长江干流重庆段弯道水流及水质污染范围模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡工程对生态与环境的影响是国内外十分关注的问题。长期以来,水利部长江水利委员会、中国科学院及国内其他有关部门、科研单位、大专院校,都相继对三峡工程影响所涉及的众多生态与环境因子进行了深入调查和研究工作,取得了大量的研究资料和成果,目前来说,具有一定理论基础和应用成果的水质预测和评价模型已有一些,、在复杂水流条件下污染物的扩散和衰减研究较少,大部分模型仍局限在理想河段上,特别是弯道内的污染物扩散问题国内外文献涉及较少。
     本文从国内外水流水质的的研究综述出发,介绍了水流水质模型的的应用研究进展,特别是三峡库区蓄水后,应用到三峡库区的水流水质模型的应用情况。采用MIKE11水流水质数学模型对长江三峡库区重庆段寸滩.长寿段进行模型计算,分别得到该段在一定水位情况下的糙率系数和典型污染物的扩散系数和降解系数,为水流水质精细模型提供基础性参数数据。在一维水流水质模型的参数数据基础上,通过二维水流水质模型在弯曲河段分设9个不同坐标点的排污口,分析在弯曲河段排污口的位置设置对污染物的扩散和降解带来的影响。研究发现,天然凹岸弯曲河段对污染带浓度变化范围分布有较为显著的影响,在弯曲河段变化范围明显减小,同时使污染带的最大宽度变大。天然凸岸弯曲河段对污染带浓度变化范围分布有较小的影响,对污染带的长度变化有较大影响,使污染物扩散的长度明显减小,同时对对污染带的最大宽度变化也有较大影响。在二维水流模型基础上,通过三维水流模型计算,分析了流速场与污染带扩散范围之间的关系,结果表明污染物扩散带长度与纵向流速呈指数关系,表现出良好的相关关系;弯曲河道凹岸污染物扩散带最大宽度与横向流速呈抛物线关系,曲线相关系数均大于0.95,都表现出较好的相关关系,而在弯曲河道凸岸相关系数则较差,说明了弯曲河道水流内凹岸和凸岸不同的水流特性及泥沙的冲刷和淤积对污染物扩散有较明显的影响。
     弯道中水流和泥沙的运动从本质上来说属于多相流,同时水流与污染物的扩散从本质上来说也属于多相流,用单相流模型进行数值模拟计算误差较大,建立固液两相流甚至多相流水流水质泥沙数学模型来模拟弯道污染物的扩散范围将是水环境领域的一个重要研究方向。
     由于水环境系统中客观存在着大量的不确定性,如果要更加准确、真实的反映水环境系统中的各种现象,不能用单纯的一种因素来进行分析,而是要综合考虑,才能最大限度消除数学模型计算带来的误差。
Three Gorges Project on Ecology and the environment are of great concern at home and abroad. Over the years, the Yangtze River Water Resources Commission Ministry of Water Resources, Chinese Academy of Sciences and other domestic departments, research institutes, universities, all have been involved in the Three Gorges Project of the many ecological and environmental factors in-depth investigations and research work, made a large number of research data and results, at present, has a theoretical basis and application of the results of the model prediction and evaluation of water quality have been some, in a complex flow conditions, the spread of pollutants and attenuation of less, most of the models are still limited to the ideal r. segment, particularly the proliferation curve of pollutants within the literature related to less.
     This paper studies the water quality of domestic water review paper introduces the application of water quality model research progress, particularly after the Three Gorges reservoir, the water applied to the Three Gorges Reservoir water quality model of the application. Stream water quality model using MIKE11 the Yangtze River Three Gorges Reservoir Cuntan. Longevity segment model, respectively, the water level by the paragraph in the case of a certain roughness coefficient and diffusion coefficient of typical pollutants and degradation coefficients for the fine water quality model provides the basic parameters of the data. In the one-dimensional water quality model parameters based on the data flow through the two-dimensional water quality model for river bend is divided into 9 different coordinates of the outfall of the sewage outfall in the river bend a position on the spread of pollutants and degradation with to influence. Study found that the concave bank of natural river bend range of pollution concentration distribution with more significant impact in the river bend range significantly reduced, while the maximum width of contamination with larger. Natural convex bank of the river bend with a concentration range of distribution of pollution has a smaller influence on the changes in the length of the pollution belt has great influence on the length of the dispersion of pollutants significantly reduced, while the maximum width of pollution with changes also greater impact. In a two-dimensional flow model based on that, through the three-dimensional flow model calculation, analyzed the velocity and flow of the relationship between the diffusion area, the results show that the contaminant belt length and the longitudinal velocity relationship, exponentially appears good correlation; River bend of the contaminant concave bank with maximum width and transverse velocity on a parabola relation, curve correlation coefficient are larger than 0.95 , have shown a good correlation between the convex bank in the meandering lower correlation coefficient, indicating that the flow in river bend concave sides and convex bank different flow characteristics and sediment erosion and deposition on diffusion of pollutants have a more significant impact.
     Turn water flow and sediment movement essentially belongs to the multi-phase, meanwhile flow and the spread of pollutants in its essence, also belong to multi-phase, with single-phase flow model numerical simulation error is bigger, establish solid-liquid two-phase flow sediment multiphase flowing water flow water even bend mathematical model to simulate the spread of pollutants water environment field is scope will be one of the important research direction.
     As an objective system of water environment there are a lot of uncertainty, if you want a more accurate and true reflection of the water environment system in a variety of phenomena, can not be simply a factor to analyze, but taken together, to the maximum limits of mathematical model to eliminate the error caused.
引文
[1]国家发展与改革委员会,《长江水资源和水环境保护总体规划(征求意见稿)》,2003年4月
    [2]叶常明.水环境数学模型的研究进展.环境科学进展[M],1993,1(1):74-80.
    [3]郝芳华等.流域水质模型与模拟[M],2008.03
    [4] Streeter H W Phelps E B.A study of the pollution and natural purification of the Ohio river[J]. Public Health Bulletin No.146, Washington D.C.,19-25
    [5] Thomann R V. Time series analysis of water quality data[J].J. San. Eng.Div., ASCE, 1967,93(1):1-23
    [6] Thayer R P, Krutchoff R G. Stochastic model for BOD and DO in streams[J] .San. Eng. Div., ASCE,1967,93(3):189-195
    [7]陶文拴,数值传热学(第2版).西安交通大学出版社[M],2001. 5.
    [8]魏文礼王德意.计算水力学理论及应用[M].陕西科学技术出版社.
    [9]陶文拴计算传热学的近代发展[M].科学出版社,2000. 6.
    [10]周雪漪计算水力学.清华大学出版社[M],1995. 9.
    [11]许劲.基于传质原理的二维随机水质模型研究与应用,重庆大学博士学位论文,2007年8月.
    [12]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术大学出版社,2003.
    [13] TR. Neelakantan, N.V Pundarikanthan. Neural network.based simulation model for reservoir operation[J].Journal:17-21
    [14]Mc Cormick BH, Defanti TA, Brown MD. Visualization scientific computing [J].Computer Graphics,1987,21(6):1-14.
    [15]胡文海,刘毓,史忠科。多河段线性水质模型及其可视化仿真[J].系统仿真学报,2001,13(5):656-658.
    [16] Clifford I. Voss. Editor's Message: Scientific visualization in hydrogeology [J].Hydrogeology Journal,1999,7:153.154.
    [17]曹芬芳.虚拟现实技术[M].上海:上海交通大学出版社,1997.
    [18] Adrian, B.&Ian, G. Virtual reality a role in environmental engineering education [J].Water Science and Technology, 1998,38(11):303-310.
    [19]方丽玲,吴立新,周广明,等.GIS支持下水质模型的应用[J].新疆环境保护,1999,21(3):1-8.
    [20]Qihao Weng,Modeling Urban Growth Effects on Surface Runoff with the Integration of RemoteSensing and GIS[J],Environmental management,2001,28(6): 737-748.
    [21]DaleD.Huff,William W. Hargrove, Robin Graham,etal. A GISISimulationFramework for Assessing Change in Water Yield over Large Spatial Scales[J].Environmental Management,2002,29(2):164-181.
    [22]夏冰雪.基于GI S的三峡库区水质模拟研究,重庆大学硕士学位论文,2007年4月
    [23]第17届国际大坝会议论文译文集,《大坝工程环境问题》,1992年9月.
    [24] EPA/600/3.87/007,The Enhanced Stream Water Quality Models QUAL2E and QUAL2E.UNCAS:Documentation and User Manual, 1987.
    [25] WASP4,A hydrodynamic and water quality model theory, user’s manual and programmers guide. Environmental Research Laboratory, U.S.E.P.A.1991.
    [26] Danish Hydraulic Institute.Water & Environment, MIKE11,1997.
    [27]中国水利水电科学研究院、长江水资源保护局,南水北调中线工程丹江口水库水质影响预测及保护,1994年.
    [28]韩龙喜、周毅等,小浪底水库水环境质量预测模拟研究[J],水资源保护,2002.1.
    [29]李贵宝、陈凯麒,黄河万家寨水库水质污染分析与防治对策,中国水利水电科学研究院第七届青年学术交流会,2002年.
    [30]叶守泽等编著,水库水环境模拟预测与评价,中国水利水电出版社,1998.
    [31]长江水利委员会编,三峡工程生态环境影响研究,湖北科学技术出版社,1997年.
    [32]重庆市环境科学研究所等,长江、嘉陵江重庆段水污染控制规划研究报告,1992年12月.
    [33]武汉水利电力大学,三峡库区香溪河库湾水质预测报告—《三峡工程库区移民科研重大项目》,1999年12月。
    [34]任照阳,邓春光.2007.二维水质模型在污染带长度计算中的应用[J].安徽农业科技,35(7):1984-1985
    [35]赵艳艳,郑孝宇.利用二维水流水质数学模型优化金山湖引水方案[J], 2007.25(2):308-310
    [36]谭夔,陈求稳,等.滇池大清河河口二维水环境模型研究与应用[J].环境科学学报, 2009. 29 (3) : 634-640
    [37]吴其彰,王军,陶月赞.淮河干流淮南段二维水质模拟[J].江淮水利科技,2008.6:27-29
    [38]叶守权.水库水环境模拟预测与评价[M].北京:中国水利水电出版社,1998.
    [39]雏文生,宋星原.用祸合模型进行水质随机模拟研究[J].水利学报,1995(3):12-20.
    [40]摊文生,周志军.水库垂直二维湍流与水温水质祸合模型研究水电能源科学[J] .15( 3):14-17.
    [41]蒋忠锦、王续徽.天然河流一维水质模型的研究与改进[J],1997.26(4):90-94
    [42]刘哲.复杂边界二维水流数值模拟研究与应用[D],西安理工大学硕士学位论文,2005年4月
    [42]张明亮.河流水动力及水质模型研究[D],大连理工大学博士学位论文,2007年6月
    [44]黄明海,齐鄂荣,吴剑.遗传梯度法在水质数学模型参数估值的应用[Jl.环境科学学报,2002,22(3):315-319.
    [45]徐祖信,尹海龙.黄浦江二维水质数学模型研究[J].水动力学研究与进展,2003,18(3):261-265.
    [46]张青,杜禹,等.干旱区湖泊水质预刚的数学模型[J].数学的实践与认识,2003,33(12):4-8.
    [47]张昌兵,熊朝坤,等.水质大涡模拟数学模型研究[J].水科学进展,2004,15 (4):431.435.
    [48]方正,马莉莉,哀建平.水箱水质变化数学模型及计算机仿真研究[J].武汉大学学报,2005,38(5):99-103.
    [49]陈玉松,胡开林,等.ACF32处理西坝河水BODS的一维水质数学模型研究[J].昆明理工大学学报,2006,313):54-57
    [50]梁婕,曾光明,等.变尺度混沌2遗传算法在复杂河流水质模型参数优化中的应用[J].环境科学学报,2007,27(2):342-346
    [51]严齐斌.河流水质参数估计的蒙特卡罗方法[J].水利水电技术,2006,37(10):14.16
    [52]谢荣焕,刘满.基于MATLABR的水质模型参数的确定方法[J].工业安全与环保,2006.32(2):28-29
    [53]贾艳辉.基于遗传算法的水质模型参数的确定方法[J].海河水利,2008.1:41.42
    [54]陈胖胖,吴其彰.水质模型参数计算方法研究[J].水利科技与经济,2009.15(5):403-404
    [55]王英伟,闫妍,谢新宇.松花江哈尔滨段二维水质模型参数敏感性分析[J].环境科学与管理,2008.33(12):177-180
    [56]李黎武,施周.随机噪声干扰下水质模型参数的鲁棒估计方法[J].水利学报,2006.37(6):688-693
    [57]宋广瑞,刘丹.正交化方法在水质模型参数确定中的应用[J].四川环境,2006.25(2):120-123

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700