金纳米粒子的电化学合成及其自组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于化学方法,电化学法在制备金属纳米材料方面有许多优点,例如,产物纯度高,能更好地控制纳米粒子的尺寸和形貌等。我们设计了旋转阴极,并使用它通过电化学还原反应来合成尺寸和形状可控的纳米金属材料。旋转电极的优点是可以有效地加速金属纳米粒子从电极表面到体相溶液的转移速度。具有较强络合性能的多官能团聚合物和表面活性剂被用作纳米粒子的稳定剂和形状控制剂。使用旋转阴极可以在纳米粒子稳定剂存在的条件下通过简单的电化学还原方式较大规模地合成形状和尺寸可控的金属纳米材料。
     在聚乙烯吡咯烷酮(PVP)作为保护剂的电解液中,尺寸可控的金纳米晶体可以通过电化学还原AuCl_4~-阴离子很方便地合成出来。PVP能促进金纳米粒子的形成过程,并且显著地抑制其电沉积过程,这就决定了金纳米晶体可以通过简单的电还原过程合成得到。这种新颖的方法还有望用于其它尺寸可控的的贵金属纳米粒子的合成。
     我们研究了电化学法合成贵金属纳米粒子过程中聚乙烯吡咯烷酮的作用机理,同时研究了金纳米粒子的生长过程和机制,从而可以对这种合成方法进行优化和改进。
     以这种方法为基础,通过适当地改变其他反应条件,我们还合成了单分散性很好的金纳米球形粒子、纳米棱柱和纳米多面体。
     PVP K90保护的金纳米晶能够自发地组装成二维密堆积阵列和奇特的一维纳米结构。以PVPK17作为保护剂的金纳米晶体可以通过粒子间的聚集形成超薄的单晶纳米膜。在单晶纳米膜的形成过程中PVP起到了多种作用,既控制了金纳米晶的尺寸和形状,又促进了单个金纳米晶通过粒子间的聚集和熔合构建二维纳米结构材料。以聚乙烯吡咯烷酮为基础的自组装技术,为我们提供了一种简单而且有效地把单个金纳米晶组装成不同的一维和二维纳米结构材料的有效途径。
Some advantages of electrochemical methods over chemical methods in synthesis of metal nanostructures are the high purity of products and good control of size, shape, and morphology of the nanostructured materials. We are interested in the size-selective and shape-controlled electrochemical synthetic methods. By using a rotating working as the cathode, which greatly accelerates the transfer of metallic nanoparticles from electrode/solution interface to the bulk solution, and the multifunctional ligands, polymers, and surfactants as the stabilizers or shape-controllers, a large number of nanostructured metallic materials can be synthesized through a simple electroreduction of metal ions.
    Size-controlled gold nanocrystals were conveniently synthesized through direct electroreduction of bulk AuCl_4~- ions in the presence of poly(N-vinylpyrrolidone) (PVP). PVP greatly enhanced the gold particle formation process and also significantly retarded the gold electrodeposition process, allowing the electrochemical synthesis of gold nanocrystals to be carried out in the form of simple electroreduction. This novel electrochemical method may be extended to synthesis of other noble metal nanoparticles with controllable size on a large scale.
    We investigated formation mechanism of PVP-protected gold nanocrystals and other functions of PVP in organizing individual noble metal nanoparticles into ordered nanostructures. Based on the electrochemical synthetic methods, well-defined gold nanoprisms, well-dispersed spherical and polyhedral nanoparticles were synthesized .
    The PVPK90-protected gold nanocrystals spontaneously self-assembled into nearly ordered 2D close-packed arrays and interesting 1D nanostructures. The aggregation of unstable PVPK17-protected gold nanocrystals resulted in the formation of ultrathin single-crystalline films. PVP plays multifunctional roles in controlling the size and shape of gold nanocrystals and in inducing individual gold
引文
[1] Franzke D., Wolaun A.. Photochemistry of Azo Compounds on Silver Island Films Studied by Surface Enhanced Raman Spectroscopy[J]. J. Phys. Chem, 1992, 96: 6377-6381.
    [2] Sun T., Seff K.. Silver Clusters and Chemistry in Zeolites [J]. Chem. Rev, 1994, 94: 857-870.
    [3] Hagfeld A., Gratzel M. Light-Induced Redox Reactions in Nanocrystalline Systems [J]. Chem. Rev, 1995,95: 49-68.
    [4] Schmid G. Large clusters and colloids. Metals in the embryonic state [J]. Chem. Rev, 1992, 92:1709-1727.
    [5] Ozin G A.. Nanochemistry: Synthesis in diminishing dimensions [J]. Adv. Mater, 1992,4:612-649.
    [6] Brust M., Kiely C. J. Some Recent Advances in Nanostructure Preparation from Gold and Silver: A Short Topical Review. Colloids Surf. A: Physicochem. Eng. Asp. 2002, 202,175-186.
    [7]Jana N. R., Peng X. Single-Phase and Gram-Scale Routes toward Nearly Mohodisperse Au and Other Noble Metal Nanocrystals[J]. J. Am. Chem. Soc. 2003, 125, 14280.
    [8] Wu Y.; Yang P. Direct Observation of Vapor-Liquid-Solid Nanowire Growth[J]. J. Am. Chem. Soc. 2001, 123, 3165.
    [9] Elghanian R., Storhoff J. J., Mucic R. C, Letsinger R. L., Mirkin C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles[J]. Science 1997,277,1078.
    [10] Collier C. P., Saykally R. J., Shiang J. J., Henrichs S. E., Heath J. R. Reversible tuning of silver quantum dot monolayers through the metal-insulator transition [J]. Science 1997,277,1978.
    [11] Faraday M. Experimental Relations of Gold (and other Metals)to Light[J]. Philos. Trans. 1857,147,145-181.
    [12] Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R. Chem.Commun[J]. 1994, 801-802.
    [13] Kahn R. L. Serum Diagnosis for Syphilis. In Colloid Chemistry;Alexander, J., Ed.; The Chemical Catalog Co.: New York, 1928; Vol. II, p 757.
    [14] Hauser E. A. Aurum Potabile. J. Chem. Educ. 1952,456-458.
    [15] Brown D. H., Smith W. E. The Chemistry of the Gold Drugs Used in the Treatment of Rheumatoid Arthritis[J]. Chem. Soc. Rev.1980,9,217-240.
    [16] Hyatt A. D., Eaton B. T, Eds. Immuno-Gold Electron Microscopy in Virus Diagnosis and Research; CRC Press: Boca Raton, FL, 1993.
    [17] Schmid G . Large Clusters and Colloids[J]. Chem. Rev. 1992,92,1709-1727.
    [18] Schmid G, Chi L. F. Metal Clusters and Colloids[J]. Adv. Mater. 1998, 10,515-527.
    [19] Schmid G . In Nanoscale Materials in Chemistry; Klabunde K.J., Ed.; Wiley: New York, 2001.
    [20] Bethell D.; Brust M.; Schiffrin D. J.; Kiely C. From Monolayers to Nanostructured Materials: An Organic Chemist's View of Self-Assembly [J]. J. Electroanal. Chem. 1996, 409, 137-143.
    [21 ] Brust M., Kiely C. J. Some Recent Advances in Nanostructure Preparation from Gold and Silver: A Short Topical Review[J].Colloids Surf. A: Physicochem. Eng. Asp. 2002,202,175-186.
    [22] Giersig M.; Mulvaney P. Preparation of ordered colloid monolayers by electrophoretic deposition[J]. Langmuir 1993, 9,3408-3413.
    [23] Brust M, Walker M., Bethell D., Schiffrin D. J., Whyman R. J. Synthesis of Thiol-Derivatized Gold Nanoparticles in aTwophase Liquid-Liquid System[J]. J. Chem. Soc, Chem. Commun.1994, 801-802.
    [24] Brust M., Fink J., Bethell D., Schiffrin D.J., Kiely C. J. Synthesis and Reactions of Functionalised Gold Nanoparticles[J]. J. Chem. Soc, Chem. Commun.1995,1655-1656.
    [25] Sun L.; Crooks R. M., Chechik V. Preparation of Polycyclodextrin Hollow Spheres by Templating Gold Nanoparticles[J].Chem. Commun. 2001,359-360.
    [26]Zsigmondy R., Thiessen P. A. Das kolloide Gold; Akad.Verlagsges: Leipzig, 1925.
    [27]Turkevich J., Hillier J. Anal. Chem. 1949, 21,475.
    [28] Jana N. R., Gearheart L., Murphy C. J. Evidence for Seed-Mediated Nucleation in the Chemical Reduction of Gold Salts to Gold Nanoparticles[J]. Chem. Mater. 2001, 13, 2313-2322.
    [29] Nikhil R. Jana,Latha Gearheart, and Catherine J. Murphy. Seeding Growth for Size Control of 5-40 run DiameterGold Nanoparticles[J]. Langmuir 2001, 17,6782-6786
    [30] Sau T. K., Pal A., Jana N. R., Wang Z. L., Pal T. Size Controlled Synthesis of Gold Nanoparticles Using Photochemically Prepared Seed Particles [J]. J. Nanopart. Res. 2001, 3,257-261.
    [31] Meltzer S., Resch, R.; Koel, B. E.; Thompson, M. E.; Madhukar,A.; Requicha, A. A. G; Will, P. Fabrication of Nanostructuresby Hydroxylamine Seeding of Gold Nanoparticle Templates[J].Langmuir 2001,17, 1713-1718.
    [32] Okitsu K., Yue A., Tanabe S., Matsumoto H., Yobiko Y. Formation of Colloidal Gold Nanoparticles in an UltrasonicField: Control of Rate of Gold (III) Reduction and Size of FormedGold Particles[J]. Langmuir 2001, 17, 7717-7720.
    [33] Chen W., Cai W. P., Liang C. H., Zhang L. D. Synthesis of Gold Nanoparticles Dispersed Within Pores of Mesoporous Silica Induced by Ultrasonic Irradiation and its Characterization[J]. Mater. Res. Bull. 2001, 36, 335-342.
    [34] Pol V. G, Gedanken A., Calderro-Moreno J. Deposition of Gold Nanoparticles on Silica Spheres: A Sonochemical Approach[J].Chem. Mater. 2003, 15,1111-1118.
    [35] Mizukoshi Y, Okitsu K., Maeda Y, Yamamoto T. A., Oshima R., Nagata Y. Sonochemical Preparation of Bimetallic Nanoparticles of Gold/Palladium in Aqueous Solution[J]. J. Phys. Chem.B 1997, 101, 7033-7037.
    [36] Yeh, M. S.; Yang, Y S.; Lee, Y P.; Lee, H. F.; Yeh, Y. H.; Yeh,C. S. Formtion and Characterstics of Cu Colloids from CuO Powder by Laser Irradiation in 2-propanol.[J]. J. Phys. Chem. B 1999, 103, 6851-6857.
    [37] Mafume, F.; Kohno, J.-Y; Takeda, Y; Kondow, T. Full Physical Preparation of Size-Selected Gold Nanoparticles in Solution: Laser Ablation and Laser-Induced Size Control[J]. J. Phys. Chem. B 2002, 106, 7575-7577.
    [38]Mafume, F.; Kohno, J.-Y; Takeda, Y; Kondow, T.; Sawabe, H. Formation of Gold Nanoparticles by Laser Ablation in Aqueous Solution of Surfactant[J]. J. Phys. Chem. B2001, 105,5114-5120.
    [39] Min Zhou, Shenhao Chen, and Shiyong Zhao. Synthesis of Icosahedral Gold Nanocrystals: A Thermal Process Strategy.
    [40] Nakamoto, M.; Yamamoto, M.; Fukusumi, M. Thermolysis of Gold (I) Thiolate Complexes Producing Novel Gold Nanoparticles Passivated by Alkyl Groups[J]. Chem. Commun. 2002, 1622-1623.
    [41] Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M.Size Evolution of Alkanethiol-Protected Gold Nanoparticles by Heat Treatment in the Solid State[J]. J. Phys. Chem. B 2003, 107,2719-2724.
    [42] Brantley D.Busbee, Sherine O.Obare, Catherine J.Murphy. An Improved Synthesis of High-Aspect-Ratio Gold Nanorods[J]. Adv.Mater.2003,15,414-416.
    [43] Kim F., Connor S., Song H., Kuykendall T., Yang P. Platonic Gold Nanocrystals[J]. Angew. Chem.Jnt. Ed. Engl. 2004,43, 3673-3677.
    [44] Nikhil R. Jana,Latha Gearheart, and Catherine J. Murphy. Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods[J]. J. Phys. Chem. B 2001, 105,4065-4067.
    [45] Nikhil R. Jana and Xiaogang Peng.Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals[J]. J. Am. Chem. Soc. 2003, 125, 14280-14281.
    [46] Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry,M. Biological synthesis of triangular gold nanoprisms[J]. Nat. Mater. 2004, 3,482-488.
    [47]Jill E. Millstone, Sungho Park, Kevin L. Shuford, Lidong Qin, George C. Schatz, and Chad A. Mirkin. Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of GoldNanoprisms[J]. J. Am. Chem. Soc. 2005, 127, 5312-5313.
    [48] Hao Ming Chen, Jyh-Fu Lee,| and Shu-Fen Hu. Controlling the Length and Shape of Gold Nanorods[J]. J. Phys. Chem. B, Vol. 109, No. 42,2005, 19553-19555.
    [49] Yugang Sun, Brian Mayers, and Younan Xia. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process[J]. Nano Lett., Vol. 3, No. 5,2003,675-679.
    [50] Jin R. C, Cao Y. W., Mirkin C. A., Kelly K. L., Schatz G C, Zheng J. G . Science 2001,294,1901 - 1903.
    [51] JinR.C, Cao Y. C, Hao E. C, Metraux G. S., Schatz G. C, Mirkin C. A.. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature 2003,425,487 - 490.
    [52] R. Parthasarathy, C. R. Martin. Synthesis of Polymeric Microcapsule Arrays and Their Use for Enzyme Immobilization[J] Nature, 1994, 369, 298-301.
    [53] R. M. Penner, C. R. Martin. Controlling the Morphology of Electronically Conductive Polymers [J] J. Electrochem. Soc, 1986, 133, 2206-2207.
    [54] Martin C. R.. template Synthesis of Polymeric and Metal Microtubules [J]. Adv. Mater, 1991,3,457-459.
    [55] Cikby A. F. J., Hornyak G. L., Stochert J. A., Martin C. R.. Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape [J] J. Phys. Chem, 1994, 98,2963- 2971.
    [56] Klein J. D., Herrick R. D. I., Palmer D., et al. Electrochemical fabrication of cadmium chalcogenide microdiode arrays[J] Chem. Mater, 1993, 5: 902-904.
    [57] Parthasarathy R.V., Martin C. R.. Template Synthesis of Graphitic Nanotubules[J] Adv. Mater, 1995, 7, 896-897.
    [58] Wu C. G, Bein T.. Conducting polyaniline filaments in a mesoporous channel host [J]. Science, 1994, 264, 1757-1759.
    [59] Reetz M. T., Winter M., Breinbauer R.,et al. Size-Selective Electrochemical Preparation of Surfactant-Stabilized Pd-, Ni- and Pt/Pd Colloids[J]. Chem Eur J, 2001, 7,1084-1094.
    [60] Rodriguennchez L., Blance M. C, Lopea-Quintela M. A.. Electrochemical Synthesis of Silver Nanoparticles [J]. J. Phys. Chem B, 2000,104, 9683-9688
    [61] Pascal C, Pascal J. L., Favier F., et al. Electrochemical Synthesis for the Control of γ-Fe2O3 Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior [J]. Chem. Mater, 1999, 11, 141-147.
    [62] Yu Y. Y, Chang S. S., Lee C. L., et al. Gold Nanorods: Electrochemical Synthesis and Optical Properties [J]. J. Phys. Chem B, 1997. 101, 6661- 6664.
    [63] Chang S. S., Shih C. W., Chen C. D., et.at. The Shape Transition of Gold Nanorods[J]. Langmuir, 1999, 15, 701-709.
    [64] Wang Z. L.. Transmission Electron Microscopy of Shape-ControlledNanocrystals and Their Assemblies [J]. J. Phys. Chem, 2000, 104,1153-1175.
    [65] Yin Bingsheng, Ma Houyi. Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-vinylpyrrolidone)[J]. J. Phys. Chem. B 2003,107, 8898-8904.
    [66] Huang Shaoxin, Ma Houyi, Zhang Xiaokai, Yong Feifei, Feng Xingli. Electrochemical Synthesis of Gold Nanocrystals and Their 1D and 2D Organization[J]. J. Phys. Chem. B, 109,42, 19823 -19830,2005.
    [67] Zach M. P., Kwokh N., Penner R. M.. Molybdenum Nanowires by Electrodeposition [J]. Science, 2002, 290,2120-2123.
    [68] Walter E. C., Kwolh N., Zach M. P., et.at. Electronic devices from electrodeposited metal nanowires[J]. Microelectronic Engineering, 2002, 61-62, 555-561.
    [69] Zach M. P., Inazu K., Ng K. H., et al. Synthesis of Molybdenum Nanowires with Millimeter-Scale Lengths Using Electrochemical Step Edge Decoration[J]. Chem. Mater, 2002, 14,3206-3216.
    [70] Walter E.C., Murray B. J., Favier F.. Beaded Bimetallic Nanowires: Wiring Nanoparticles of Metal 1 Using Nanowires of Metal [J] .Adv. Mater, 2003, 15,396-399.
    [71 ] Phull S. S., Lorimer J. P., Mason T. J., et al. The effect of ultrasonic frequency and intensity upon limiting currents at rotating disc and stationary electrodes[J]. Electrochim. Acta, 1996,41,17,2737-2741.
    [72] Reisse J., Francois H., Wandercammen J., et al. Sonoelectrochemistry in aqueous electrolyte: A new type of sonoelectroreactor[J]. Electrochim Acta, 1994, 39, 37-39.
    [73] Socol Y., Abramson O., Gedanken A., et al. Suspensive Electrode Formation in Pulsed Sonoelectrochemical Synthesis of Silver Nanoparticles[J]. Langmuir, 2002, 18.4736-4740.
    [74] Brumlik C. J., Martin C. R.. Template synthesis of metal microtubules[J]. J. Am. Chem. Soc, 1991, 113, 3174-3175.
    [75] Ma Houyi, Jiao Yongli, Yin Bingsheng, Wang Shuyun,, Huang Shaoxin, Spontaneous Organization of Individual Silver Nanoparticles into One-Dimensionally Ordered Nanostructures[J]. ChemPhysChem 2004, 5, 713 -716.
    [1] Zhang Z., Zhao B., Hu L.. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes [J]. J. Solid. State Chem, 1996, 121: 105-110.
    [2] Garotenuto G, Pepe G. P., Nicolais L.. Preparation and characterization of nano-sized Ag/PVP composites for optical applications[J]. Eur. Phys. J.B,2000,16:11-17.
    [3] Pastoriza-Santos L., Liz-Marzan L. M. Formation of PVP-Protected Metal Nanoparticles in DMF[J]. Langmuir, 2002,18:2888-2894.
    [4] Y. Sun, Y. Xia, Shape-Controlled Synthesis of Gold and Silver Nanoparticles[J] Science, 2002,298: 2176-2179.
    [5] Sun Y., Xia Y. Large-Scale Synthesis of Uniform Silver Nanowires Through a Soft. Self-Seeding, Polyol Process [J]. Adv. Mater. 2002,14: 833-837.
    [6] Isabel Pastoriza-Santos and Luis M. Liz-Marza'n, Synthesis of Silver Nanoprisms in DMF[J]. Nano Letters,2002,Vol.2,No.8 903-905.
    [7] Huang Shaoxin, Ma Houyi. Electrochemical Synthesis of Gold Nanocrystals and Their 1D and 2D Organization[J]. J. Phys. Chem. B 2005, 109, 19823-19830
    [8] Yin Bingsheng, Ma Houyi. Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-vinylpyrrolidone)[J]. J. Phys. Chem. B 2003, 107, 8898-8904.
    [9] Zhang Z., Zhao B., Hu L.. PVP Protective Mechanism of Ultrafine Silver Powder Synthesized by Chemical Reduction Processes[J]. J. Solid. State Chem, 1996, 121: 105-110.
    [10] Teranishi, T; Miyake, Size Control of Palladium Nanoparticles and Their Crystal Structures[J]. M. Chem. Mater. 1998, 10, 594.
    [11]. Hamelin, A. J. Electroanal. Chem. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behavior at low-index faces 1996, 407, 1.
    [12]Garotenuto, G. Synthesis and characterization of poly(N-vinylpyrrolidone) filled by monodispersed silver clusters with controlled size[J]. Appl. Organomet. Chem. 2001.15.344.
    [13] Dean, J. A. In Lange's Handbook of Chemistry, 15th ed.; McGraw-Hill: Singapore, 1999; p 8.128.
    [14] Dean. J. A. In Lange's Handbook of Chemistry, 15th ed.; McGraw-Hill: Singapore, 1999; p 8. 140.
    [15] Rodriguez-Sanchez, L.; Blanco, M. C.; Lopez-Quintela, M. A. Electrochemical Synthesis of Silver Nanoparticles[J]. J. Phys. Chem. B 2000, 104, 9683.
    [16] Rodriguez-Sanchez, M. L.; Rodrigues, M. J.; Blanco, M. C.; Rivas, J.; Lopez-Quintela. M. A. Kinetics and Mechanism of the Formation of Ag Nanoparticles by Electrochemical Techniques: A Plasmon and Cluster Time-Resolved Spectroscopic Study [J], J. Phys. Chem. B 2005, 109, 1183.
    [17] Ma, H. Y.; Yin, B. S.; Wang, S. Y.; Jiao, Y. L.; Pan, W.; Huang, S. X.; Chen, S. H.; Meng, F. Synthesis of silver and gold nanoparticles by a novel electrochemical method[J]. J. ChemPhysChem 2004, 5, 68.
    [18] Fendier J. H.. Photochemical solar energy conversion. An assessment of scientific accomplishments [J]. J. Phys. Chem, 1985, 89: 2730-2735.
    [19] Parthasarathy R. V., Martin C. R.. Template-Synthesized Polyaniline Microtubules[J]. Chem. Mater, 1994, 6: 1627-1632.
    [20] Pastoriza-Santos L., Liz-Marzan L. M.. Formation of PVP-Protected Metal Nanoparticles in DMF[J]. Langmuir, 2002, 18: 2888-2894.
    [21] 16. (a) Rodriguez-Sanchez, L.; Blanco, M. C.; Lopez-Quintela, M. A. Electrochemical Synthesis of Silver Nanoparticles[J]. J. Phys. Chem. B 2000, 104, 9683.
    [22] Teranishi T., Hosoe M., Tanaka T., and Miyake M., Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition[J]. J. Phys. Chem. B 1999, 103, 3818-3827.
    [23] Hirai, H.; Chawanya, H.; Toshima, N. React. Polym. 1985, 3, 127.
    [24] Reetz, M. T.; Helbig, W. Size-Selective Synthesis of Nanostructured Transition Metal Clusters [J]. J. Am. Chem. Soc. 1994, 116, 7401.
    [25] Natter, H.; Hempelmann, R. Electrochim. Tailor-made nanomaterials designed by electrochemical methods [J]. Electrochim. Acta 2003, 49, 51.
    [26] 查全性等著,[M]电极过程动力学导论,科学出版社,北京.1987:401-402.
    [1] Crooks, R. M.; Lemon, B. I., III; Sun, L; Yeung, L. K.; Zhao, M.Top. Curr. Chem. 2001,212,81-135.
    [2] Lieber, C. M. One-Dimensional Nanostructures: Chemistry, Physics & Applications[J]. Solid State Commun. 1998,107, 607-616.
    [3] Wu, Y.; Yang, P. Direct Observation of Vapor-Liquid-Solid Nanowire Growth[J]. J. Am. Chem. Soc.2001,123,3165-3166.
    [4] Hamad-Schifferli, K.; Schwartz John, J.;Santos Aaron, T.; Zhang, S.; Jacobson Joseph, M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna[J]. Nature 2000, 415, 152-155.
    [5] Elghanian, R.; Storhoff, J.; Mucic, R. C; Letsinger, R. L.; Mirkin,C. A. Selective Colorimetric Detection of Polynucleotides Based on the Distance-Dependent Optical Properties of Gold Nanoparticles[J]. Science 1997, 277,1078-1081.
    [6] Collier, C. P.; Saykally, R. J.;Shiang, J. J.; Henrichs, S. E; Heath, J. R. Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition[J]. Science 1997,277, 1978-1981.
    [7] Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T.G.; Vezmar, I.; Alvarez, M. M; Wilkinson, A. Acc. Chem. Res. 1999,32, 397-406.
    [8] Lopez, C. Alternative Routes toward High Quality CdSe Nanocrystals[J]. AdV. Mater. 2003, 15,1679-1740.
    [9] Stein, A.; Shroden, R.C. Curr. Opin. Solid State. Mater. Sci. 2001, 5, 553. [10] Colvin, V.MRS Bull. 2001, 26, 637.
    [11] Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites[J]. J. Am. Chem. Soc. 1993,115, 8706-8715.
    [12] Peng, X.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V Colloidal Semiconductor Nanocrystal Growth: "Focusing" of Size Distributions[J]. J. Am.Chem. Soc. 1998, 120, 5343-5344.
    [13] Peng, Z. A.; Peng, X. Formation of High-Quality CdTe, CdSe, and CdS Nanocrystals Using CdO as Precursor[J]. J. Am. Chem. Soc. 2001, 123,183-184.
    [14] Qu, L.; Peng, Z. A.; Peng, X. Alternative Routes toward High Quality CdSe Nanocrystals[J]. Nano Lett. 2001, 1, 333-336.
    [15] Yu, W. W.; Peng, X. Formation of High-Quality CdS and Other Ⅱ-Ⅵ Semiconductor Nanocrystals in Noncoordinating Solvents: Tunable Reactivity of Monomers[J]. Angew. Chem., Int. Ed. 2002, 41, 2368-2371.
    [16] T. Teranishi, M. Hosoe, T. Tanaka, and M. Miyake. Size Control of Monodispersed Pt Nanoparticles and Their 2D Organization by Electrophoretic Deposition[J]. J. Phys. Chem. B 1999, 103, 3818-3827.
    [17] Nikhil R. Jana, Latha Gearheart, and Catherine J. Murphy. Seeding Growth for Size Control of 5-40 nm Diameter Gold Nanoparticles[J]. Langmuir 2001, 17, 6782-6786.
    [18] Yin Bingsheng, Ma Houyi, Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-vinylpyrrolidone)[J]. J. Phys. Chem. B 2003, 107, 8898-8904.
    [19] 电极过程动力学,第二版,科学出版社。
    [20] Nikhil R. Jana and Peng Xiaogang. Single-Phase and Gram-Scale Routes toward Nearly Monodisperse Au and Other Noble Metal Nanocrystals[J]. J. Am. Chem. Soc. 2003, 125, 14280-14281.
    [21] Ma, H. Y.; Yin, B. S.; Wang, S. Y.; Jiao, Y. L.; Pan, W.; Huang, S. X.; Chen, S. H.; Meng, F. J. Synthesis of silver and gold nanoparticles by a novel electrochemical method [J]. ChemPhysChem 2004, 5, 68.
    [22] Taleb, A.; Petit, C.; Pileni, M. P. Optical Properties of Self-Assembled 2D and 3D Superlattices of Silver Nanoparticles[J]. J. Phys. Chem. B 1998, 102, 2214.
    [23] Zhang, D.; Qi, L.; Ma, J.; Cheng, H. Formation of Silver Nanowires in Aqueous Solutions of a Double-Hydrophilic Block Copolymer[J] .Chem. Mater. 2001, 13, 2753.
    [24] Li, X.; Li, Y.; Yang, C.; Li, Y. Self-Assembly of Gold Nanoparticles Prepared with 3, 4-Ethylenedioxythiophene as Reductant [J]. J. Phys. Chem. B 2004, 108, 5192.
    [25] Itaya, K. In situ scanning tunneling microscopy in electrolyte solutions[J]. Prog. Surf. Sci. 1998, 58, 121.
    [1] Murray C. B., Kagan C. R., Bawendi M. G., Annu. Rew. Mater. Sci. 2001, 30, 545.
    [2] Pileni M. P.. Nanocrystal Self-Assemblies: Fabrication and Collective Properties[J]. J. Phys. Chem. B 2001, 105, 3358.
    [3] Kotov N. A., Meldrum F. C., Wu C., Fendler J. H., J. Phys. Chem. 1994, 98, 1735.
    [4] Collier C. P., Vossmeyer T., Heath J. R., Annu. Rev. Phys. Chem. 1998,49,371.
    [5] Kotov N. A., in Mutilayer Thin Films (Eds:G.Decher, J. B. Schlenoff),Wiley-VCH,Weiheim,Germany2003,Ch.8.
    [6] Roy. Shenhar, T. vler. B. Norsten, Vincent. M. Rotello, Polymer-Mediated Nanoparticle Assembly: Structural Control and Application[J]. Adv. Mater,2005,17,657-669.
    [7] Minko, S.; Kiriy, A.; Gorodyska, G.; Stamm, M. Mineralization of Single Flexible Polyelectrolyte Molecules[J]. J. Am. Chem. Soc., 2002; 124(34); 10192-10197.
    [8] Deng, Y.; Wei, G.; Nan, C. Ligand-assisted control growth of chainlike nanocrystals[J]. Chem. Phys. Lett. 2003, 368, 639.
    [9] Ohara, P. C.; Heath, J. R.; Gelbart, W. M. Self-assembly of submicrometer rings of particles from solutions of nanoparticles[J]. Angew. Chem., Int. Ed. Engl. 1997, 36, 1078.
    [10] Ma, H. Y.; Jiao, Y. L.; Yin, B. S.; Wang, S. Y.; Zhao, S. Y.; Huang, S. X.; Pan, W.; Chen, S. H.; Meng, F. J. Synthesis of silver and gold nanoparticles by a novel electrochemical method[J]. ChemPhysChem 2004, 5, 713.
    [11] Tang, Z.; Kotov, N. A.; Giersig, M. Spontaneous organization of single CdTe nanoparticles into luminescent nanowires[J]. Science 2002, 297, 237.
    [12] Giersig, M.; Pastoriza-Santos, I.; Liz-Marzan, L. M. Evidence of an aggregative mechanism during the formation of silver nanowires in N,N-dimethylformamide[J]. J. Mater. Chem. 2004, 14, 607.
    [13] Xia Y., Yang P., Sun Y., Wu Y., Mayers B., Gates B., Yin Y., Kim F., Yan H.. One-Dimensional Nanostructures: Synthesis, Characterization, and Applications[J]. Advanced Materials. 2003, 15, 5, 353-389.
    [14] Hu, J.; Odom, T. W.; Lieber, C. M. Chemistry and Physics in One Dimension: Synthesis and Properties of Nanowires and Nanombes. Acc[J]. Chem. Res., 1999, 32, 5. 435-445.
    [15] Maier S. A., Brongersma M. L., Kik P. G., Meltzer S., G Requicha A. A., Atwater H. A.. Plasmonics-A Route to Nanoscale Optical Devices[J]. Advanced Materials. 13, 2001, 1501-1505.
    [16] Maier S. A., Kik P. G, Meltzer S., G. Requicha A. A.. Nat. Mater. 2003, 2, 229.
    [1] Jin R., Cao Y., Mirkin C. A., Kelly K. L, Schatz G. C, Zheng J. G. Photoinduced Conversion of Silver Nanospheres to Nanoprisms[J]. Science 2001, 294,1901-1903.
    [2] Millstone J. E., Park S., Shuford K. L., Qin L., Schatz G C, Mirkin C. A. Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms [J]. J. Am. Chem. Soc. 2005,127, 5312-5313.
    [3] Sun Y., Mayers B., Xia Y. Transformation of Silver Nanospheres into Nanobelts and Triangular Nanoplates through a Thermal Process[J]. Nano Lett 2003, 3. 675-679.
    [4] Jin R. C, Cao Y. C., Hao E. C, Metraux G S., Schatz G. C, Mirkin C. A. Controlling Anisotropic Nanoparticle Growth through Plasmon Excitation[J]. Nature 2003,425,487-490.
    [5] Guor-Tzo Wei, Zusing Yang, Chia-Ying Lee, Hsiao-Yen Yang, and C. R. Chris Wang. Aqueous-Organic Phase Transfer of Gold Nanoparticles and Gold Nanorods Using an Ionic Liquid[J]. J. Am. Chem. Soc. 2004, 126, 5036-5037.
    [6] Joaquin C. Garcia-Martinez, Robert W. J. Scott, and Richard M. Crooks .Extraction of Monodisperse Palladium Nanoparticles from Dendrimer Templates[J]. J. Am. Chem. Soc. 2003,125, 11190-11191.
    [7] Lin Y., Skaff H., Emrick T., Dinsmore A. D., Russell T. P.. Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces[J]. Science, 229, 226-299 .
    [8] Brust M., Walker M., Bethell D., Schiffrin D. J., Whyman R. J. Synthesis of Thiol-Derivatized Gold Nanoparticles in a Twophase Liquid-Liquid System[J]. J. Chem. Soc, Chem. Commun. 1994, 801-802.
    [9] Brust M., Fink J., Bethell D., Schiffrin D.J., Kiely C. J. Synthesis and Reactions of Functionalised Gold Nanoparticles[J]. J. Chem. Soc, Chem. Commun.1995, 1655-1656.
    [10] Kim F., Connor S., Song H., Kuykendall T., Yang P. Platonic Gold Nanocrystals[J]. Angew. Chem.Jnt. Ed. Engl. 2004,43, 3673-3677.
    [11] Jill E. Millstone. Sungho Park, Kevin L. Shuford, Lidong Qin, George C. Schatz, and Chad A. Mirkin. Observation of a Quadrupole Plasmon Mode for a Colloidal Solution of Gold Nanoprisms [J]. J. Am. Chem. Soc. 2005, 127, 5312-5313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700