Klebsiella pneumoniae厌氧发酵甘油生产1,3-丙二醇的过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1,3-丙二醇是一种重要的化工原料,可以用作聚酯和聚氨酯的合成单体,因其在纤维工业上的广泛应用而成为近年来研究的热点。目前1,3-丙二醇的生产主要是通过化学法,但是生物转化法因成本较低,可以利用甘油、葡萄糖等可再生资源等优点,受到越来越多的重视。
     为了使生物转化法生产的1,3-丙二醇在市场上具有竞争力,需要提高1,3-丙二醇的浓度、得率和生产强度。本文对发酵过程中的培养基、通气条件、发酵动力学进行了研究。在此基础上,通过发酵过程中添加有机酸混合液和采取反复补料分批发酵的策略,显著提高了1,3-丙二醇的生产,具体实验结果如下:
     利用正交实验,分别对种子培养基和发酵培养基进行了优化。在厌氧摇瓶中,利用优化后的发酵培养基,菌体生长和甘油的消耗显著提高,1,3-丙二醇的浓度和得率分别达到6.06 g·L-1和0.41 mol·mol-1,分别比在原始发酵培养基下提高了62%和7.9%。在5-L发酵罐中也得到类似的结果,并且优化后的发酵培养基中酵母提取物和氯化铵的浓度分别比原始发酵培养基显著下降,降低了生产的原料成本。
     在原始发酵条件下,采取两阶段通气发酵及在发酵后期加入营养物质的策略不能提高1,3-丙二醇的生产。在250-mL摇瓶中,发现装液量增大时,有利于甘油的消耗和1,3-丙二醇的生成。在此基础上,分别研究了以甘油为唯一碳源情况下,不同通气方式对1,3-丙二醇生产的影响。结果显示,发酵过程中全程厌氧通气相比两阶段通气和通入空气,更有利于1,3-丙二醇的生产。
     在补料分批发酵过程中,菌体的比生长速率随着产物的积累而不断的下降,进而影响到甘油的消耗和1,3-丙二醇的生成。在此基础上,通过甘油的限制性流加,控制菌体的比生长速率,发现在较低的菌体比生长速率下,甘油比消耗速率及其它产物的比生成速率较低,但是乙醇和甲酸的得率很高。随着菌体比生长速率的增加,甘油的比消耗速率和1,3-丙二醇的比生成速率迅速增加,同时乙醇和甲酸的得率迅速下降,1,3-丙二醇的得率大幅度增加。然后,在菌体生长和1,3-丙二醇生成明显减慢的发酵后期,通过控制不同的甘油浓度,发现甘油浓度在15-26 g.L-1时最有利于1,3-丙二醇的生成。最后,采取控制较高的菌体比生长速率和在发酵后期控制适宜甘油浓度相结合的策略,有效的减少了发酵过程中乳酸和乙醇的生成,提高1,3-丙二醇的得率。
     在不对菌体进行基因工程操作的情况下,通过在发酵过程中外源添加有机酸混合液,有效的提高了1,3-丙二醇的生产,降低了乳酸和乙醇等副产物的生成。在此基础上,分别考察了不同浓度有机酸混合液加入时和在不同发酵时间加入时对发酵结果的影响。结果显示,在菌体浓度(OD650)达到3.0时,加入3.80 mM的有机酸混合液(柠檬酸、琥珀酸和延胡索酸均等浓度)最有利于1,3-丙二醇的生成,在30 h时达到了70 g.L-1以上。
     在补料分批发酵过程中,产物积累到一定浓度时,就会对菌体生长产生很强的抑制。在厌氧摇瓶中通过反复分批培养,菌体生长和1,3-丙二醇的生产能力保持相对恒定;而在5-L发酵罐中发现,菌体长时间暴露在高浓度的产物中,不利于下一发酵循环的菌体生长。通过初始发酵条件下的反复补料分批发酵,1,3-丙二醇的生产强度为2.86g.L-1.h-1,但其浓度仅为44.60 g.L-1。在此基础上,采取反复补料分批发酵和有机酸添加相结合的策略,1,3-丙二醇生产有了显著的提高。在酵母浸膏代替酵母提取物的基础上,采取多循环的反复补料分批发酵操作,1,3-丙二醇的浓度、得率和生产强度在发酵20 h左右时分别达到66 g·L-1.0.61 mol·mol-1和3.40 g·L-1·h-1左右,显著的提高了1,3-丙二醇的生产。
1,3-propanediol has become one of the most interesting feedstocks in recent years because of its wide industrial applications, such as synthesis of polytrimethylene terephthalate and other polyester fibers. Current commercial production is based on the chemical route, which uses acrolein or ethylene as the starting material. Compared with the chemical synthesis method, biotransformation has the advantage of utilizing inexpensive, renewable resources such as glycerol or glucose, and becomes increasingly attractive.
     To make the price more attractive, the yield, productivity and concentration of 1,3-propanediol need to be enhanced. In this paper, we had a study on culture medium optimization, aeration conditions and dynamics of fed-batch culture. Based on this, 1,3-propanediol production was enhanced by repeated fed-batch culture with organic acids addition, and the results of experiments were as follows.
     The composition of medium for seeds culture and fermentation were optimized separately by orthogonal experiments. Based on this, the cell growth and glycerol consumption increased significantly in anaerobic bottle and the concentration and yield of 1,3-propanediol reached 6.06 g-L-'and 0.41 mol-mol-1, respectively,62% and 7.9% higher than that of the control, respectively. At the same time, the 1,3-propanediol production in 5-L bioreactor was also enhanced significantly, similar to that in anaerobic bottle. In addition, the concentrations of yeast extract and ammonium chloride both decreased sharply compared with that of the control, which could decrease the cost of the 1,3-propanediol production.
     Under initial conditions, the 1,3-propanediol production would not be enhanced under the strategy of two-stage aeration and nutrient addition in late phase of fermentation. At the same time, experiments carried out in 250-mL with aerobic condition indicated that the increased volume of culture medium would be benefitial to PDO production. Based on this, effects of strategies including two-stagy aerating, aeration air and anaerobic aeration on the 1,3-propanediol production was studied separately as the glycerol was used as the solely carbon source, the results of experiments indicated that aerating N2 to maintain anaerobic condition would be benefitial to 1,3-propanediol production than that of others.
     The specific growth rate of cells in fed-batch culture decreased as the products increasingly accumulated in culture medium, which further would not be benefitial to glycerol consumption and 1,3-propanediol production. Based on this, the specific growth rate was controlled by glycerol feeding rate. The experimental results indicated the specific growth rate affected significantly yields of productions. The yields of ethanol and formic acid on glycerol were high as the specific growth rate was maintained at low level. Increased the specific growth rate, the yields of ethanol and formic acid on glycerol decreased sharply while the yield of 1,3-propanediol on glycerol increased significantly. At the same time, the glycerol specific consumption rate and PDO formation rate both rapidly increased. As the cell growth and 1,3-propanediol specific formation rate declined sharply in late phase of fermentation, the glycerol concentration at the range of 15-26 g-L-1 was testified to be beneficial to the yield of 1,3-propanediol increase. Combined the specific growth rate controlled at higher level and glycerol concentration maintained range of 15-26 g-L-1 could effectively decreased the yields of lactic acid and ethanol on glycerol while increased the yield of 1,3-propanediol on glycerol.
     The 1,3-propanediol production could be enhanced significantly while lactic acid and ethanol production decreased sharply with the parent strain under the strategy of organic acids mixture addition in the process of fermentation. Based on this, the effects of concentration of organic acids mixture addtion and time of organic acids mixture addition was studied separately and the results indicated that 3.80 mM organic acids mixture was added at the biomass (OD650) of 3.0 would be benefitial to 1,3-propanediol production and the concentration of 1,3-propanediol reached above 70 g-L"1at 30 h of culture.
     The accumulation of products in medium of fed-batch culture would strongly inhibit cell growth. The strain used for 1,3-propanediol production could maintain the ability of 1,3-propanediol production in long-time cultivation in repeated batch culture in anaerobic bottle. However, when the cells used as inoculums which was maintained for a long-time in late phase of culture would not be benefitial to cell growth in next cycle of repeated fed-batch culture. The 1,3-propanediol productivity and concentration reached 2.86 g-L"--h-1and 44.60 g·LL1, respectively, in repeated fed-batch culture under initial condition. Based on this, the 1,3-propanediol production could be further enhanced in repeated fed-batch culture with organic acids mixture addition. At the same time, multiple-cycle of repeated fed-batch culture with industry-grade yeast extract replacing regent-grade yeast extract, the concentration, yield and productivity of 1,3-propanediol reached 66 g-L-,0.61 mol-mol1 and 3.40 g-L--h-, respectively, which was higher than that of the reported.
引文
[1]Zeng A P, Bieb H. Bulk chemicals from biotechnology:the case of 1,3-propanediol production and the new trends. Adv Biochem Eng Biotechnol.2002,74:239-259.
    [2]Sullivan C J. Propanediols, in Ullmann's Encyklopedia of Industrial Chemistry. VCH, Weinheim,1993.
    [3]Chuah H H, Brown H S, Dalton P A. Corterra poly (trimethyleneterephthalate). A new performance carpet fiber. Int Fiber.1995,10(5):50-52.
    [4]Greene R N. Copolyetherester elastomer with poly (1,3-propylene terephthalate) hard segment. US Patent 4,937,314,1990.
    [5]Stouffer, Jan M, Blanchard, et al. Production of poly(trimethylene terephthalate). US patent 5,763,104,1998.
    [6]Lynd L R, Wyman C E, Gerngross T U, et al. Bioprocess Engineering and Biobased Industrial Products. Biocommodity Eng Biotechnol Prog.1999,15:777-793.
    [7]Kaesler B, Müschen H, Streicher H, et al. propionic acid, ammonia, propanediol and water solutions and the use thereof. WO 1998/042205,1998.
    [8]Arbancet J Petal. Process for making 1,3-propanediol and 3-hydroxypropanal. US Patent 5,304,691,1994.
    [9]陈国康,黄象安,顾利霞.聚对苯二甲酸丙二醇酯树脂的合成.合成纤维工业.1998,2(5):26-29.
    [10]杨菊群,王幸宜,戚蕴石.PDO的合成新进展,石油化工,2002,31(11):943-947.
    [11]洪仲苓.化工有机原料深加工.北京:化学工业出版社,1997.
    [12]瞿国华.PTT的工业开发及1,3-丙二醇的合成.合成纤维工业.2000,23(8):31-34.
    [13]Alper J. Engineering metabolism for commercial gains. Science.1999,283 (5408): 1625-1626.
    [14]Giinzel B, Yonsel S, Deckwer W D. Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2 m3. Appl Microbiol Biotechnol. 1991,36:289-295.
    [15]Petitdemange E, Durr C, Abbad-Andaloussi S, et al. Fermentation of raw glycerol to 1,3-propanediol by new strains of Clostridium butyricum. J Ind Microbiol.1995, 15:498-502.
    [16]Papanikolaou S, Ruiz-Sanchez P, Pariset B, et al. High production of 1,3-propanediol from industrial glycerol by newly isolated Clostridium butyricum strain. J Biotechnol. 2000,77:191-208.
    [17]刘德华,刘宏娟,程可可.微生物发酵法生产PDO研究进展.合成纤维.2005,9:11-15.
    [18]Gottschalk G, Averhoff B. Process for the microbiological preparation of 1,3-propanediol from glycerol. European patent 0,373,230,1988.
    [19]Balthuis B A. Method for the production of glycerol by recombinant organisms. World patent 9,821,340,1998.
    [20]Haynie S, Whited G, Emptage Metal. Process for the biological production of 1,3-propanediol with high titer. World patent 0,112,833,2001.
    [21]Reimann A, Biebl H, Decker W D. Influence of iron, phosphate and methyl viologen on glycerol fermentation of Clostridium butyricum. Appl Microbiol Biotechnol.1996, 45:47-50.
    [22]Cheng K K, Zhang J A, Liu D H, et al. Pilot-scal production of 1,3-propanediol using Klebsiella pneumoniae. Process Biochem.2007,42:740-744.
    [23]Zheng Z M, Xu Y Z, Wang Y P, et al. Ammonium and phosphate limitation in 1,3-propanediol production by Klebsiella peumoniae. Biotechnol Lett.2009, online
    [24]Freund A. Uber die Bildung and Darstellung von Trimethylenalkohol sus Glycerin. Monatsh Chem.1881,2:636-641.
    [25]Tong I T, Cameron D C. Enhancement of 1,3-propanediol production by cofermentation in E.coli expressing Klebsiella pneumoniae dha regulon genes. Appl biochem Biotechno.1992,34 (35):149-159.
    [26]Ruch F E, Lin E C C. Independent constitutive of the aerobic and anaerobic pathways of glycerol catbolismin Klebsiela aerogenes. Amerocan Society for Microbiology.1975, 124 (1):348-352.
    [27]Honda S, joraya T, Jukui S. In situ reactivatipn of glycerol-inactvated coenzyme B12-dependent enzymes, glycerol dehydratase and diol dehydratase. J Bacteriol.1980, 143 (3):1458-1465.
    [28]Forage R G, Lin E C C. dha system mediating aerobic and anaerobic of glycerol in Klebsiela pneumonia. J Bacteriol.1982,151(2):591-599.
    [29]綦文涛,修志龙.甘油歧化生产PDO过程的代谢和基因调控机理研究进展.中国生物工程杂志.2003,23:64-68.
    [30]Streekstra H, Teixeira de Mattos M J, Neijssel O M. Overflow metabolism during anaerobic growth of Klebsiella aerogenes NCTC 418 on glycerol and dihydroxyacetone in chemostat culture. Arch Microbiol.1987,147:268-275.
    [31]Barbirato F, Camarasca Claret C, Bories A, et al. Description of the glycerol fermentation by a new 1,3-propanediol producing microorganism:Enterobacter agglomerans. Appl Microbiol Biotechnol.1995,43:786-796.
    [32]Homann T, Tag C, Biobl H, et al. Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Appl Microbiol Biotechnol.1990,33:121-126.
    [33]Schutz H, Radler F. anaerobic reduction of glycerol to 1,3-propanediol by Lactobacillus brevis and Lactobacillus buchneri. Syst Appl Microbiol.1984,5:169-178.
    [34]Bieble H, Marten S, Hippe H, et al. Glycerol conversion to 1,3-propanediol by newly isolated Clostridia. Appl Microbiol Biotechnol.1992,36:592-597.
    [35]Forsberg C. Production of 1,3-propanediol from glycerol by Clostridium acetobutylicum and other Clostridium species. Appl Environ Microbiol.1987, 53:639-643.
    [36]Dabrock B, Bahl H, Gotschalk G. Parameters affecting solvent production by Clostridium pasteurianum. Appl Environ Microbiol.1992,58:1233-1239.
    [37]Ji X J, Huang H, Zhu J G, et al. Efficient 1,3-propanediol Production by Fed-Batch Culture of Klebsiella Pneumoniae:The Role of pH Fluctuation. Appl Biochem Biotechno.2009,159(3):605-613.
    [38]Zheng Z M, Hu Q L, Hao J, et al. Statistical optimization of culture conditions for 1,3-propanediol by Klebsiella pneumoniae AC 15 via central composite design. Bioresour Technol.2008,99(5):1052-1056.
    [39]Cheng K K, Liu D H, Sun Y.1,3-Propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechno Lett.2004,26:911-915.
    [40]Zhang Y P, Li Y, Du C Y, et al. Inactivation of aldehyde dehydrogenase:A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metabolic Engineering.2006,8:578-586.
    [41]Hao J, Wang W, Tian J, et al. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol.2008,35 (7):735-741.
    [42]Cameron D C, Altartas N E, Hofman M L, et al. Metabolic engineering of propandiol pathways. Biotechnol Prog.1998,14:116-125.
    [43]Zhao Y N, Chen G, Yao S J. Microbial production of 1,3-propanediol from glycerol by encapsulated Klebsiella pneumonia. Biochem Eng J.2006,32 (2):93-99.
    [44]Ma Z, Rao Z M, Zhuge B, et al. Construction of a Novel Expression System in Klebsiella pneumoniae and its Application for 1,3-Propanediol Production. Appl Biochem Biotechno.2009, DOI 10.1007/s 12010-009-8743-4.
    [45]Chen X, Xiu Z L, Wang J F, et al. Stoichiometric analysis and experimental investigation of glycerol bioconversion to 1,3-propanediol by Klebsiella pneumoniae under microaerobic conditions. Enzyme Micro Technol.2003,33:386-394.
    [46]Xiu Z L, Song B H, Wang Z T, et al. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one-and two-stage anaerobic cultures. Biochem Eng J.2004,19(33):189-197.
    [47]Seraphim P, Ruiz-Sanchez P, Pariset B, et al. High productionof 1,3-propanediol from industrial glycerol by a newly isolate Clostridiumbutyricum strain. J Biotechnol.2000, 77:191-208.
    [48]Menzel K, Zeng A P, Deckwer D W. High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb Technol.1997,20:82-86..
    [49]Menzel K, Zeng A P, Biebl H, et al. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella plleumoniae in anaerobic continuous culture:I. The phenomena and characterization of oscillation and hysteresis. Biotechnol Bioeng.1996, 52:549-560.
    [50]Zeng A P, Menzel K, Deckwer W D. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅱ. Analysis of metabolic rates and pathways under oscillation and steady-state conditions. Biotechnol Bioeng.1996,52(5):561-571.
    [51]Ahrens K, Zeng A P, Deckwer W D, Menzel K. Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:III. Enzymes and fluxes of glycerol dissimilation and 1,3-propanediol formation. Biotechnol Bioeng.1998,59:544-552.
    [52]Yang G. Tian J, Li J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol.2007, 73:1017-1024.
    [53]张延平,杜晨宇,黄志华,刘铭,曹竹安.醛脱氢酶基因敲除对克氏肺炎杆菌合成PDO的影响。化工学报.2006,57(11):2682-268.
    [54]Fabien B, El H H, Thierry C, et al.1,3-Propanediol production by fermentation:an interesting way to valorize glycerin from the ester and ethanol industries. Industrial Crops and Products.1998,7:281-289.
    [55]Boenigk R, Bowien S, Gottschalk G. Fermentation of glycerol to 1,3-propanediol in continuous cultures of Citrobacter freundii. Appl Microbiol Biotechnol.1993, 38:453-457.
    [56]许晓菁,陈询,晋明芬,武晓炜,王祥河.微生物法生产二羟基丙酮的研究进展.生物工程学报.2009,25(6):903-908.
    [57]程可可,孙燕刘,卫斌刘,德华.底物流加策略对发酵法生产PDO的影响.食品与发酵工业.2004,4:1-5.
    [58]Zeng A P, Ross A, Hibel H et al. Multiple product inhibition and growth modeling of Clostridium butyricum and Klebsiella pneumonise in glycerol fermentation. Biotechnol Bioeng.1993,44:902-911.
    [59]Biebl H. Menzel K. Zeng A P, et al. Microbial production of 1,3-propanediol. Appl Microbiol Biotechnol.1999,52:289-297.
    [60]Reimann A, Biebl H, Deckwer W D. Production of 1,3-propanediol by Clostridium butyricum in continuous culture with cell recycling. Appl Microbiol Biotechnol.1998, 49:359-363.
    [61]赵红英,张健,刘宏娟,向波涛,刘德华.PDO发酵过程中底物抑制及其对策的研究.现代化工.2002,22(7):34-38.
    [62]Giinzel B, Yonsel S, Deckwer W D. Fermentative production of 1,3-propanediol from glycerol by Clostridium butyricum up to a scale of 2m3. Appl Microbiol Biotechnol. 1991,36 (3):289-294.
    [63]Zeng A P, Deckwer W D. A kinetic model for substrate and energy consumption of microbial growth under substrate-sufficient conditions, Biotechnol Prog.1995, 11:71-79.
    [64]张健,赵红英,刘宏娟,向波涛,刘德华等.以葡萄糖为辅助底物发酵生产PDO的研究.现代化工.2002,22(6):32-35.
    [65]Schneider Z, Pawelkiewicz J. The properties of glycerol dehydratase isolated from Aerobacter aerogenes and the properties of the apoenzyme subunits. Acta Biochim Pol. 1966,13(4):311-28.
    [66]Toraya T, Mori K. A Reactivating Factor for Coenzyme B2-dependent Diol Dehydratase. J Biol Chem.1999,274(6):3372-3377.
    [67]Johnson C L V, Pechonick E, Park S D, et al. Functional genomic, biochemical, and genetic characterization of the Salmonella pduO gene, an ATP:cob(I)alamin adenosyltransferase gene. J Bacteriol.2001,183:1577-1584.
    [68]Knietsch A, Bowien S, Whited G, et al. Identification and Characterization of Coenzyme B2-dependent Glycerol Dehydratase and Diol Dehydratase-Encoding Genes from Metagenomic DNA Libraries Derived from Enrichment Cultures. Appl Environ Microbiol.2003,69:3048-3060.
    [69]Liao D I, Dotson G, Turner I, et al. Crystal Structure of Substrate Free Form of Glycerol Dehydratase. J Inorg Biochem.2003,93:84-91.
    [70]Liao D, ReissL, TurnerI, et al. Structure of Gycerol Dehydratase reactivase:A New Type of Molecular Chaperone. Structure.2003,11:109-119.
    [71]Vollenweider S. Lacroix C.3-Hydroxypropionaldehyde:applications and perspectives of biotechnological production. Appl Microbiol Biotechnol.2004,64(1):16-27.
    [72]Wang W, Sun J, Hartlep M, et al. Combined use of proteomic analysis and enzyme activity assays for metabolic pathway analysis of glycerol fermentation by Klebsiella pneumoniae. Biotechnol Bioeng.2003,83(5):525-536.
    [73]Zhao L, Zheng Y, Ma X Y, et al. Effects of over-expression of glycerol dehydrogenase and 1,3-propanediol oxidoreductase on bioconversion of glycerol into 1, 3-propandediol by Klebsiella pneumoniae under micro-aerobic conditions. Biopro Biosys Eng.2009,32 (3):313-320.
    [74]林日辉,刘宏娟,孙燕,郝健,程可可,刘德华.氧对Klebsiella pneumoniae产PDO代谢的影响.过程工程学报.2006,6(1):96-99.
    [75]Chevlier M, Lin E C C, Rodney L. Hydrogen Peroxide Mediates the Oxidative Inactivation of Enzymes Following the Switch from Anaerobic to Aerobic Metabolism in Klebsiellappneumoniae. J Biol Chem.1990,265:40-46.
    [76]Susumu H, Tetsuo T, Saruro F. In Situ Reactivation of Glycerol-inactivated Coenzyme B12 Dependent Enzymes, Glycerol Dehydratase an Diol Dehydratase. J Bacteriol.1980, 143:1458-1465.
    [77]Lin E C C, Boris Maganik. The activation of glycerol dehydrogenase from Aerobacter aerogenes by monovalent cations. J Biol Chem.1960,235:1820-1823.
    [78]Johnson E A, Levine R L, Lin E C. Inactivation of glycerol dehydrogenase of Klebsiella pneumoniae and the role of divalent cations. J Bacteriol.1985, 164(1):479-483.
    [79]张根K. pneumoniae XJPD-Li甘油脱水酶与复活因子的克隆表达及其复活关系研究.石河子大学.2007.
    [80]Forage R G, Foster M A. Glycerol fermentation in Klebsiella pneumoniae:functions of the coenzyme B12-dependent glycerol and diol dehydratases. J Bacteriol.1982, 149:413-419.
    [81]Cheng K K, Liu H J, Liu D H. Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnol Lett.2005,27:19-22.
    [82]修志龙,曾安平,安佳利.甘油生物歧化过程动力学数学模拟和多稳态研究.大连理工大学学报.2000,40(4):428-433.
    [83]程可可,林日辉,刘宏娟刘德华.PDO分批发酵动力学模型.过程工程学报.2005,5(4):425-429.
    [84]Menzel K, Zeng A P, Deckwer W D, et al.Kinetic, dynamic, and pathway studies of glycerol metabolism by Klebsiella pneumoniae in anaerobic continuous culture:Ⅳ. Enzymes and fluxes of pyruvate metabolism. Biotechnol Bioeng.1998,60(5):617-626.
    [85]Tobimatsu T, Azuma M, Matsubara H, et al. Cloning, sequencing, and high level expression of the genes encoding adenosylcobalamin-dependent glycerol dehydrase of Klebsiella pneumoniae. J Biol Chem.1996,271:22352-22357.
    [86]Daniel R, Boenigk R, Gotschalk G. Purification of 1,3-propanediol dehydrogenase from Citrobacter freundii and cloning, sequencing, and overexpression of the corresponding gene in Escherichia coli. J Bacteriol.1995,177:2151-2156.
    [87]Seyfried M, Daniel R, Gottschalk G. Cloning, sequencing, and overexpression of the genes encoding coenzyme B12-dependent glycerol dehydratase of Citrobacter freundii. J Bacteriol.1996,178:5793-5796.
    [88]Luers F, Seyfried M, Daniel R, et al. Glycerol conversion to 1,3-Propanediol by Clostridium pasteurianum:cloning and expression of the gene encoding 1,3-propanediol dehydrogenase. FEMS Microbiol Lett.1997,154:337-345.
    [89]Skraly F A, Lytle B L, Cameron D C. Construction and characterization of a 1,3-propanediol operon. Appl Environ Microbiol.1998,64:98-105.
    [90]Tobimatsu T, Kajium H, Yunoki M. Identification and expression of the genes encoding a reactivating factor for adenosylcobalamin-dependent glycerol dehydratase. J Bacteriol. 1999,181(13):4110-4113.
    [91]Mori K, Tobimatsu T, Hara T, et al. Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin dependent diol dehydratase. J Biolog Chem.1997,272(51):32034-32041.
    [92]Seifert C, Bowien S, Gotschalk G, et al. Indentification and expression of the genes and purification and characterization of the gene products involved in reactivation of coenzyme B12-dependent glycerol dehydratase of Citrobacter freund. J Biochem.2001, 268:2369-2378.
    [93]Lafend L A, Nagarajan V, Nakamura C E. Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism. US Patent 6,025,184.2000.
    [94]Sprenger G A, Hammer B A, Johnson E A, et al. Anaerobic growth of E. coli on glycerol by importing genes of the dha regulon from Klebsiella pnewnoniae. J General Microbiol.1989,135:1255-1262.
    [95]周文广, 黄日波.克雷伯氏菌1,3一丙二醇氧化还原酶基因在大肠杆菌中的克隆与表达.广西农业生物科学,2004,23(2):145-148.
    [96]张晓梅,唐雪明,诸葛斌等.产1,3一丙二醇新型重组大肠杆菌的构建.生物工程学报,2005,21(5):743-747.
    [97]Nakamura C E, Whited G. Metabolic engineering for the microbial production of 1,3-propanedio. Curr Opin Biotechnol,2003,14:454-459.
    [98]Robert Westervelt. DuPont, Tate & Lyle Form joint venture for propanediol production. Chemical Week,2004,166 (18):10
    [99]李阜棣,胡正嘉.微生物学(第五版).北京:中国农业出版社,2001.
    [100]叶勤.发酵过程原理.北京:化学工业出版社,2005.
    [101]Kennedy M, Krouse D. Strategies for improving fermentation medium performance:a review. J. Ind Microbiol Biotechnol.1999,23:456-475.
    [102]王剑锋,修志龙,范圣第.甘油转化生产1,3-丙二醇发酵液中甘油含量的测定.工业微生物.2001,31(2):32-35.
    [103]王剑锋.气相色谱测定1,3-丙二醇发酵液中主要成分.大连民族学院学报.2001,31:33-35.
    [104]吴辉.代谢工程大肠杆菌生产琥珀酸的代谢调控以及吸收二氧化碳特性的研究.上海:华东理工大学,2009.
    [105]李云雁,胡传荣.实验设计与数据处理.北京:化学工业出版社,2005.
    [106]Thompson B G, Kole M, Gerson D F. Control of ammonium concentration in Escherichia coli fermentation. Biotechnol Bioeng.1985,27:818-824.
    [107]胡秋龙,郑宗明,刘灿明,郝健,刘德华.pH值对Klebsiella pneumoniae合成1,3-丙二醇中心碳代谢的影响.生物技术.2007,17(5):74-77.
    [108]李君文,孙薇,王新为,宋农,金敏.海带水提液和酵母提取物促大肠杆菌生长研究.微生物学通报2004,31(6):16-22.
    [109]Guth J H, Burris R H. The role of Mg2+and Mn2+in the enzyme-catalysed activation of nitrogenase Fe from Rhodospirillum rubrum. Biochem J.1983,213:741-749.
    [110]王剑锋,修志龙,刘海军等.克雷伯氏菌微氧发酵生产1,3-丙二醇的研究.现代化工,2001,21(5):28-31.
    [111]Chen X, Zhang D J, Qi W T, et al. Microbial Fed-batch Production of 1,3-Propanediol by Klebsiela pneunoniae under Micro-aerobic Conditions. Appl Microbiol Biotechnol.2003,63:143-146.
    [112]杜晨宇,刘铭,饶治,包晓玮,沈金玉,曹竹安.分段通气对Klebsiellapneumoniae生产1,3-丙二醇关键酶和辅酶的影响.过程工程学报,2005,5(5):540-544.
    [113]Barbirato F, Larguier A, Conte T, Astruc S, Bories A (1997) Sensitivity to pH, product inhibition, and inhibition by NAD+ of 1,3-propanediol dehydrogenase purified from Enterobacter agglomerans CNCM 1210. Arch Microbiol 168:160-163.
    [114]修志龙,张代佳,王剑锋,刘海军:一种微生物微氧发酵生产1,3-丙二醇的方法,ZLO1117282.7.
    [115]贾士儒.生物反应工程原理(第三版).北京:科学出版社,2008.
    [116]山本恒夫.生物反应工程(原著第三版).北京:化学工业出版社.邢新会译,2006.
    [117]Zeng AP, Biebl H, Schlieker H, Deckwer W D. Pathway analysis of glycerol fermentation by Klebsiella pneumoniae:regulation of reducing equivalent balance and product formation. Enzyme Microb TechnoL.1993,15:770-779.
    [118]沈萍.微生物学.北京:高等教育出版社.2002.
    [119]张延平,饶治,杜晨宇,李春,曹竹安.能量驱动对Klebsiella pneumoniae发酵甘油合成1,3-丙二醇的影响.过程工程学报,2004(6):88-92.
    [120]管桂萍,王红兵,田杰生.琥珀酸对产酸克雷伯氏菌好氧发酵甘油产1,3-丙二醇的影响.食品与发酵工业,2008(5):14-17.
    [121]王镜岩,朱圣庚,徐长法.生物化学.(第三版)(下册)[M].北京:高等教育出版社,2002:110-111。
    [122]曾浩,邹全明.幽门螺杆菌代谢组学研究进展.世界华人消化杂志2005,13(20):2455-2458.
    [123]Lin R H, Liu H J, Hao J et al. Enhancement of 1,3-propanediol production by Klebsiella pneumonia with fumarate addition. Biotechnol Lett,2005,27:1755-1759.
    [124]Wan H M, Chen C C, Giridhar R, Chang T S, Wu W T Reapeated-bach production of kojic acid in a cell-retention fermenter using Aspergillus oryzae M3B9. Ind Microbiol Biotechnol.2005,32:227-233.
    [125]Takaomi Ito, Hiroyuki Sota, Hiroyuki Honda, Kazuyuki Shimizu, Takeshi Kobayashi Efficient acetic acid production by repeated fed-batch fermentation using two fermentors. Appl Microbiol Biotechnol.1991,36:295-299.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700