柱形量子线中的电—声子相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着分子束外延等超薄生长技术和精细束加工技术的不断发展和完善,使人们能够按照自己的意愿排列原子、分子,制备出各种各样的零维、一维和二维纳米结构,甚至单分子器件.由于这些低维纳米体系不仅具有极其丰富的物理内涵和独特的性能,而且具有极其广阔的应用前景,因而对它们的研究在当代物理学、材料学以及日新月异的高新技术领域中显得极为重要.本文采用变分法和类LLP变换,并利用有效质量近似原理,系统地研究了柱形量子线中的杂质态和激子态的性质.分别在无限深势阱和有限深势阱中讨论了,电子与约束体纵光学(LO)声子、界面光学声子(IO)相互作用影响下的杂质态的行为.详细地讨论了电子极化效应以及杂质离子-声子相互作用对杂质态结合能的贡献行为.并进一步考虑了外加电场对量子线中杂质态、激子态极化效应的影响.获得的结果主要有:
     一、利用变分法和有效质量近似原理,计算了LO声子场和IO声子场对杂质态结合能的影响.计算中采用约束型电.声子相互作用哈密顿量,不仅考虑了电子与约束LO、IO声子的相互作用,而且还计入了杂质离子与约束LO、IO声子模的相互作用,并以外层包裹着一层非极性材料的GaAs柱形量子线为例进行数值计算.结果表明,只考虑电子和声子耦合的杂质态结合能较不考虑任何声子影响的杂质态结合能略有提高;但是计入了杂质离子和声子的耦合后,结合能大大降低,即考虑了声子场的极化效应使杂质态结合能较不考虑声子场影响有所降低.还给出了杂质态结合能随杂质位置的变化关系,发现当杂质偏离阱中心时,结合能及LO声子对结合能的影响将降低.此外,对电子的有效质量修正也作了讨论.
     二、考虑在垂直于量子线轴的方向上加外电场的情形,运用变分法计算了外电场作用下杂质态的极化效应.结果表明杂质态结合能不只是量子线半径的函数,它还随杂质位置,外电场强度发生变化.发现外加电场降低了杂质态结合能,考虑声子场作用后杂质态的斯塔克能移有所减小.另外,当杂质位置偏离阱中心时,系统对称性被破坏,外电场施加的方向也将影响杂质态结合能的大小.同时还对比了CdTe(Ⅱ-Ⅵ)及GaAs(Ⅲ-Ⅴ)两种材料中杂质态结合能的情况,发现CdTe材料中的杂质态结合能较GaAs材料中的高,且前者的极化效应及量子约束斯塔克效应较后者更明显.
     三、将模型进一步改进,考虑有限深柱形量子线中类氢杂质态的性质.采用约束型电-声子相互作用哈密顿量计算了杂质态的极化效应,不仅考虑了电子与LO声子、IO声子的相互作用,同时还计入了杂质离子与各约束型声子模的相互作用.以GaAs材料为例进行数值计算,结果表明,有限深柱形量子线中杂质离子-声子耦合降低了杂质态结合能,并且对结合能移动有重要贡献;而电子的极化效应提高了杂质态结合能,但对结合能影响不是很大.在杂质势屏蔽效应中,LO声子模对结合能的贡献要大于IO声子的贡献.对于电子极化效应来说,在量子线半径比较小的时候,IO声子模对结合能的影响起主要作用;而在量子线半径增大时,LO声子模的贡献变得更重要.
     四、利用变分方法计算了外电场影响下有限深GaAs柱形量子线中杂质态的极化效应.给出了杂质态结合能在不同的电场强度下随量子线半径、杂质位置的变化关系.结果表明,考虑声子场作用后杂质态的结合能和斯塔克能移有所减小.在外电场的影响下结合能的峰值向半径大的方向移动.
     五、研究了外电场作用下,激子-声子相互作用对无限深柱形量子线中的激子结合能的影响.以Ⅲ-Ⅴ和Ⅱ-Ⅵ化合物半导体量子线为例,给出了激子结合能随量子线半径和电场的变化关系.结果表明,激子-声子相互作用减小了激子的结合能和斯塔克能移,计算激子结合能时声子极化场的影响不能忽略.
With the development of molecular-beam epitaxy and microfabrication techniques, people can arrange the atoms and moleculars at will and make various zero-dimensional, one-dimensional and two-dimensional systems even single molecular devices. Those low-dimensional systems not only have unique physical properties, but also extra wide application prospects. Therefore, it is important to study those systems in the modern physics, the material physics and the developing technique. In this paper, variational method and Lee-Low-Pines (LLP)-like transformations are applied to investigate the impurity states and exciton states in effective mass approximation in a cylindrical quantum wire. The properties of the impurity states with the influences of the electron- confined longitudinal optical (LO) phonon and interface optical (10) phonon interactions in the infinite and finite quantum wires are studied. In addition, the contributions of the electron polaronic effects and impurity center-phonon couplings to the impurity binding energies are discussed in detail. Finally, the phonon effects on the impurity and exciton binding energies under an external electric field are investigated. Some main results obtained in the thesis are generalized as following:
     [1] Variational method and effective mass approximation are applied to calculate the phonon effects on the impurity binding energy in a GaAs cylindrical quantum wire surrounded by a nonpolar material. For the electron-phonon interaction we use the electron-confined LO and IO phonon interaction Hamiltonian and take both the electron- phonon couplings as well as the impurity-ion phonon couplings into account. The results show that the binding energies with only the electron polaronic effects are slightly higher than that without any phonon influence. Once taking ion-phonon couplings into account, the binding energies are obviously lower than that without phonon contributions. The impurity binding energies for different impurity position in the quantum wire are also calculated and find that the binding energies and the LO phonon effects on the binding energies decrease rapidly as the impurity shifts away from the center. Besides, the renormalization effective mass of the electron bound to the impurity center in quantum wire center is also concluded.
     [2] Variational approach is applied to calculate the binding energy of bound impurity states in a cylindrical quantum wire under an external electric field perpendicular to the quantum wire axes. The results show that the binding energies of shallow donor impurity states strongly depend not only on the wire radius, but also on the applied electric field and the impurity position in the wire. The binding energy is reduced by the external electric field and the phonon effects. The effect of the electric field direction becomes significant when the impurity departs from the wire center. Compared with the GaAs (III-V) quantum wire, the impurity binding energy is higher in the CdTe (II-VI) quantum wire, and the phonon effects and Stark shifts are larger in the CdTe quantum wire.
     [3] The binding energies of the hydrogenic impurity states in a cylindrical quantum wire with finite deep potential well are discussed. The phonon effects on the impurity states are considered by taking both the couplings of the electron- confined LO and IO phonon and the impurity ion-LO and IO phonon into account. As an example, we have performed numerical calculation in a GaAs cylindrical quantum wire. It is found that the ion-phonon interactions reduce the impurity binding energy and supply a key contribution to the energy shifts, but the electron polaronic effects enhance the binding energy less. LO phonon effect plays more important role than IO phonon in the impurity potential screening. The electron polaronic effect caused by IO phonon is more important when the wire is thinner, while the LO phonon effect is dominant for the thicker wires.
     [4] The effects of the external electric field on the hydrogenic impurity states in the GaAs quantum wire with a finite confining potential are studied by a variational method. The binding energies are calculated as functions of the transverse dimension of the quantum wire, and the donor-impurity position for different electric fields. The calculated results confirm that the phonon effects both reduce the binding energies of impurity states and the Stark shifts. The peak of the binding energies shifts toward a larger radius when the external electric field is applied.
     [5] The effects of the exciton- phonon interactions on the binding energies of an exciton in a cylindrical quantum wires with infinite potential in present an external electric filed are discussed. The exciton binding energies for III-V and II-VI compound semiconductor quantum wire structure are calculated as functions of the transverse dimension of the quantum wires and the electric fields. Theoretical results show that the exciton-phonon coupling reduces both the exciton binding energies and the Stark shifts by screening the Coulomb interaction and cannot be neglected.
引文
[1]L.Esaki,R.Tsu.IBM J.Res.Dev.,1970,33,61
    [2]夏建白,朱邦芬.半导体超晶格物理.上海:上海科学技术出版社,1995:1-14
    [3]R.Birringer,H.Gleiter,H.P.Klein,P.Marquardt.Nanocrystalline materials an approach to a novel solid structure with gas-like disorder?,Physics Letters A,1984,102(8),365-369
    [4]P.M.Petroff,A.C.Gossard,R.A.Logan,W.Wiegmann.Toward quantum well wires:Fabrication and optical properties,Appl.Phys.Lett.,1982,41(7),635-638
    [5]K.Kash,A.Scherer,J.M.Worklock,H.G.Craighead,M.C.Tamargo.Optical spectroscopy of ultrasmall structures etched from quantum wells,Appl.Phys.Lett.,1986,49(16),1043-1045
    [6]E.Kapon,D.M.Hwang,R.Bhat.Stimulated emission in semiconductor quantum wire heterostructures,Phys.Rev.Lett.,1989,63(4),430-433
    [7]L.Pfeiffer,K.W.West,H.L.Stormer,J.P.Eisenstein,K.W.Baldwin,D.Gershoni,J.Spector.Formation of a high quality two-dimensional electron gas on cleaved GaAs,Appl.Phys.Lett.,1990,56(17),1697-1699
    [8]X.Wang,Q.W.Li,Z.B.Liu,J.Zhang,Z.F.Liu.Low-temperature growth and properties of ZnO nanowires,Appl.Phys.Lett.,2004,84(24),4941-4943
    [9]C.Vieu,M.Schneider,G.Benassayag,R.Planel,L.Blrotheau,J.Y.Marzln,B.Descouts.Optimized selective mixing of a GaAs/GaAlAs quantum well for the fabrication of quantum wires,J.Appl.Phys.,1992,71(10),5012-5015
    [10]H.D.Park,S.M.Prokes,R.C.Cammarata.Growth of epitaxial InAs nanowires in a simple closed system,Appl.Phys.Lett.,2005,87(6),063110(1-3)
    [11]J.C.Harmand,G.Patriarche,N.Pere-Laperne,M.N.Merat-Combes,L.Travers,F.Glas.Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth,Appl.Phys.Lett.,2005,87(20),203101(1-3)
    [12]J.Su,M.Gherasimova,G.Cui,H.Tsukamoto,J.Han,T.Onuma,M.Kurimoto,S.F.Chichibu,C.Broadbridge,Y.He,A.V.Nurmikko.Growth of AlGaN nanowires by metalorganic chemical vapor deposition, Appl. Phys. Lett., 2005, 87(18), 183108(1 -3)
    [13]N. Wang, Y. Cai, R. Q. Zhang. Growth of Nanowires, Materials Science and Engineering, 2008, R(60), 1-51
    [14]X. L. Wang, V. Voliotis. Epitaxial growth and optical properties of semiconductor quantum wires, Appl. Phys. Rev., 2006, 99(12), 121301(1-38)
    [15]G. Fasol, M. Tanaka, H. Sakaki, Y. Horikoshi. Interface roughness and the dispersion of confined LO phonons in GaAs/AlAs quantum wells, Phys. Rev. B, 1988, 38(9), 6056-6065
    [16]H. Weman, E. Martinet, M. A. Dupertuis, A. Rudra, K. Leifer, E. Kapon. Two-dimensional quantum-confined Stark effect in V-groove quantum wires: Excited state spectroscopy and theory, Appl. Phys. Lett, 1999, 74(16), 2334-2336
    [17]B. Alen, J. M. Pastor, A. G. Cristobal, L. Gonzalez, J. M. Garcia. Optical transitions and excitonic recombination in InAs/InP self-assembled quantum wires, Appl. Phys. Lett, 2001, 78(25), 4025-4027
    [18]T. Sugaya, J. P. Bird, D. K. Ferry, A. Sergeev, V. Mitin, K. Y Jang, M. Ogura, Y. sugiyama. Experimental studies of the electron-phonon interaction in InGaAs quantum wires, Appl. Phys. Lett, 2002, 81(4), 727-729
    [19]T. Angelova, A. Cros, A. Cantarero, D. Fuster, Y. Gonzalez, L. Gonzalez. Raman study of InAs/InP quantum wires, AIP Conf. Proc, 2007, 893(1), 865-866
    [20] T. Angelova, A. Cros, A. Cantarero, D. Fuster, Y. Gonzalez, L. Gonzalez. Raman study of self-assembled InAs/InP quantum wire stacks with varying spacer thickness, J. Appl. Phys, 2008, 104(3), 033523(1-6)
    [21] S. Ramanathan, S. Bandyopadhyay, L. K. Hussey, M. Munoz. Observation of numerous E_2 mode phonon replicas in the room temperature photoluminescence spectra of ZnO nanowires: Evidence of strong deformation potential electron-phonon coupling, Appl. Phys. Lett, 2006, 89(14), 143121(1-3)
    [22] J. R. Cao, C. de Graaf, J. Caro, S. Radelaar, M. Offenberg, V. Lauer, J. Singleton, T. J. B. M. Janssen, J. A. A. J. Perenboom. One-dimensional subband effects in the conductance of multiple quantum wires in Si metal-oxide-semicondutor field-effect transistors, Phys. Rev. B, 1990,41(17), 12315-12318
    [23] A. Nasr. Spectral responsivity of the quantum wire infrared photodetectors, Optics & Laser Techology, 2009,41(3), 345-350
    [24]D. Gershoni, H. Temkin, G. J. Dolan, J. Dunsmuir, S. N. G. Chu, M. B. Panish. Effects of two-dimensional confinement on the optical properties of InGaAs/InP quantum wire structures, Appl. Phys. Lett., 1988, 53(11), 995-997
    [25] L. Birotheau, A. Izrael, J. Y. Marzin, R. Azoulay, V. Thierry-Mieg, F. R. Ladan. Optical investigation of the one-dimensional confinement effects in narrow GaAs/GaAlAs quantum wires, Appl. Phys. Lett., 1992, 61(25), 3023-3025
    [26] D. Gershoni, J. S. Weiner, S. N. G. Chu, G. A. Baraff, J. M. Vandenberg, L. N. Pfeiffer, K. West, R. A. Logan, T. Tanbun-Ek. Optical transitions in quantum wires with strain-induced lateral confinement, Phys. Rev. Lett., 1990, 65(13), 1631-1634
    [27]M. Watt, C. M. S. Torres, H. E. G. Arnot, S. P. Beaumont. Surface phonons in GaAs cylinders, Semicond. Sci. Technol., 1990, 5(4), 285-290
    [28]V. K. Arora. Quantum well wires: electrical and optical properties, J. Phys. C: Solid State Phys., 1985,18(15), 3011-3016
    [29] D. Crouse. Phonon modes and electron-phonon interactions in cylindrical quantum wires: Macroscopic and microscopic analyses for device application, J. Appl. Phys., 2006, 100(1), 014509(1-8)
    [30]E. P. Pokatilov, V. A. Fonoberov, S. N. Balaban, V. M. Fomin. Electron states in rectangular quantum well wires (single wires, finite and infinite lattices), J. Phys.: Condens. Matter, 2000, 12(42), 9037-9052
    [31]H. Ham, H. N. Spector. Photoionization cross section of hydrogenic impurities in cylindrical quantum wires: Finite well model, J. Appl. Phys., 2006, 100(2), 024304(1-4)
    [32] G. Bastard. Hydrogenic impurity states in a quantum well: A simple model, Phys. Rev. B, 1981, 24(8), 4714-4722
    [33] J. Lee, H. N. Spector. Hydrogenic impurity states in a quantum well wire, J. Vac. Sci Tech. B, 1984, 2(1), 16-20
    
    [34] G. W. Bryant. Hydrogenic impurity states in quantum-well wires, Phys. Rev. B, 1984, 29(12), 6632-6639
    [35] G. W. Bryant. Hydrogenic impurity states in quantum-well wires: Shape effects, Phys. Rev. B, 1985, 31(12), 7812-7818
    [36] S. I. Tsonchev, P. L. Goodfriend. Calculation of binding energies for off-axis hydrogenic impurities in cylindrical quantum well wires, J. Phys. B, 1992,25(22), 4685-4691
    [37] C. Y. Hsieh. Off-center donor impurity in multilayered quantum wires, J. Appl. Phys., 2002, 91(4), 2326-2332
    [38] E. Kasapoglu, H. Sari. I. Sokmen. Geometrical effects on shallow donor impurities in quantum wires, Physica E, 2003, 19(4), 332-335
    [39]G.Weber, A. M. de Paula. Shallow impurities in multiple V-groove quantum wires, J. Phys.: Condens. Matter, 2002, 14(3), 471-482
    [40] G. Weber, A. M. de Paula. Shallow impurities in V-groove quantum wires, Phys. Rev. B, 2001, 63(11), 113307(1-4)
    [41]B. Zh. Poghosyan, G. H. Demirjian. Binding energy of hydrogenic impurities in quantum well wires of InSb/GaAs, Physica B, 2003, 338(1-4), 357-360
    [42]D. S. Chuu, C. M. Hsiao, W N. Mei. Hydrogenic impurity states in quantum dots and quantum wires, Phys. Rev. B, 1992, 46(7), 3898-3905
    [43] J. W. Brown, H. N. Spector. Hydrogenic impurities in quantum well wires, J. Appl. Phys., 1986,59(4), 1179-1186
    [44] J. F. Jan, Y. C. Lee, D. S. Chuu. Nonvariational approach to impurity states in quantum wires, Phys. Rev. B, 1994, 50(19), 14647-14650
    [45] C. Bose, C. K. Sarkar. Effect of a parabolic potential on the impurity binding energy in spherical quantum dots, Physica B, 1998, 253(3-4), 238-241
    [46] M. M. Aghasyan, A. A. Kirakosyan. Binding energy of impurity in a size-quantized coated semiconductor wire: role of the dielectric-constant mismatch, Physica E, 2000, 8(3), 281-289
    [47] L. Wendler, B. Hartwig. The effect of the image potential on the binding energy of hydrogenic impurities in semiconductor quantum wells, J. Phys.: Condens. Matter, 1990, 2(44), 8847-8852
    [48] Z. Y. Deng, S. W. Gu. Effects of the image potential on hydrogenic impurity binding energies in quantum well wires, J. Phys.: Condens. Matter ,1993, 5(14), 2261-2266
    [49]Z. Y. Deng, T. R. Lai, J. K. Guo, S. W. Gu. Electronic and shallow donor impurity states in GaAs-Ga_(1-x)Al_xAs quantum-well wires: effects of dielectric mismatch, J. Appl. Phys., 1994, 75(11), 7389-7393
    [50]N. C. Constantinou, B. K. Ridley. Interaction of electrons with the confined LO phonons of a free-standing GaAs quantum wire, Phys. Rev. B, 1990,41(15), 10622-10626
    [51]N. C. Constantinou, B. K. Ridley. Guided and interface LO phonons in cylindrical GaAs/Al_xGa_(1-x)As quantum wires, Phys. Rev. B, 1990,41(15), 10627-10631
    [52] B. F. Zhu. Optical-phonon modes and Frohlich potential in one-dimensional quantum-well wires, Phys. Rev. B, 1991,44(4), 1926-1929
    [53]P. A. Knipp, T. L. Reinecke. Interface phonons of quantum wires, Phys. Rev. B, 1992,45(16), 9091-9102
    [54] R. Enderlein. Optical-phonon modes of circular quantum wires, Phys. Rev. B, 1993, 47(4), 2162-2175
    [55]M. A. Stroscio, K. W. Kim, M. A. Littlejohn, H. Chuang. Polarization eigenvectors of surface-optical phonon modes in a rectangular quantum wire, Phys. Rev. B, 1990, 42(2), 1488-1491
    [56] O. A. Dossary, M. Babiker, N.C. Constantinou. Fuchs-Klievwer interface polaritons and their interactions with electrons in GaAs/AlAs double heterostructures, Semicond. Sci. Technol., 1992,7(3B),B91-B93
    [57] V. B. Antonyuk, A. G Mal'shukov, M. Larsson, K. A. Chao. Effect of electron-phonon interaction on electron conductance in one-dimensional systems, Phys. Rev. B, 2004, 69(15), 155308(1-7)
    [58]F. A. P. Osorio, M. H. Degani, O. Hipolito. Polaron effects on the impurity binding energy in quantum wires, Phys. Rev. B, 52(7), 1995,4662-4665
    [59] Q. H. Chen, Y. H. Ren, Z. K. Jiao, K. L. Wang. Ground state description of bound polarons in parabolic quantum wires, Eur. Phys. J. B, 1999,11(1), 59-63
    [60]R. P. M. Krishna, A. Chatterjee. Effect of electron-phonon interaction on the electronic properties of an axially symmetric polar semiconductor quantum wire with transverse parabolic confinement, Physica B, 2005, 358(1-4), 191-200
    [61]X. F. Wang, X. L. Lei. Polar-optic phonons and high-field electron transport in cylindrical GaAs/AlAs quantum wires, Phys. Rev. B, 1994,49(7), 4780-4789
    [62] M. A. Stroscio. Interaction between longitudinal-optical-phonon modes of a rectangular quantum wire and charge carriers of a one-dimensional electron gas, Phys. Rev. B, 1989, 40(9), 6428-6431
    [63] L. Zhang, J. J. Shi, T. L. Tansley. Polar vibration spectra of interface optical phonons and electron-interface optical phonon interactions in a wurtzite GaN-AIN nanowire, Phys. Rev. B, 2005, 71(24), 245324(1-9)
    [64] L. Zhang, J. J. Shi. Polar interface optical phonon modes and Frohlich electron-phonon interaction Hamiltonians in wurtzite quantum well wires, Semicond. Sci. Technol., 2005, 20(6), 529-600
    [65] Q. H. Zhong. Optical phonon modes in a free-standing quantum wire with ring geometry, Physics Lett. A, 2008, 372(8), 5932-5937
    [66] X. F. Zhao, C. H. Liu. One phonon resonant Raman scattering in free-standing quantum wires, Physics Lett. A, 2007, 364(1), 70-75
    [67] Y. B. Yu, S. N. Zhu, K. X. Guo. Electron-phonon interaction effect on optical absorption in cylindrical quantum wires, Solid State Communications, 2006, 139(2), 76-79
    [68] M. H. Degani, G. A. Farias. Polaron effects in one-dimensional lateral quantum wires and parabolic quantum dots, Phys. Rev. B, 1990,42(18), 11950-11952
    [69]F. Buonocore, G. Iadonisi, D. Ninno, F. Ventriglia. Polarons in cylindrical quantum wires, Phys. Rev. B, 2000, 65(20), 205415(1-7)
    [70] W. S. Li, S. W. Gu, T. C. Au-Yeung, Y. Y. Yeung. Effects of the parabolic potential and confined phonon on the polaron in a quantum wire with, Phys. Rev. B, 1992, 46(8), 4630-4637
    [71]K. D. Zhu, S. W. Gu. The polaron self-energy due to phonon confinement in quantum boxes and wires, J. Phys.: Condens. Matter, 1992, 4(5), 1291-1297
    [72]D. S. Chuu, Y. N. Chen, Y. K. Lin. Effect of electron-phonon interaction on the impurity binding energy in a quantum wire, Physica B, 2000, 291(3-4), 228-235
    [73]H. J. Xie. Polaron self-energy and effective mass in a freestanding cylindrical quantum wire, Physica E, 2004, 22(4), 906-911
    [74]H. J. Xie, C. Y. Chen, Y. Y. Liu. A bound polaron in a quasi-two-dimensional structure of strong-coupling polar crystals, Physica B, 1998, 253(1-2), 73-78
    [75] H. J. Xie, X. Y. Liu. Polarons in a cylindrical quantum well wire with finite confining potential, Superlattices and Mirostructures, 2006, 39(6), 489-500
    [76]H. J. Xie, C. Y. Chen, B. K. Ma. Bound polaron in a cylindrical quantum wire of a polar crystal, Phys. Rev. B, 2000, 61(7), 4827-4834
    [77] H. J. Xie, C. Y. Chen, B. K. Ma. The bound polaron in a cylindrical quantum well wire with a finite confining potential, J. Phys: Condens. Matter, 2000,12(40), 8623-8640
    [78]H. J. Xie, C. Y Chen. Abound polaron in a spherical quantum dot, Eur. Phys. J. B, 1998, 5(2), 215-218
    [79] K. D. Zhu, S. W. Gu. Effect of electron-confined LO-phonon interaction on shallow donors in quantum well wires, Solid State Communications, 1994, 89(2), 151-156
    [80]E. P. Pokatilov, S. N. Klimin, S. N. Balaban, V. M. Fomin. Polarons in a cylindrical quantum wire with finite-barrier well, Phys. Stat. sol. (b), 1995, 191(2), 311-323
    [81]E. P. Pokatilov, V. M. Fomin, S. N. Balaban, S. N. Klimin, J. T. Devreese. Impurity-bound hole polaron in a cylindrical quantum wire, Phys. Stat. Sol. (b), 1998, 210(2), 879-883
    [82] M. Bouhassoue, R. Charrour, M. Fliyou, D. Bria, A. Nougaoui. Binding energy of shallow impurities in polar quantum well wire, Physica B, 2001, 304(1-4), 389-397
    [83] S. Moukhliss, M. Fliyon, N. Es-Sbai. Binding energy of the donor-confined LO phonon system in quantum well wire structures, Phys. Stat. Sol. (b), 1998, 206(2), 593-600
    [84] S. N. Klimin, E. P. Pokatilov, V. M. Fomin. Bulk and interface polarons in quantum wires and dots, Phys. Stat. Sol. (b), 1994, 184(2), 373-383
    [85] J. Lee, H. N. Spector. Stark effect in the optical absorption in quantum wires, J. Appl. Phys., 2005, 97(4), 043511(1-6)
    [86]B. Sukumar, K. Navaneethakrishnan. Polarizability of a carrier in an isolated well of a quantum-well wire, Phys. Rev. B, 1990,41(18), 12911-12914
    [87] F. A. P. Osorio, A. N. Borges, A. A. Caparica, Jose R. Leite. Polarizability of a donor impurity in a GaAs-AlGaAs quantum wire, Solid State communications, 1997, 103(6), 375-380
    [88] A. Montes, C. A. Duque, N. P. Montenegro. Density of shallow-donor impurity states in rectangular cross section GaAs quantum-well wires under applied electric field, J. Phys: Condens Matter, 1998, 10(24), 5351-5358
    [89] A. Montes, C. A. Duque, N. P. Montenegro. Electric field effects on the states of a donor impurity in rectangular cross-section vacuum/GaAs/vacuum quantum-well wires, J. Appl. Phys., 1998, 84(3), 1421-1425
    [90] C. A. Duque, A. L. Morales, A. Montes, N. P. Montenegro. Effects of applied electric fields on the infrared transitions between hydrogenic states in GaAs low-dimensional systems, Phys. Rev. B, 1997, 55(16), 10721-10728
    [91]C. A. Duque, A. Monte, A. L. Morales. Binding energy and polarizability in GaAs-(Ga, Al)As quantum-well wires, Physica B, 2001, 302-303, 84-87
    [92] C. A. Duque, A. Monte, A. L. Morales, N P. Montenegro. Effects of an applied electric field on the binding energy of shallow donor impurities in GaAs low-dimensional systems, J. Phys.: condens. Matter, 1997, 9(27), 5977-5987
    [93] A. Monte, C. A. Duque, N. P. Monenegro. The binding energies of shallow donor impurities in GaAs quantum-well wires under applied electric fields, J. Appl. Phys., 1997, 81(12), 7890-7894
    [94] A. Monte, C. A. Duque, N. P. Monenegro. Binding energy of the ground and first few excited states of a shallow-donor impurity in rectangular-cross-sectional area GaAs quantum-well wires under applied electric field, Phys. Stat. Sol. (b), 1998, 210(2), 731-736
    [95] H. T. Cao, D. B. T. Yhoai. Effect of the electric field on a hydrogenic impurity in a quantum-well wire, Physica B, 1995, 205(3-4), 273-278
    [96] R. B. Santiago, L. E. Oliveira, J. d'Albuquerque e Castro. Impurity-related optical absorption from GaAs-(Ga, Al)As quantum wells under an applied electric field, Phys. Rev. B, 1992, 46(7), 4041-4046
    [97] E. Kasapoglu, H. Sari, U. Yesilgul, I. Sokmen. The effect of intense laser field on the photoionization cross-section and binding energy of shallow donor impurities in graded quantum-well wire under an electric field, J. Phys.: Condens. Matter, 2006, 18(27), 6263-6271
    [98] E. Kasapoglu, H. Sari., I. Sokmen. Hydrogenic impurities in graded GaAs-(Ga, Al)As quantum-well wires in an electric field, Physica B, 2002, 315(4), 261-266
    [99] O. Akankan, S. E. Okan, H. Akbas. Spatial electric field effect in GaAs-AlAs quantum wires, Physica E, 2005,25(4), 535-538
    [100] A. I. Mese, S. E. Okan. Binding energy of relativistic hydrogenic impurities in cylindrical quantum well wires under an applied electric field, Phys. Stat. Sol. (b), 2004, 241(15), 3525-3531
    [101] M. Ulas, E. Cicek, S. S. Dalgic. Electric field effect on the binding energy of a non-hydrogenic donor impurity in a cylindrical cross-sectional quantum well wire, Phys. Stat. sol. (b), 2004, 241(13), 2968-2974
    [102] S. Aktas, F. K. Boz, S. S. Dalgic. Electric and magnetic field effects on the binding energy of a hydrogenic donor impurity in a coaxial quantum well wire, Physica E, 2005, 28(1), 96-105
    [103] S. Aktas, S. E. Okan, H. A.kbas. Electric field effect on the binding energy of a hydrogenic impurity in coaxial GaAs/Al_xGa_(1-x)As quantum well-wires, superlattices and Microstuctures, 2001, 30(3), 129-134
    [104] K. H. Li, Y. T. Zhang, Y. C. Li. Electric effect of impurity in square quantum wires, Chin Phys Lett., 2004, 21(8), 1616-1619
    [105] V. N. Mughnetsyan, M. G. Barseghyan, A. A. Kirakosyan. Binding energy and photoionization cross section of hydrogen-like donor impurity in quantum well-wire in electric and magnetic fields, Superlattices and Microstructures, 2008,44(1), 86-95
    [106] H. Sari, I. Sokmen, U. Yesilgul. Photoionization of donor impurities in quantum wires in a magnetic field, J. Phys. D: Appl. Phys., 2004, 37(5), 674-677
    [107] A. L. Vartanian, M. A. Yeranosyan, A. A. Kirakosyan. The polaron effect on the binding energy of a shallow donor impurity in quantum-well wires in an electric field, Physica E, 2005, 27(4), 447-456
    [108] A. L. Vartanian, M. A. Yeranosyan, A. A. Kirakosyan. Electron-phonon effect on the ground-state binding energy of hydrogenic impurity in quantum-well wire in presence of an electric field, Physica B, 2007, 390(1-2), 256-262
    [109] I. Zorani, L. Filali. Poalron and form effects on the polarizabilities of shallow donors in quantum wires Phys. Stat. sol. (b), 1999, 215(2), 999-1004
    [110] T. C. A. Yeung, C. C. Jong, S. W. Gu, E. M. C. Wong. The Stark effect on a bound polaron in parabolic quantum wires, Physics Letters A, 1995, 204(2), 155-161
    [111] H. Akiyama. One-dimensional excitons in GaAs quantum wires, J. Phys.:Condens. Matter, 1998,10(14), 3095-3139
    [112] J. W. Brown, H. N. Spector. Exciton binding energy in quantum-well wires, Phys. Rev. B, 1987, 35(6), 3009-3012
    [113] J. M. Rorison. Theoretical model of excitons for type-II quantum-wire systems, Phys. Rev.B,1994,50(11),8008-8011
    [114]J.Costa e Silva,A.Chaves,J.A.K.Freire,V.N.Freire,G.A.Farias.Theoretical investigation of excitons in type-Ⅰ and type-Ⅱ Si/Si_(1-x)Ge_x quantum wires,Phys.Rev.B,2006,74(8),085317(1-6)
    [115]J.B.Xia,K.W.Cheah.Exciton states in isolated quantum wires,Phys.Rev.B,199755(3),1596-1601
    [116]S.N.Walck,T.L.Reinecke.Exciton binding energy in T-shaped semiconductor quantum wires,Phys.Rev.B,1997,56(15),9235-9238
    [117]A.V.Kavokin,M.A.Kaliteevski,M.R.Vladimirova.Coupling between one-dimensional excitons and two-dimensional photons:Quantum wires in a microcavity,Phys.Rev.B,1996,54(3),1490-1493
    [118]G.W.Bryant,P.S.Julienne,Y.B.Band.Excitons in complex quantum nanostructures,Surface Science,1996,361-362,801-804
    [119]D.Brinkmann,G.Fishman,C.Gourgon,L.S.Dang,A.L(o|¨)ffler,H.Mariette.Excitons in CdTe quantum wires with strain-induced lateral confinement,Phys.Rev.B 54(3),1872-1876(1996)
    [120]A.Crottini,J.L.Staehli,B.Deveaud,X.L.Wang,M.Ogura.One-dimensional biexcitons in a single quantum wire,Solid State Communications,2002,121(8),401-405
    [121]L.Banyai,I.Galbraith,C.Ell,H.Haug.Excitons and biexcitons in semiconductor quantum wires,Phys.Rev.B,1987,36(11),6099-6104
    [122]O.M.Schmitt,L.Banyai,H.Haug.Exciton and biexciton correlations for weakly confined semiconductor quantum wires,Solid State Communications,1999,111(12),741-745
    [123]J.J.Liu,X.F.Chen,S.S.Li.Binding Energy of Biexcitons in GaAs Quantum-Well Wires,Chin.Phys.Lett.,2004,21(11),2259-2262
    [124]J.J.Liu,B.Di,G.C.Yang,S.S.Li.Variational Calculations of Neutral Bound Excitons in GaAs quantum-well wires,Chin.Phys.Lett.,2004,21(5),919-922
    [125]T.Melin,F.Laruelle.Exciton-Exciton Interactions in AlAs/GaAs Coupled Quantum Wire Arrays,Phys.Rev.Lett.,1998,81(20),4460-4463
    [126]E.A.Muljarov,E.A.Zhukov,V.S.Dneprovskii,Y.Masumoto.Dielectrically enhanced excitons in semiconductor-insulator quantum wires:Theory and experiment,Phys.Rev.B, 2000, 62(11), 7420-7432
    [127] W. Braun, M. Bayer, A. Forchel, H. Zull, J. P. Reithmaier, A. I. Filin, S. N. Walck, T. L. Reinecke. Exciton wave packets in In_(0.135)Ga_(0.865)As/GaAs quantum wires, Phys. Rev. B, 1997, 55(15), 9290-9293
    [128] M. H. Degani, O. Hipolito. Polaron effects on excitons in GaAs-Ga_(1-x)Al_xAs quantum well, Phys. Rev. B, 1987, 35(9), 4507-4510
    [129] M. H. Degani, O. Hipolito. Exciton binding energy in quantum-well wires, Phys. Rev. B, 1987, 35(17), 9345-9348
    [130] W. D. Sheng, S. W. Gu. Effects of electron (hole)-SO-Phonon coupling on the Ground Exciton State in quantum wires, Phys. State. Sol. (b), 1993, 178(2), 377-383
    [131] W. D. Sheng, S. W. Gu. Influence of electron(hole)-SO-phonon coupling on the exciton binding energy in quantum wires, Solid State Communications, 1993, 88(2), 111-113
    [132] R. A. Escorcia, C. Riva, I. D. Mikhailov. Polaronic exciton in quantum wells wires and nanotubes, Solid State Communications, 2004, 131(6), 365-370
    [133] R. Q. Wang, H. J. Xie, K. X. Guo, Y. B. Yu, Y. Q. Deng. Polaronic effects of an exciton in a cylindrical quantum wire, Commun. Theor. Phys., 2005,43(1), 169-174
    [134] K. Chang, J. B. Xia. Quantum-confined Stark effects of exciton states in V-shaped GaAs/Al_xGa_(1-x)As quantum wires, Phys. Rev. B, 1998, 58(4), 2031-2037
    [135] E. Kasapoglu, H. Sari, M. Bursal, I. Sokmen. Exciton absorption in quantum-well wires under the electric field, Physica E, 2003, 16(2), 237-243
    [136] C. G. Avendano, J. A. Reyes, M. D. C. Mussot, G. J. Vazquez, H. Spector. Stark effect on an exciton or impurity in a finite width quantum wire with an electric field confined in a finite region, Physica E, 2005, 30(1-2), 126-133
    [137] S. Benner, H. Haug. Influence of external electric and magnetic fields on the excitonic absorption spectra of quantum-well wires, Phys. Rev. B, 1993,47(23), 15750-15754
    [138] Y. Sidor, B. Partoens, F. M. Peeters, J. Maes, M. Hayne, D. Fuster, Y. Gonzalez, L. Gonzalez, V. V. Moshchalkov. Exciton confinement in InAs/InP quantum wires and quantum wells in the presence of a magnetic field, Phys. Rev. B, 2007, 76(19), 195320(1-9)
    [139] H. Weman, E. Martinet, M. A. Dupertuis, A. Rudru, K. Leifer, E. Kapon. Two-dimensional quantum-confined Stark effect in V-groove quantum wires: Excited state spectroscopy and theory, Appl. Phys. Lett., 1999, 74(16), 2334-2336
    [140] N. B. An, H. Haug. Theory of the excitonic optical Stark effect in quasi-one-dimensional semiconductor quantum wires, Phys. Rev. B, 1992,46(15),9569-9576
    [141] T. Tanaka, Y. Arakawa, G. W. E. Bauer. Magnetoexcitons in quantum wries with an anisotropic parabolic potential, Phys. Rev. B, 1994, 50(11), 7719-7723
    [142] P. M. Platzman. Ground-state energy of bound polarons, Phys. Rev., 1962, 125(6), 1961-1965
    [143] R. de Paiva, R. A. Nogueira, C. de Oliveira, H. W. L. Alves, J. L. A .Alves, L. M. R. Scolfaro, J. R. Leite. First-principles calculations of the effective mass parameters of Al_xGa_(1-x)N and Zn_xCd_(1-x)Te Alloys, Braz. J. Phys. 2002, 32(2A), 405-408

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700