布朗斯特酸催化的碳碳键和碳氮键的形成反应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
C-C键和C-N键的形成反应在现代有机合成领域具有非常重要的地位。传统的方法,往往需要在C-C、C-N键形成时使用昂贵的金属催化剂,或者需要多步转化,生成大量的副产物,不符合现代“绿色化学”对环境友好性和原子经济性的要求。因此,研究新的C-C、C-N键形成反应催化剂成为当前化学工作者关注的焦点之一。本论文主要研究了布朗斯特酸催化下的C-C键和C-N键的形成反应。包括以下四个部分:
     一、首次研究了采用HBF4为催化剂,在微波加热的反应条件下催化1,3-二羰基化合物和醇的烷基化反应。实验结果表明:通过微波加热,只需要5分钟,对一系列反应底物都获得很好的反应收率。
     二、在传统加热和微波加热两种加热方式下,研究了H2SO4催化下1,3-二羰基化合物和醇的烷基化反应。实验结果表明:传统加热和微波加热对该反应具有相似的反应结果。在传统加热和微波加热条件下,对于一系列的反应底物,仅经过5分钟,都得到了很好的反应收率。
     三、本论文首次将三氟甲磺酸(TfOH)吸附在硅胶上,成功地制备了硅胶负载的三氟甲磺酸(TfOH-SiO2),该催化剂能够在无溶剂或硝基甲烷为溶剂的条件下,实现一系列1,3-二羰基化合物和醇的烷基化反应。并且TfOH-SiO2可以方便地回收和循环使用,该催化剂循环使用5次后还能保持很好的催化效果。
     四、在磺酰胺类化合物对烯烃的加成反应中,本论文首次研究了通过加入硅胶简便地实现TfOH催化剂的回收和循环使用。实验结果表明:含适量水的硅胶吸附的TfOH可以重复使用5次,而催化反应的活性与收率基本不变。另外,在磺酰胺类化合物对烯烃的加成反应中,该催化剂对一系列底物都获得了较好的反应收率。
The construction of C-C bonds and C-N bonds is one of the most important areas in modern organic chemistry. The traditional methods to achieve these transformations usually need expensive metal catalysts or tedious steps, which are against the demands of enviromental benignity and atom economy in "green chemistry". In this thesis, we report our investigations of C-C and C-N bond formation reactions with Br(?)nsted acids as the catalysts. This thesis consists of four parts.
     Part 1:The microwave-assisted addition ofβ-dicarbonyl compounds to secondary alcohols has been achieved efficiently for the first time, using very cheap fluoroboric acid as the catalyst. For various P-dicarbonyl compounds and a series of secondary alcohols, the direct additions give high yields only after 5 minutes of microwave irradiation.
     Part 2:Under the conventional heating condition or the microwave-assisted condition, the reactions ofβ-dicarbonyl compounds and alcohols with sulfuric acid as the catalysts demonstrated similar reaction results. For various P-dicarbonyl compounds and a series of alcohols, the catalystic reactions under conventional thermal condition and microwave irradiation condition all gave high yields only after 5 minutes.
     Part 3:The new silica gel supported triflic acid was readily prepared via simple absorption of TfOH onto silica gel. This solid acid was applied as an efficient catalyst for the heterogeneous addition of variousβ-dicarbonyl compounds to a series of alcohols and alkenes, which afforded good to excellent yields under solvent-free conditions or in nitromethane. Moreover, this silica gel supported catalyst can be readily recovered and reused up to 5 runs with almost maintained reactivity and yields.
     Part 4:In the hydroamination of alkene with sulfonamide, the readily recovery and efficient reusability of the catalyst, triflic acid, have been achieved successfully through simply adding wet silica gel as the adsorbent. This silica gel absorbed TfOH can be readily recovered and reused up to 5 runs with almost maintained reactivity and yields. Moreover, for a series of alkenes and various sulfonamides, the hydroaminations catalyzed by this silica gel absorbed TfOH afforded moderate to excellent yields.
引文
[1]J. March. Advanced organic chemistry,4th ed., Wiley, New York,1992.
    [2]C. Scolastico, F. Nicotra. Current trends in organic synthesis, Plenum, New York,1999.
    [3]J. K. Stile. The palladium-catalyzed cross-coupling reactions of organotic reagents with organic electrophiles new synthetic Methods. Angew. Chem. Int. Ed. Engl.1986,25, 508-524.
    [4]Suzuki, A. Organoboron compounds in new synthetic reactions. Pure Appl. Chem.1985, 57,1749-1758.
    [5]R. F. Heck, J. P. Nolley, Palladium-catalyzed vinylic hydrogen substitution reactions with aryl, benzyl and styryl halides. J. Org. Chem.1972,37(14),2320-2322.
    [6]B. M. Trost. I. Fleming(Eds.), Comprehensive organic synthesis, Pergamon, Oxford,1991, 3.
    [7]B. M. Trost. The atom economy a search for synthetic efficiency. Science,1991,254, 1471-1477.
    [8]R. A. Sheldon. Consider the environmental quotient. ChemTech,1994,38-47.
    [9]R. A. Sheldon. Atom efficiency and catalysis in organic synthesis. Pure Appl. Chem.2000, 72,1233-1246.
    [10]J. Marqet, M. Moreno-Manas. Alkylation of active hydrogen compounds with allylic and benzylic alcohols under CoCl2 catalysis. A useful synthesis of grifolin. Chem. Lett. 1981,173-176.
    [11]J. B. Baruah, A. G. Samuelson. Copper(I)promoted C-C bond forming reactions:direct activation of allyl alcohols. J. Organomet. Chem.1989,361, C57-C60.
    [12]M. Mukhopadhyay, J. Iqbal. Co(III)DMG complex catalyzed allylation of 1,3-dicarbon-yl compounds with allylic alcohols. Tetrahedron Lett.1995,36,6761-6764.
    [13]F. Ozawa, H. Okamoto, S. Kawagish, S. Yamamoto, T. Minami, M. Yoshifuji. (π-Allyl)palladium complexes bearing diphosphinidene cyclobutene ligands (DPCB): highly active catalysts for direct conversion of allylic alcohols. J. Am. Chem. Soc.2002, 124,10968-10969.
    [14]K. Manabe, S. Kobayashi. Palladium-catalyzed, carboxylic acid-assisted allylic substitution of carbon nucleophiles with allyl alcohols as allylating agents in water. Org. Lett.2003,5,3241-3244.
    [15]J. Muzart. Palladium-catalysed reactions of alcohols. Part B:Formation of C-C and C-N bonds from unsaturated alcohols. Tetrahedron.2005,61,4179-4212.
    [16]P. J. Black, G. C. Kobeci, M. G. Edwards, P. A. Slatford, M. K. Whittlesey, J. M. J. Williams. Iridium catalysed reactions for the formation of C-C bonds from alcohols. Org. Biomol. Chem.2006,4,116-125.
    [17]M. Yasuda, T. Somyo, A. Baba. Direct carbon-carbon bond formation from alcohols and active methylenes, alkoxyketone or indoles catalyzed by indium trichloride without salt formation. Angew. Chem. Int. Ed.2006,45,793-796.
    [18]M. Rueping, B. J. Nachtsheim, W. Ieawsuwan. An effective bismuth-catalyzed benzylation of arenes and heteroarenes. Adv. Synth. Catal.2006,348,1033-1037.
    [19]M. Noji, Y. Konno, K. Ishii. Metal Triflate-catalyzed cationic benzylation and bllylation of 1,3-dicarbonyl compounds. J. Org. Chem.2007,72,5161-5167.
    [20]W. Huang, J.Wang, Q. Shen, X. Zhou, An efficient Yb(OTf)3 catalyzed alkylation of 1,3-dicarbonyl compounds using alcohols as substrates. Tetrahedron Lett.2007,48(23), 3969-3973.
    [21]P. Vicennati, P. G. Cozzi. Facile access to optically active ferrocenyl derivatives with direct substitution of the hydroxy group catalyzed by inthedium tribromide. Eur. J. Org. Chem.2007,2248-2253.
    [22]J. liu, F. S. Liang, Q. Liu, B. Li. BF3·OEt2-mediated C-C bond-forming reaction of a-hydroxyketene-(S,S)-acetals with active methylene compounds and its application in the synthesis of substituted 3,4-dihydro-2-pyridones. Synlett 2007,156-160.
    [23]J. Kischel, K. Mertins, D. Michlik, A. Zapf, M. Beller. A general and efficient iron-catalyzed benzylation of 1,3-dicarbonyl compounds. Adv. Synth. Catal.2007,349, 865-870.
    [24]U. Jana, S. Biswas, S. Maiti. A simple and efficient FeCl3-catalyzed direct alkylation of active methylene compounds with benzylic and allylic alcohols under mild conditions. Tetrahedron Lett.2007,48(23),4065-4069.
    [25]Y. Yuan, L. Shi, X. Feng, X. Liu. Solvent-free reactions of alcohols with β-dicarbonyl compounds catalyzed by iron(III) chloride. Appl. Organometal. Chem.2007,21, 958-964.
    [26]W. Rao, A. H. L. Tay, P. J. Goh, J. M. L. Choy, J. K. Ke, P. W. H. Chan. Iodine-catalyzed allylation of 1,3-dicarbonyl compounds with allylic alcohols at room temperature. Tetrahedron Lett.2008,49(1),122-126.
    [27]T. J. Pinnavaia. Intercalated clay catalysts. Science 1983,220,365-371.
    [28]P. Laszlo. Catalysis of organic reactions by inorganic solids. Acc. Chem. Res.1986,19, 121-127.
    [29]Y. Izumi, M. Onaka. Organic syntheses using aluminosilicates. Adv. Catal.1992,38, 245-282.
    [30]J. A. Horsley. Producing bulk and fine chemicals using solid acids. Chemtech,1997,27, 45-49.
    [31]V. Ramamurthy, P. Lakshminarasimhan, C. P. Grey, L. J. Johnston. Energy transfer, proton transfer and electron transfer reactions within zeolites. Chem. Commun.1998, 2411-2424.
    [32]C. W. Jones, K. Tsuji, M. E. Davis. Organic-functionalized molecular sieves as shape-selective catalysts. Nature 1998,393,52-54.
    [33]A. Corma, L. T. Nemeth, M. Renz, S. Valencia. Sn-zeolite beta as a heterogeneous chemoselective catalyst for baeyer-villiger oxidations. Nature 2001,412,423-425.
    [34]K. Motokura, N. Fujita, K. Mori, T. Mizugaki, K. Ebitani, K. Kaneda. Br(?)nsted acid mediated heterogeneous addition reaction of 1,3-dicarbonyl compounds to alkenes and alcohols. Angew. Chem. Int. Ed.2006,45,2605-2609.
    [35]R. Sanz, A. Martinez, D. Miguel, J. M. Alvarez-Gutierrez, F. Rodriguez. Br(?)nsted acid-catalyzed nucleophilic substitution of alcohols. Adv. Synth. Catal.2006,348, 1841-1845.
    [36]R. Sanz, D. Miguel, A. Martinez, J. M. Alvarez-Gutierrez, F. Rodriguez. Br(?)nsted acid catalyzed propargylation of 1,3-dicarbonyl derivatives. synthesis of tetrasubstituted furans. Org. Lett.2007,9(4),727-730.
    [37]S. Shirakawa, S. Kobayashi, Surfactant-type br(?)nsted acid catalyzed dehydrative nucleophilic substitutions of alcohols in water. Org. Lett.2007,9(2),311-314.
    [38]G. W. Wang, Y. B. Shen, X. L. Wu. Phosphotungstic acid catalyzed direct benzylation of β-dicarbonyl compounds. Eur. J. Org. Chem.2008,4999-5004.
    [39]P. N. Liu, Z. Y. Zhou, C. P. Lau. The lewis acidic ruthenium-complex-catalyzed addition of β-diketones to alcohols and styrenes is in fact br(?)nsted acid catalyzed. Chem. Eur. J. 2007,13,8610-8619.
    [40]P. N. Liu, L. Dang, Q. W. Wang, S. L. Zhao, F. Xia, X. Q. Gong, Y J. Ren, J. Q. Chen. Perchloric acid-catalyzed homogeneous and heterogeneous addition of β-dicarbonyl compounds to alcohols and alkenes and the investigation of the mechanism, J. Org. Chem.2010,75,5017-5030.
    [41]Y. Ju, D. Kumar, R. S. Varma. Revisiting nucleophilic substitution reactions:micro-wave assisted synthesis of azides, thiocyanates and sulfones in an aqueous medium. J. Org. Chem.2006,71,6697-6700.
    [42]Y. J. Cherng. Efficient nucleophilic substitution reaction of aryl halides with amino acids under focused microwave irradiation. Tetrahedron.2000,56(42),8287-8289.
    [43]I. H. Chen, J. N. Young, S. J. Yu. Recyclable organotungsten Lewis acid and microwave assisted diels-alder reactions in water and in ionic liquid. Tetrahedron.2004,60(51), 11903-11909.
    [44]R. K. Arvela, N. E. Leadbeater. Microwave-promoted heck coupling using ultralow metal catalyst concentrations. J. Org. Chem.2005,70(5),1786-1790.
    [45]D. E. Bergbreiter, S. Furyk. Microwave promoted heck reactions using an oligo(ethylene glycol)-bound SCS palladacycle under thermomorphic conditions. Green Chem.2004,6, 280-285.
    [46]Y. Peng, R. Dou, G. Song, J. Jiang. Dramatically accelerated synthesis of β-aminoke-tones via aqueous mannich reaction under combined microwave and ultrasound irradiation. Synlett,2005,2245-2247.
    [47]G. P. Hua, S. J. Tu, X. T. Zhu, X. J. Zhang, J. N. Xu, J.P. Zhang, F. Shi, Q. Wang, S. J. Ji. One-pot synthesis of 10-methyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione deriva-tives under microwave heating without Catalyst. Chin. J. Chem.2005,23,1646-1650.
    [48]M. Kidwai, S. Saxena, M. K. R. Khan, S. S.Thukral, Bioorg. Med. Chem. Lett.2005,15, 4295-4298.
    [49]陈新容,洪品杰,戴树珊.尼泊金脂类的微波合成.化学通报,1993,3,38-39
    [50]R. I. Giguere, T. L. Bray, Dun Can and S. M. Majetich. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett.1986,27(41),4945-4948.
    [51]F. Gutierrez, A. Lounpy, G. Bram, F. Ruizky. Inorganic solids in "dry media" an efficient way for developing microwave irradiation activated organic reactions. Tetrahedron Lett.1989,30(8),945-948.
    [52]J. K. Kim, P. S. Kwon, T. W. Kwon, S. K. Chung, J. W. Lee. application of microwave irradiation techniques for the knoevenagel condensation. Synth Commun.,1996,26,535-542.
    [53]S. Caddick. Microwave assisted organic reactions. Tetrahedron.1995,51,10403-10432
    [54]D. Villemin, B. Martin, B. Garrigues. Potassium fluoride on alumna:dry condensation of 3-phenylisoxazol-5-one with aldehydes under microwave irradiation. Synth.Commun. 1993,23(16),2251-2257..
    [55]R.Gedye, F. Smith, K. Westaway, H. Ali, L. Leberge, J. Rousell. The use of microwave ovens for rapid organic synthesis. Tetrahedron Lett.1986,27(3),279-282.
    [56]S. D. Dollington, G. Bond, R. B. Moyes, D. A. Whalll, J. P. Candlin, J. R. Tenning. Theinfluence of microwave on the rate of reaction of propan-1-ol nith ethanoic acid. J. Org. Chem.1991,56(3),1313-1314.
    [57]E. G. E. Jahngen. Hydrolysis of adenosine triphosphate by conventional or microwave heating. J. Org. Chem.1990,53(15),2406-2409.
    [58]K. D. Raner, C. R. Strauss. Influence of microwave on the rate of esterification of 2,4,6-trimethylbenzoic acid with 2-propanol. J. Org. Chem.1992,57(23),6231-6234.
    [59]D. A. Lewis, J. D. Summers, Microwave-assited efficient synthesis of N-arylamines in dry media. J. Polym. Sci. Part A:Polym. Chem.1992,30(23),1647-1649.
    [60]C. Shibata, T. Kashima, K. Ohuchi. Solvent-free organic synthese. J. Appl. Phys.1996, 35(6),316-318.
    [61]D. M. P. Mingos, D. R. Baghurst. Applications of microwave dielectric heating effects to synthetic problems in chemistry. Chem. Soc. Rev.1991,30(1),91-95.
    [62]K. D. Raner, C. R. Strauss. Influence of microwave on the rate of esterification of 2,4,6-trimethyl benzoic acid 2-propanol. J. Org. Chem.1992,57(23),6231-6234.
    [63]D. Karshtedt, T. Bell, T. D. Tilley, Platinum-based catalysts for the hydroamination of olefins with sulfonamides and weakly basic anilines. J. Am. Chem. Soc.2005,127, 12640-12646.
    [64]J. L. McBee, A. T. Bell, T. D. Tilley. Mechanistic studies of the hydroamination of norbornene with electrophilic platinum complexes:the role of proton transfer. J. Am. Chem. Soc.2008,130,16562-16571.
    [65]J.1. Zhang, C. G. Yang, C. He, Gold(I)-catalyzed intra-and Intermolecular hydroamination of unactivated olefins. J. Am. Chem. Soc.2006,128,1798-1799.
    [66]J. G. Taylor, N. Whittall, K. K. Hii, Copper-catalyzed intermolecular hydroamination of alkenes, Org. Lett.2006,8,3561-3564.
    [67]D. Karshtedt, A. T. Bell, T. D. Tilley. Platinum-based catalysts for the hydroamination of olefins with sulfonamides and weakly basic anilines. J. Am. Chem. Soc.2005,127, 12640-12646.
    [68]J. L. McBee, A. T. Bell, T. D. Tilley. Mechanistic studies of the hydroamination of norbornene with electrophilic platinum complexes:the role of proton transfer. J. Am. Chem. Soc.2008,130,16562-16571.
    [69]J. L. Zhang, C. G. Yang, C. He. Gold(I)-catalyzed intra-and intermolecular hydroamination of unactivated olefins.J. Am. Chem. Soc.2006,128,1798-1799.
    [70]J. G. Taylor, N. Whittall, K. K. Hii. Copper-catalyzed intermolecular hydroamination of alkenes. Org. Lett.2006,8(16),3561-3564.
    [71]H. B. Qin, N. Yamagiwa, S. Matsunaga, M. Shibasaki. Bismuth-catalyzed intermolecular hydroamination of 1,3-dienes with carbamates, sulfonamides and carboxamides. J. Am. Chem. Soc.2006,128,1611-1614.
    [72]L. Yang, L. W. Xu, W. Zhou, Y. H. Gao, W. Sun, C. G. Xia. Zirconium-catalyzed intermolecular hydroamination of unactivated olefins. Synlett.2009,7,1167-1171.
    [73]P. Yin, T.P. Loh. Intermolecular hydroamination between nonactivated alkenes and aniline catalyzed by lanthanide salts in ionic solvents. Org. Lett.2009,11,3791-3793.
    [74]X. Giner, C. Najera. Silver-catalyzed intermolecular hydroamination of alkenes and 1,3-dienes. Synlett.2009,19,3211-3213.
    [75]J. M. Huang, C. M. Wong, F. X. Xub, T. P. Loh. InBr3 catalyzed intermolecular hydroamination of unactivated alkenes. Tetrahedron Lett.2007,48,3375-3377.
    [76]V. Terrasson, S. Marque, M. Georgy, D. Prim, J. M. Campagne. Adv. Synth. Catal.2006, 348,2063-2067.
    [77]J. Michaux, V. Terrasson, S. Marque, J. Wehbe, D. Prim, J. M. Campagne. Intermolecular FeCl3-catalyzed hydroamination of styrenes. Eur. J. Org. Chem.2007, 2601-2603.
    [78]L.Yang, L.W. Xu, C. G. Xia. Heteropoly acids:a green and efficient heterogeneous br(?)nsted acidic catalyst for the intermolecular hydroamination of olefins. Tetrahedron Lett.2008,49,2882-2885.
    [79]D. C. Rosenfeld, S. Shekhar, A. Takemiya, M. Utsunomiya, J. F. Hartwig. Hydroamin-ation and hydroalkoxylation catalyzed by triflic acid parallels to reactions initiated with metal triflates. Org. Lett.2006,8(19),4179-4182.
    [80]K. Motokurano, B. Nakagiri, K. Mori, T. Mizugaki, K. Ebitani, K. Jitsukawa, K, Kaneda. Efficient C-N bond formations catalyzed by a proton-exchanged montmorillonite as a heterogeneous br(?)nsted acid. Org. Lett.2006,8(20),4617-4620.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700