莱州湾东岸滨海平原海水入侵的动态监测与数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海水入侵是世界上海岸含水层中十分普遍和广泛分布的污染问题,认识、预测、防治以及含水层管理最好的途径便是进行监测和计算机的数值模拟。
     本篇论文选择中国莱州湾东岸滨海平原作为研究区,通过研究,得到如下重要结论:
     (1)莱州湾东岸广泛分布沙质海岸地貌和第四系沉积物。受地质历史上两次海侵的影响,冲洪积物形成的陆相含水层延伸到海底很远的地方,这种海岸含水层结构和海岸环境给咸水向淡水区入侵提供了非常便利的通道。
     (2)莱州市与山东省的的人均水资源量基本持平,地下淡水资源量较少。水资源供需平衡分析表明,即使南水北调工程完成后,现状的水资源供应也难以满足需求,水资源本身的缺乏和地下水超采是诱发海水入侵的关键因素。
     (3)莱州市从上世纪70年代末便开始地下水位和水质的系统监测工作。多年的监测表明,海水入侵经历了初期发展、加速发展以及回退三个阶段。最近咸淡水界面自陆向海的回退的主要不是因为降水的增加和地下淡水开采量的减少,而是近岸海底含水层抽取咸水导致。
     (4)莱州湾东岸的海底地下水分布在海底以下的第四系沉积物中,该类咸水储存在半承压含水层中,与储存在陆相含水层中的淡水具有较强的水力联系,并接受淡水的补给。现在大量的咸水被开采出来。研究表明,像PH值、密度、钠吸附比(SAR)等特征离子值,从陆向海遵循一定的分布规律。比如陆地含水层的高值硝酸盐也在海底地下水中有较好的反映。从陆向海,水化学类型逐渐从Cl-Ca.Na.Mg型向Cl-Na.Mg型和Cl-Na型转化。另一方面,离子强度(IS)和矿物相的饱和指数(SI)也遵循一定的分布规律,构成海岸带一般的水文地球化学演变模式。应用水化学方法可以较容易地确定海水入侵。
     (5)除了水化学方法,物探技术包括垂向电阻率测深、瞬变电磁测深和激发极化方法也可用来监测海水入侵的发展。同时,包括Gamma射线和感应电导率测井的地球物理测井技术也被用作典型剖面的探测。通过探测曲线的解译,可以产生一系列的监测指标来确定咸淡水界面的动态变化。
     本文通过大量的野外试验数据,获取了海水入侵监测的两类指标,一是由特征化学离子比值组成的水文地球化学指标,另外是由电阻率和Gamma值组成的地球物理指标。文中还给出了两类指标间的对应关系,并介绍了监测工作中应注意的一些事项。
     (6)数值模拟是文中最重要的工作,首先利用小范围的抽水试验来验证水文地质参数,发现效果较好,因而该地区同类大量的抽水试验资料可以用作计算机模拟所需要的参数。
Saltwater intrusion is arguably the most common and widespread contamination issue in the coastalaquifers around the world. The best means to understand, predict, and ameliorate saltwater intrusion,as well as to manage aquifers subject to saltwater intrusion, mainly involves monitoring andcomputer numerical simulation.This paper selected the east coast of Laizhou Bay of China as the key research area to study thistypical problem and draw some important conclusions.(l)The sandy coastal geomorphology and the Quaternary sediments are widely distributed in theeastern coast of Laizhou Bay. Due to two times transgression in the geology history, the aquiferformed by flood and alluvial deposits in the landward extends far away to the bottom of the sea.This kind of aquifer construction and coastal environment offers good conditions and veryconvenient path for saltwater intruding freshwater.(2) Water resources especially the groundwater in Laizhou city are very shortage compare to theaverage amount of Shandong province. By the analysis of water supply and demands, the presentwater resources can not meet the water requirements every year, even if the big project like WaterTransfer Project from South to North in China is completed in the future. Water resources lack andgroundwater over exploitation are the key induced factors of saltwater intrusion.(3)Groundwater table and quality monitoring work were done from 1979. For these many yearssaltwater intrusion passed through three periods of which includes primary development, fastincreasing and retreat. The recently retreat of the interface between the saltwater and the freshwaterfrom land to the coast is not due to the decrease of precipitation and the fresh groundwaterexploitation but caused by pumping of saltwater in the submarine aquifer.(4)The submarine groundwater along the eastern coast of Laizhou Bay is distributed in theQuaternary porous sediments below the shallow sea bed. This kind of submarine salt water storiedin the semi-confined aquifer has strong hydraulic connection with the landward groundwater storiedin the fresh water aquifer. Now large amounts of submarine groundwater discharge (SGD) are beingexploited which is mainly recharged by the inter-land groundwater. Studies show that the chemicalcharacteristic values such as PH, density, sodium absorption ratio (SAR) and rCl/rBr in the
    groundwater follows the special rule from the land to the sea. In the mean time, the high value of Nitrates (NO3") in the land aquifer indicates the relative high value in the submarine groundwater. The hydrochemistry of groundwater from land to the sea is dominated by Cl-Ca.Na.Mg waters to Cl-Na.Mg waters and Cl-Na waters. In another hand, the ion strength (IS) and the mineral saturation index (SI) of the groundwater also follows the basic rule indicating the general model of hydrogeochemistry evolution in the coastal area. By using this method, saltwater can be delineated easily.(5) Except for the chemical methods, geophysical exploration techniques can also be used for saltwater intrusion monitoring which include the Vertical Electrical Sounding (VES), the Transient Electromagnetic Sounding (TES) and the Induced Polarization Sounding (IPS), etc. In the mean time, the geophysical logging including the Gamma ray and induced conductivity logging were used for typical profile detecting. With the interpretation of these detecting curves, a series of monitoring indexes are produced to determine the dynamic variation of salt-freshwater interface. Based on analysis of lots of measured field data, this paper gained two kinds of indexes to monitor saltwater intrusion. One is hydrogeochemical monitoring index mainly composed of characteristic chemical ion ratio, and the other one is geophysical exploration monitoring index mainly composed of resistivity and Gamma values. And then elaborated the relationship between the two kinds of indexes and introduced some problems must be paid attention to in the monitoring work. (6)The numerical simulation is the most important work in this paper. Pumping test were done in a small area to validate the hydrogeology parameters and it is found result is very good and lots of parameters obtained by this kind of pumping test in this research area can be used for the computer simulation.(7) FeFlow is a finite element based model with a wide selection of numerical solvers for performing complex 2D and 3D steady-state or transient groundwater flow and contaminant transport modeling. Saltwater intrusion in the confined aquifer (Henry problem) and unconfined aquifer (Huyakom problem) which are the classical issues were simulated by using the FeFlow software. It is found that the simulated results are similar with others in the publications. In the meantime, the migration of salt-fresh water interface drew by the groundwater funnel and the effect of subsurface barrier for saltwater prevention were also simulated. It is obviously seen that the software can solve this kind of density-dependent flow and mass transport problem.(8) 3D transient flow and mass transport model were set up to simulate the development of
    saltwater intrusion of Laizhou from 1998 to 2003. It is found that the computed results fit to the truedata well. Groundwater funnel are found in the submarine aquifer near the coastline. Thoughgroundwater table declined in the recent years, the salt-freshwater interface moved from the inlandto the coastline.(9)Saltwater intrusion has good relationship with the precipitation, groundwater and saltwaterdischarge. Using artificial neuron net model can analog and predict the area variation of saltwaterintrusion along with the three factors. If it encounters several continuous dry seasons in the futureand in the mean time keeping the small scale of groundwater exploitation just like the present year,the saltwater will not intrude to the inland because of the submarine saltwater pumping, but ifincreasing the amount of groundwater pumping along the coastal area, the saltwater intrusion wouldoccur from the beginning.(10)Much success of saltwater prevention is achieved in the area of coastal aquifer and phreaticaquifer. New types of prevention engineering have being constructed in the coastal area fromseveral years ago, of which including land-filling tidal prevention project, subsurface barrier projectin the estuary and submarine salty water exploration project for breed aquatics. Whether theseprojects do harm to the coastal environment needs more constant monitoring and forecastingresearch.Using the advanced international theory and technique of coastal and river ecosystem restoration,the ecological prevention theory should be the guide of the proper way to prevent saltwaterintrusion, but much work should be done to make the theory perfect and make progress with theengineering technology in the future.
引文
[1] 雅.贝尔(李竞生,陈崇希译).多孔介质流体动力学.北京:中国建筑工业出版社,1987.437-451
    [2] 雅.贝尔(许涓铭等译).地下水水力学.北京:地质出版社,1986.290-332
    [3] 蔡祖煌,马凤山.海水入侵的基本理论及其在海水入侵发展预测中的应用.中国地质灾害与防治学报,1996,7(3):1-9
    [4] Glover R E. The pattern of fresh water flow in a coastal aquifer. J Geophys Res, 1959, 64: 457-459
    [5] Cooper H H, F A Kohout, H R Henry, and R E Glover. Sea water in coastal aquifers. U. S. Geol. Surv., Water Supply Paper, 1964, 1613-C: 84
    [6] Henry H R, Effect of dispersion on salt encroachment in coastal aquifers. U. S. Geol. Surv., Water Supply Paper, 1964, 1613-C: 70-84
    [7] Pinder G F, Coper H H. A numerical technique for calculating the transient position of the saltwater front. Water Resources Research, 1970, 6(4): 875-883
    [8] Reilly Th E, Goodman A S. Quantitative analysis of saltwater-freshwater relationships in groundwater systems—a historical perspective. J. of Hydrology, 1985, 80: 125-160
    [9] Custodio E, Bruggeman G A. Groundwater problems in coastal area. Belgium: UNESCO, 1987
    [10] Strack O D L. Groundwater mechanics. New Jersey, USA: Prentice Hall, 1989
    [11] Maidment D R. Handbook of Hydrology. McGraw-Hill, Inc.
    [12] Bear J, Dagan G. Some exact solutions of interface problems by means of hodograph method. J Geophys Res, 1964, 69: 1563-1572
    [13] Shamir U, Dagan G. Motion of the seawater interface in coastal aquifers: A numerical solution. Water Resources Research, 1971, 7: 644-657
    [14] Pinder G F, Page R H. Finite element simulation of saltwater intrusion on the south fork of Long Island, Proceedings of the 1st International Conference on Finite elements in Water resources. London: Pentech Press, 1977, 2.51-2.69
    [15] Mercer J W, Larson S P, Faust C R. Simulation of salt-water interface motion. Groundwater, 1980, 18(4): 374-385
    [16] Wilson J L, Sa Da Costa. Finite element simulation of saltwater-freshwater interface indirect toe tracking. Water Resources Research, 1982, 18: 1069-1080
    [17] Essaid H I. A multi-layered sharp interface model of coupled fresh water and saltwater flow in coastal system: model development and application. Water Resources Research, 1990, 26(7): 1431-1451
    [18] Huyakorn P S, Wu Y S, Park N S. A multiphase approach to the numerical solution of a sharp interface saltwater intrusion problem. Water Resources Research, 1996, 32(1): 93-102
    [19] Sakr S A. Validity of a sharp-interface model in a confined coastal aquifer. Hydrogeology Journal, 1999, 7: 155-160
    [20] Segol G, Pinder G F, Gray W G. A Galerkin finite element technique for calculating the transient position of the saltwater front. Water Resources Research, 1975, 11(2): 343-347
    [21] Segol G, Pinder G F. Transient simulation of saltwater intrusion in southeastern Florida. Water Resources Research, 1976, 12(1): 65-70
    [22] Heinrich J C, Huyakorn P S, Zienkiewicz O C. An 'upwind' finite element scheme for two dimensional convective transport equition. International journal for numerical methods in engineering. 1977, 11: 131-143
    [23] Frind E O. Seawater intrusion in continuous coastal aquifer-aquitard systems. Adv. Water Resources, 1982a, 5: 89-96
    [24] Frind E O. Simulation of long-term transient density-dependent transport in groundwater. Adv. Water Resources, 1982b, 5: 73-88
    [25] Voss C I. SUTRA—A. finite element simulation for saturated-unsaturated, fluid density dependent groundwater flow with energy transport or chemical reactive single-species solute transport. USGS Water Resources Investigation Report 84-4: 369-409
    [26] Voss C I, Souza W R. Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resources Research, 1987, 26: 2097-2106
    [27] Huyakorn P S, Anderson P E, Mercer J W et al. Saltwater intrusion in aquifers: development and testing of a three-dimensional finite element model. Water Resources Research, 1987, 23(2): 293-312
    [28] Galeati G, Gambolati G, Neuman S P. Coupled and partially coupled Eulerian-Lagrangian model of freshwater-saltwater mixing. Water Resources Research, 1992, 28(1): 149-165
    [29] Oude Essink G H P, Boekelman R H. Problems with large—scale modeling of salt water intrusion in 3D. 14th Salt Water Intrusion Meeting, 1996
    [30] 赵全生,王建华.海水入侵数学模型研究综述.地下水,1994,16(3):122-126
    [31] 李国敏,陈崇希.海水入侵研究现状与展望.地学前缘,1996,3(1,2):1-5
    [32] 成建梅,黄丹红,胡进武.海水入侵模拟理论与方法研究进展.水资源保护.2004,(2):3-8
    [33] 范家爵.海水入侵地区地下水水质数值模拟方法的初步探讨.工程勘察,1988,(4):3-37
    [34] 吕贤弼.咸淡水界面的动态变化研究.水科学进展,1991,2(1):32-41.
    [35] 薛禹群,谢春红,吴吉春等.海水入侵、咸淡水界面运移规律研究.南京:南京大学出版社,1991.
    [36] 艾康洪,陈崇希.漫尾岛咸淡水界面运移剖面二维水质模拟研究.勘察科学技术,1994,(6):3-10
    [37] 李国敏,陈崇希,沈照理,蒋同根.涠洲岛海水入侵模拟.文地质工程地质,1995,(5):1-5
    [38] 陈崇希,李国敏.地下水溶质运移理论及模型.武汉:中国地质大学出版社,1996.
    [39] 陈鸿汉,王新民,张永祥,任仲宇.潍河下游地区海咸水入侵动态三维数值模拟分析.地质前缘(中国地质大学,北京),2000,(7)增刊:297~304
    [40] 成建梅,陈崇希,吉孟瑞,孙桂明.山东烟台夹河中、下游地区海水入侵三维水质数值模拟研究.地学前缘,2001,8(1)179~185
    [41] 成建梅,李国敏,陈崇希.滨海、海岛海水入侵数值模拟研究—以山东烟台市和广西涠洲岛为例.中国地质大学出版社,2004.
    [42] 刘青勇,董广清,耿树德等.淡水帷幕防治海(咸)水入侵的物理模拟试验研究.水利学报,1998,2:30-33
    [43] 袁益让,梁栋等.海水入侵及防治工程的后效预测.应用数学和力学,2001,22(11):163-171
    [44] 李国敏.通过潮汐效应确定延伸到海底的承压含水层顶板长度.水文地质工程地质,1988,(4):7-12
    [45] 李国敏,陈崇希.利用岸边水头动态确定含水层在临海方向上的边界.地球科学,1991,(5):581~589
    [46] 庄振业等.莱州湾南岸平原第四纪沉积地层与咸水入侵(赵德三主编),海水入侵灾害防治研究.济南:山东科技出版社,1996
    [47] 李道高等(赵德三主编),海水入侵灾害防治研究.济南:山东科技出版社,1996.
    [48] 韩美.莱州湾地区海水入侵与地貌的关系.海洋与湖沼,1996,27(4):414-420
    [49] 张永祥,薛禹群,陈鸿汉.莱州湾南岸晚更新世后地层中沉积海水的特征及其形成环境.海洋学报,1996,18(6):61—68
    [50] 孟广兰,韩有松,王少青.莱州湾南岸海水入侵类型及其分区.1997,15(2):25-32
    [51] 郑新奇,张乃兴,李新运.莱州湾东南沿岸地下水水位动态与海水入侵相关规律研究.水文地质工程地质,1997,3:6-9
    [52] 庄振业,刘东雁,杨鸣等.莱州湾沿岸平原海水入侵灾害的发展进程.青岛海洋大学学报,1999,29(1):141-147
    [53] 刘东雁,庄振业,邱汉学.莱州海水入侵与地下水位负值区的演变模式.海洋湖沼通报,1999,(2):18-23
    [54] 吴吉春,薛禹群,谢春红,张志辉.海水入侵过程中水—岩间的阳离子交换.水文地质工程地质,1996,(3):18-19
    [55] 周训,宁雪生,王举平.北海市滨海含水层海水入侵的水化学判别.勘察科学技术,1997,(2):9-13
    [56] 姜爱霞,李道高.莱州湾南岸滨海平原咸水入侵区浅层地下水水化学特征.海洋学报,1997,19(4):142-147
    [57] 赵建.海水入侵化学指标及侵染程度评价研究.地理科学,1998,18(1):16-24
    [58] 邱汉学,刘贯群.海水入侵地下水化学成分的形成作用.工程勘察,1999,(1):43-46
    [59] 李福林,张保祥.水化学与电法在海水入侵监测中的应用.物探与化探,1999,23(5):376-379
    [60] 韩延树,李炳光.海水侵染区地层的电性特征及侵染要素探测.勘察科学技术,1992,5:58-60
    [61] 张保祥,李福林.海水入侵的动态监测指标研究.水位地质工程地质,1997,(1):33-35
    [62] Li Fulin, Ni Benzi, Zhang Baoxiang. Study on the monitoring indexes of seawater intrusion. 98' Proceedings on Forecast and Prevention of Marine Disasters. Beijing: China Ocean Press, 1998. 202-208
    [63] 陈建生等.同位素示踪弥散试验预测评价海水入侵海河后对两岸环境的影响.勘察科学技术,1987,(6)
    [64] 潘曙兰,马凤山.海水入侵的同位素研究.地球学报,1997,(18)增刊:310-312
    [65] 李道高,赵明华等.莱州湾南岸平原浅埋古河道研究.海洋地质与第四纪地质,2000,20(1):23-28
    [66] 聂小红,刘恩峰,张祖陆.潍河下游地区浅埋古河道沉积与第四系地层划分.海洋地质与第四纪地质,2001,21(4):89-93
    [67] 赵德三.山东沿海区域环境与灾害.北京:科学出版社,1991
    [68] 尹泽生.莱州市滨海区域海水入侵研究.北京:海洋出版社,1992
    [69] 赵德三.海水入侵灾害防治研究.济南:山东科技出版社,1996
    [70] 赵德三.海水入侵灾害防治寿光示范区建设.济南:山东科技出版社,1996
    [71] 李道真,李呈义,刘培民,姜清波.滨海平原地下建库供水开源防止海水入侵技术研究.水利水电技术,1997,28(8):15-17
    [72] 庄振业,李建华,仇士华等.莱州湾东岸的全新世海侵和地层.海洋湖沼通报,1987,2:31-39
    [73] 韩春瑞,谭启新,姜玉池等.莱州湾东部滨海水域第四纪沉积及古地理特征.海洋地质与第四纪地质,1996,16(2):75-83
    [74] 唐启义,冯明光.实用统计分析及其DPS数据处理系统.北京:科学出版社,2002.553-558
    [75] Li L and Barry D A. Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resources Research, 1999, 35(11): 3253-3259
    [76] Burnett W C, Taniguchi M and Oberdorfer J. Measurement and significance of the direct discharge of groundwater into the coastal zone. Journal of Sea Research, 2001, 46: 109-116
    [77] Loaiciga H A and Zektser I S. Estimation of Submarine Groundwater Discharge. Water Resources, 2003, 30(5): 473-479
    [78] Zhang Q, Volker R E and Lockington D A. Experimental investigation of contaminant transport in coastal groundwater. Advances in Environmental Research, 2002, 6: 229-237
    [79] Li H and, Jiao J J. Tide-induced seawater-groundwater circulation in a multi-layered coastal leaky aquifer system. Journal of Hydrology, 2003, 274: 211-224
    [80] 尹泽生.莱州市滨海区域海水入侵研究.北京:海洋出版社,1992.137-142
    [81] 张寿全,黄巍.三山岛金矿区地下水同位素研究,中国沿海资源工程环境系统与经济发展战略.北京:地震出版社,1993.200-202
    [82] 张崇耿,肖应凯.硼同位素分馏及其在环境研究中的应用.盐湖研究,2002,10(2):54-60
    [83] 成建梅,黄丹红,胡进武.海水入侵模拟理论与方法研究进展.水资源保护,2004,20(2):3-8
    [84] Custodio E. Groundwater Problems in Coastal Areas. Belgium: UNESCO, 1987. 219-235
    [85] Burnett W C. Henry Bokuniewicz, Markus, Huettel, Willard S. Moore and Maroto Taniguchi. Groundwater and pore water inputs to the coastal zone. Biogeochemistry, 2003, 66: 3-33
    [86] 饶纪龙.地球化学中的热力学.北京:科学出版社,1979,165-189
    [87] 方文藻,李予国,李貅.瞬变电磁测深法原理,西北工业大学出版社,1993
    [88] Seasa, J L, Granda A. Interpretation of IP Time Domain/Resistivity Soundings for Delineating Seawater Intrusion in Some Coastal Areas of the Northeast of Spain, Geoexploration, 1987, 24: 153-167
    [89] Theodore Mills, etc. Time Domain Electromagnetic Soundings for Mapping Seawater Intrusion in Monterey County, California. Groundwater, 1988, 26(6): 771-782
    [90] Stewart Mark T, Michael C Gay. Evaluation of Electromagnetic Methods for Rapid Mapping of Saltwater Interfaced in Coastal Aquifer. Groundwater, 1982, 20(5): 538-545
    [91] Rabinovich, M. B. Errors of 1-D interpretation of 3-D TDEM data in the application of mapping saltwater/freshwater contact. Applied Geophysics, 1995, 34: 23~34
    [92] Soldal, Oddmund, Mauring, Eirik, Halvorsen, Erik, Rye, Noralf. Seawater intrusion and fresh groundwater hydraulics in fjord delta aquifers inferred from ground penetrating radar and resistivity profiles—Sunndalsora and Esebotn, western Norway. Journal of Applied Geophysics, 1994, 32(4): 305—319
    [93] Lusczynski NJ, Swarzenski W V. Saltwater encroachment in southern Nassau and SE Queens Countries, Long Island, New York. 1966, US Geol Surv Pap 1613-F
    [94] Tremblay JJ, D' Cruz J, Anger H. Saltwater intrusion in the Summerside area, P.E.I. Groundwater, 1973, 11(4)
    [95] Aderson MP, Berkebile CA. Evidence of saltwater intrusion in southeastern Long Island. Groundwater, 1976, 14: 315-319
    [96] Xue Y, Wu J, Liu P, Wong J, Jiang Q, Shi H. Seawater intrusion in the coastal area of Laizhou Bay, China: Distribution of seawater intrusion and its hydrochemical characteristics. Groundwater, 1993, 31: 532-537
    [97] Edet AE, Okereke CS. Cases and solutions: A regional study of saltwater intrusion in southeastern Nigeria based on the analysis of geoelectrical and hydrochemical data. Environmental geology, 2001, 40(10): 1278-1289
    [98] Antonio Pulido-Bosch, Abdelkrim Tahiri, Angela Vallejos. Hydrogeochemical characteristics of processes in the Temara aquifer in Northwestern Morocco. Water, Air, and Soil Pollution, 1999, 114: 323-337
    [99] Gimenez E, Morell I. Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellon, Spain). Environmental Geology, 1997, 29(1-2): 118-131
    [100] GomisYagues V, BoludaBotella N, RuizBevia F. Gypsum precipitation/dissolution as an explanation of the decrease of sulphate concentration during seawater intrusion. Journal of Hydrology, 2000, 228(1-2): 48-55
    [101] Jayakumar R, Siraz L. Factor analysis in hydrogeochemistry of coastal aquifers-a preliminary study. Environmental geology, 1997, 31(3/4): 174-177
    [102] Melloul A J, Goldenberg L C. Early-indicator signals of groundwater contamination: the case of seawater encroachment. Environmental geology, 1998, 33(4): 279-288
    [103] Sang-Ho Lee, Kyoun, G-Woong Kim, Tlwonko, Sang-Gyu Lee, Hak-Soo Hwang. Geochemical and Geophysical Monitoring of Saline water intrusion in Korean Paddy Fields. Environmental Geochemistry and Health, 2002, 24: 277-291
    [104] Bouzouf B, Quazar D, Himi M, Casas A, Elmahi I, Benkhaldoun F. Integrating Hydrogeochemical and Geophysical Data for Testing a Finite Volume Based Numerical Model for Saltwater intrusion. Transport in Porous Media 2001, 43: 179-194
    [105] 供水水文地质手册.北京:地质出版社,1977
    [106] 中华人民共和国国家标准:地下水资源管理模型工作要求(GB/T 14497-93)
    [107] Sherif MM,Hamza KI.Mitigation of Seawater Intrusion by Pumping Brackish Water.Transport in Porous Media,2001,43:29-44
    [108] 李福林,赵德三,陈学群,王永吉.海水入侵防治研究与实践进展,海岸带地质环境与城市发展研讨会论文集.天津,2004:50-56
    [109] 张勇,薛禹群,谢春红,吴吉春.考虑浓度剃度作用的达西定律理论推导.水文地质工程地质.1999,(1):34-39
    [110] 成建梅.考虑可信度的弥散尺度效应分析.水利学报,2002,(2):90-94
    [111] 雷霁霖,门强,王印庚,王秉新.大菱鲆“温室大棚+深井海水”工厂化养殖模式.海洋水产研究,2002,23(04):1-7
    [112] 刘增良,刘有才.模糊逻辑与神经网络.北京:北京航空航天大学出版社,1996
    [113] 范希民,李鸿雁,刘树坤.神经网络和遗传算法在水科学领域中的应用.北京:中国水利水电出版社,2002
    [114] 金菊良,丁晶.水资源系统工程.成都:四川科学技术出版社,2002
    [115] [美]W.H.麦克纳里等.密西西比河防治海水入侵的措施.水利水电快报,1997,18(24):18-24
    [116] 董哲仁.生态水工学的理论框架.水利学报,2003,(1):1-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700