. A. and Wong K.F.V., A Neural-network Approach to the Determination of Aquifer Parameter. Groundwater. 1992. Vol. 30(2): 164-167.
    [164] Rizzo D. M. and Dougherty D. E., Characterization of Aquifer Properties Using Artificial Neural Networks. Water Resources Research. 1994. Vol. 30(2): 483-497.
    [165] Holger R. M. and Dandy G. C., The Use of Artificial Neural Networks for the Prediction of Quality Parameters. Water Resources Research. 1996. Vol. 32(4): 1013-1022.
    [166] O'Connor. D. J., and Ditoro. D. M. The Distribution of Dissolved Oxygen in a Stream with the Varying Velocity. Water Resources Research. 1968. Vol. 4(3): 639-652.
    [167] 叶守泽.河流水质不确定性的数学模拟.水电能源科学.1989.No.3.23-26.
    [168] Zeng Guangming, Ye Shouze. The Grey Modeling of the River Water Quality System. Grey System. 1990. Vol. 2(1): 243-247.
    [169] 叶守泽,夏军等编著.水库水环境模拟预测与评价.中国环境科学出版社.1998.
    [170] 傅国伟编著.河流水质数学模型及其模拟计算.中国环境科学出版社.1987.
    [171] Schiffmann W, Joost M, Werner R.. Optimization of the Backpropagation Algorithm for Training Multilayer Perception. Technical Report. University of Koblenz, Institute of Physics,1993.
    [172] Riedmiller Martin, Braun Heinrich . A Direct Adaptive Method for Faster Backpropagation Learning: The Rprop Algorithm. in Proceedings of the IEEE International Conference on Neural Network. San Francisco: 1993. 586-591.
    [173] Yuan Zengren, Shen Xianhui, A New Method for Faster Backpropagation Learning. Advances in Modeling & Analysis. AMSE Press, 1995.24(1):57-64.
    [174] Pham D. T, Liu X. Training of Elman Networks and Dynamic System Modeling. International Journal of Systems Science, 1996. 27(2): 221-226.
    [175] George A. Rovithakis, Vassilis I. Gaganis , et al. Real-time Control of Manufacturing Cells
    
    Using Dynamic Neural Networks. Automatica 1999. 35(1): 139-149.
    [176] 陈国安等.基于学习率与惯性因子动态联合优化的快速BP算法.东南大学学报.1999.Vol.29(4):37-44.
    [177] 幸治国,龙腾锐,钟成华等.中英国际合作科技项目—长江、嘉陵江重庆段水污染控制规划研究技术子报告集.重庆市环境科学研究所,重庆建筑大学.1992.
    [178] Masch, F. D and Associates QUAL I, Simulation of Water Quality in Stream and Canals Program Documentation and User's Manual, Report to Texas Water Development Board, Austin, TX.1970.
    [179] Water Resources Engineers Inc. Computer Program Documentation for the Stream Quality Model QUAL Ⅱ. Report to Environmental Protection Agency, 1973.
    [180] Chen,C.W. and Orlob,G.T. Ecologic Study of Lake Koocanusa. Report to US Army Corps of Engineers, District of Seattle by Water Resources Engineers Inc. 1977.
    [181] 张书农著.环境水力学.河海大学出版社.1988.
    [182] Hush D.R. and Horne B.G., Progress in Supervised Neural Networks, IEEE Trans on Signal Processing Magazine, 1993, Vol. 1 (1), 8-39.
    [183] Powell M.J.D., Radial basis function for multivariate interpolation: A review. Technical Report. Department of Application. Math. and Theory Physics. Cambridge University, Cambridge, England. 1995.
    [184] Moody J. and Darken C.J., Fast Learning in Networks of Locally-turned Processing Circuits. Neural Computation, 1989, Vol. 1 (1), 281-293.
    [185] Hartman E.J., Keeler J.D., Kowalski J.M., Layered Neural Networks with Gaussian Hidden Units as Universal Approximations. Neural Computation, 1990, Vol.2 (4): 210-215.
    [186] Lee S.C., Kil R.M., A Gaussian Potential Function Network with Hierarchically Self-organizing Learning. Neural Networks. 1991, Vol.4, 207-224.
    [187] Moody J. and Darken C.J., Learning with Localized Receptive Fields. Proc. of the 1988 Connectionist Models Summer School. 1988. 133-143.
    [188] Tyler Holcomb and Manfred Morari, Local Training for Radial Basis Function Networks: Towards Solving the Hidden Unit Problem. American Control Conference, 1993, 2331-2339.
    [189] Chen S., Cowan C.F.N., and Grant P.M., Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks, IEEE Transactions on Neural Networks, 1991, Vol.2 (2): 302-309.
    [190] 汪小帆,宋文忠.径向基函数神经网络的一种构造算法.控制与决策.1997.Vol.12(2):150-156.
    [191] 楼顺天等.基于Matlab的系统分析与设计.西安电子科技大学出版社.1998.
    
    
    [192] Orlob, Gerald T., Mathematical Modeling of Water Quality: Streams, Lakes, and Reservoirs, Chichester, U.K., John Wiley & Sons Ltd. 1983.
    [193] 李伟主编.环境水力学进展.武汉水利电力大学出版社.1999.
    [194] 王士同编著.模糊系统、模糊神经网络及应用程序设计.上海科学技术文献出版社.1998.
    [195] Fischer, H.B., List, E.J., et al, Mixing in Inland and Coastal Waters, New York, U.S.A., Academic Press, 1979.
    [196] Yotsukura, N., Sayre, W.W., Transverse Mixing in Natural Channels, Water Resources Research. 1976. Vol. 13(4):332-341.
    [197] Rutherford, J.C., River Mixing, Chichester, U.K., John Wiley & Sons Ltd. 1994.
    [198] Taylor, G.I., The Dispersion of Matter in Turbulent Flow Through a Piper, Proc. of Royal Society London, Ser. A 223,446.1954.
    [199] Xu Xiaoping, Analytical Solution of Longitudinal Dispersion in Double-layer Stratified Turbulent Flow, Journal of Hydraulic Engineering, ASCE, 1998. Vol.124 (1): 25-32.
    [200] Chatwin, P.C., The Approach to Normality of the Concentration Distribution of a Solute in a Solvent Flowing along a Straight Pipe, J. Fluid Mech. 1970. Vol.4, 321-352.
    [201] 张书农.天然河流横向扩散系数的研究.水利学报.1983.No.12.23-30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700