全基因组精细定位影响猪小肠长度的基因位点(QTL)
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小肠是动物胃肠道系统一个重要器官,多种营养物质,如碳水化合物、蛋白质、微生素和矿物质等,在这里被吸收。为了鉴别影响猪小肠长度的的数量性状基因位点(QTL),本研究测量了白色杜洛克×二花脸资源群体F2代1034个体的240日龄小肠长度。结果显示,在该F2代群体中,小肠长度和生长性状及胴体长呈强相关性。利用覆盖猪基因组的183个微卫星标记对此F2群体进行全基因组扫描,分别在猪的8条染色体上鉴别到了10个影响小肠长度的QTL,其中2,4,7和8号染色体上的4个QTL达到1%基因组显著水平,12号染色体上1个QTL达到5%基因组显著水平,5、7、13和14号染色体上存在5个5%染色体组显著水平QTL。二花脸的QTL等位基因,除了7号和13号染色体上的位点外,均导致更短的小肠长度。4号染色体上的小肠长度QTL与前人报道的QTL有部分重叠,位于2,8和12号染色体上的主效QTL与已有的报道相一致,7号染色体上发现的QTL则尚属第一次报道。本研究中鉴别的所有QTL均与此前已报道的影响生长性状的QTL区域相重叠,由此可见,小肠长度在猪的生长发育过程中扮演着一个至关重要的角色。
     为了进一步精细定位影响猪小肠长度的QTL,本研究利用猪全基因组60K芯片,判定929头白色杜洛克×二花脸资源家系F2代个体的基因型,并针对小肠长度性状开展了全基因组关联分析(GWAS),结果在1、2、3、4、5、7、8、9、10、11、13和15号等12条染色体上检测到18个影响小肠长度的显著区域(P<2.68e-7),这些位点共解释31.5%的表型变异。研究结果不仅验证了上述基于微卫星标记连锁分析所定位的大部分QTL,还在3、9、10、11和15号染色体上鉴别到新的影响小肠长度的位点。此外,在显著SNP位点所在区段发现了令人感兴趣的候选基因。例如,4号染色体位于78.63Mb处INRA0014995标记附近的PLAG1基因以及7号染色体位于34.55Mb处MARC0058766标记附近的HMGA1基因处于同一个影响动物解剖形态的分子网络中,这两个候选基因值得深入研究。最后,基于18个显著SNP位点的信息,利用基于似然率比的统计方法推测了小肠长度变化和猪生长快慢的因果关系,结果表明小肠长度变化会影响猪生长快慢。本研究结果反映了小肠长度变异遗传机理的复杂性,所鉴别的显著位点及其相关候选基因为下一步精细定位和独立群体验证工作奠定了基础。
The small intestine is a vital organ in animal gastrointestinal system, in which a large variety of nutrients are absorbed. To identify quantitative trait loci (QTL) for the length of porcine small intestine, phenotypic values were measured in1034individuals at240days from a White-Duroc×Chinese Erhualian intercross F2population. The length of small intestine showed strong correlation with growth traits and carcass length in this population. A whole-genome scan was performed based on183microsatellites covering the pig genome in the F2population. A total of10QTL for this trait were identified on8pig chromosomes (SSC), including four1%genome-wide significant QTL on SSC2,4,7and8, one5%genome-wide significant QTL on SSC12, and five5%chromosome-wide significant QTL on SSC5,7,13and14. The Erhualian alleles were generally associated with shorter length of the small intestine except the alleles on SSC7and13. The QTL on SSC4overlapped with the previously reported QTL for the length of small intestine. Several significant QTL on SSC2,8and12were consistent with previous reports. The significant QTL detected on SSC7was reported for the first time. All QTL identified in this study coincided to the known QTL regions significantly affected the growth traits, supporting the important role of the length of small intestine in pig growth.
     To refine the location of the above-mentioned QTL, we further genotyped929F2animals from the White Duroc×Erhualian resource population using porcine60K SNP chips. A genome-wide association analysis (GWAS) was performed and a total of18significant regions around18most significant SNP (P<2.68e-7) were evidenced on12chromosomes, namely, SSC1,2,3,4,5,7,8,9,10,11,13and15. Most of the QTL detected by microsatellite markers based linkage analysis were replicated in GWAS, while the significant regions on SSC3,9,10,11and15were detected for the first time. The18significant SNP jointly explained31.5%of the phenotypic variance. We found some interesting candidate genes in the significant regions, e.g., the PLAG1near INRA0014995at78.63Mb on SSC4and HMGA1near MARC0058766at34.55Mb on SSC7are strong candidate genes that are worthwhile for further investigation, given that the two genes reside in the same molecular networks that are enriched for genes related to anatomical structure morphogenesis. Based on the genotypes of the18significant SNPs, we inferred the causal relationship between small intestine length and growth related traits like carcass weight and average daily gain using a likelihood ratio test which compared the likelihood of two reciprocal causal models. The resulting statistics supported that the change of small intestine length can be one of the causatives to variation in growth traits. These findings reflect the complex genetic architecture of porcine small intestine length, and provide a more detailed landscape of genomic regions and candidate genes underlying variation in pig intestine length compared with previous reports.
引文
[1]刘婷婷,张帅,邓斐月,曹广添,陈安国,杨彩梅。谷氨酰胺与丁酸梭菌对断奶仔猪生长性能、免疫功能、小肠形态和肠道菌群的影响。动物营养学报。2011,23:998-1005。
    [2]伍国耀。小肠氨基酸的代谢:动物营养的新视角。饲料工业。2011,32:52-58。
    [3]葛云山,陈樵,许金友,杨锐,徐筠遐,杨产浩,王明昌,谈俊亮,王国良。二花脸猪肥育特性的研究。江苏农业科学,1980(3):50-53。
    [4]葛云山,杨锐,徐筠遐,申尧昌。二花脸猪生长发育特性的初步观察。江苏农业科学,1981(5):45-47。
    [5]张书松。杜洛克猪部分内脏器官解剖常数的测定。河南农业科学,1995(6):31-32。
    [6]郑春雷,赵永庆,赖登明,张建远,张书松。杜洛克猪部分肌肉和内脏器官解剖数据的测定。中国畜牧杂志,2000,36(2):30-31,42。
    [7]周利华,任冬仁,李琳,陈蓉蓉,郭源梅,肖石军,高军。利用大规模F2及F3群体研究猪小肠长度与生长发育性状的相关性。畜牧与兽医。2010,42:28-31。
    [8]Aubin-Houzelstein G., Da Silva N.R., Bellier S., Salaun P., Montagutelli X. and Panthier J.J. Genetic interaction between a maternal factor and the zygotic genome controls the intestine length in PRM/Alf mice. Physiological Genomics.2003,16:82-89.
    [9]Andersson L., Haley C.S., Ellegren H., Knott S.A., Johansson M., Andersson K., Andersson-Eklund L., Edfors-Lilja I., Fredholm M., Hansson I., Hakansson J. and Lundstrom K. Genetic Mapping of quantitative trait loci for growth and fatness in pigs. Science.1994,263, 1771-1774.
    [10]孙艳香,姜国诚。初生仔猪肠管数据的相关回归分析。东北农业大学学报,1993,24(2):162-165。
    [11]张秉钵,高松,路传忠,刘来村,王亚力。111例成人急腹症剖腹手术中小肠长度测量分析。泰山医学院学报,1993,14(3):201-204。
    [12]Walling G A, Archibald A L, Visscher P M, Haley C S, Mapping genes for growth rate and fatness in a Large White and Meishan F2 pig population. Proceedings of the British Scoiety of Animal Science,1998b,7.
    [13]Hounnou G, Destrieux C, Desme J, Bertrand P, Velut S. Anatomical study of the length of the human intestine. Surg Radiol Anat.2002.24(5):290-294.
    [14]Tang M., Laarveld B., Van Kessel A.G., Hamilton D.L., Estrada A. and Patience J.F.. Effect of segregated early weaning on postweaning small intestinal development in pigs. Journal of Animal Science.1999,77:3191-3200.
    [15]Adeola O. and King D.E. Developmental changes in morphometry of the small intestine and jejunal sucrase activity during the first nine weeks of postnatal growth in pigs. Journal of Animal Science.2006,84:112-118.
    [16]Pluske J.R., Hampson D.J. and Williams I.H. Factor influencing the structure and function of the small intestine in the weaned pig:a review. Livestock Production Science.1997,51:215-236.
    [17]Wolinski J., Biernat M., Guilloteau P. and Westrom B.R. Exogenous leptin controls the development of the small intestine in neonatal piglets. Journal of Endocrinology.2003,177:215-222.
    [18]Cera K.R., Mahan D.C., Cross R.F., Reinhart G.A. and Whitmoyer R.E. Effect of age, weaning and postweaning diet on small intestinal growth and jejunal morphology in young swine. Journal of Animal Science.1988,66:574-584.
    [19]Steeb C.B., Trahair J.F., Tomas F.M., and Read L.C. Prolonged administration of IGF peptides enhances growth of gastrointestinal tissues in normal rats. American Journal Physiology Gastrointestinal and Liver Physiology.1994,266:G1090-G1098.
    [20]Zhang P., Sawicki V., Lewis A., Hanson L., Nuijens J.H. and Neville M.C. Human lactoferrin in the milk of transgenic mice increases intestinal growth in ten-day-old suckling neonates. Advances in Experimental Medicine and Biology.2001,501:107-113.
    [21]Van Der Werf C.S., Wabbersen T.D., Hsiao N.H., Paredes J., Etchevers H.C., Kroisel P.M., Tibboel D., Babarit C, Schreiber R.A., Hoffenberg E.J., Vekemans M., Zeder S.L., Ceccherini I., Lyonnet S., Ribeiro A.S., Seruca R., Te Meerman G.J., van Ijzendoorn S.C., Shepherd I.T., Verheij J.B. and Hofstra R.M. CLMP is required for intestinal development, and loss-of-function mutations cause congenital short-bowel syndrome. Gastroenterology.2012,142:453-462.
    [22]Hu X, Gao Y, Feng C, Liu Q, Wang X, Du Z, Wang Q, Li N. Advanced technologies for genomic analysis in farm animals and its application for QTL mapping[J]. Genetica,2009, 136(2):371-386.
    [23]Falconer DS, Mackay TFC Introduction to quantitative genetics[M],4th edn. Longmans Green, Harlow, Essex.1996
    [24]Paterson A H, Lander ES, Hewitt JD, Peterson S, Lincoln SE. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J]. Nature,1988,335:721-726.
    [25]Andersson L, Georges M. Domestic-animal genomics:deciphering the genetics of complex traits[J]. Nature Review Genetics,2004,5:202-212.
    [26]Andersson L (2001) Genetic dissection of phenotypic diversity in farm animals[J]. Nat Rev Genet 2:130-138.
    [27]丁向东.利用系谱传递不平衡检验精细定位QTL[D].北京:中国农业大学,2004.
    [28]Ma J.W., Ren J, Guo Y, Duan Y, Ding N, Zhou L, Li L, Yan X, Yang K, Huang L, Song Y, Xie J, Milan D, Huang L.Genome-wide identification of quantitative trait loci for carcass composition and meat quality in a large-scale White Duroc x Chinese Erhualian resource population[J]. Animal Geneties,2009,40(5):637-647.
    [29]Guo Y.M, Ai HS, Ren J, Wang GJ, Wen Y, Mao HR, Lan LT, Ma JW, Brenig B, Rothschild MF, Haley CS, Huang LS.A whole genome scan for quantitative trait loci for leg weakness and its related traits in a large F2 intercross population between White Duroc and Erhualian[J]. Journal of Animal Science.2009,87(5):1569-1575.
    [30]Xing Y, Ren J, Ren D, Guo Y, Wu Y, Yang G, Mao H, Brenig B, Huang L.A whole genome scanning for quantitative trait loci on traits related to sperm quality and ejaculation in pigs[J]. Animal Reproduction Science,2009,114(1-3):210-218.
    [31]Georges M. Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals[J]. Annual Review of Genomics and Human Genetics,2007; 8:131-162.
    [32]Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NH, Zody MC, Anderson N, Biagi TM, Patterson N, Pielberg GR, Kulbokas EJ 3rd, Comstock KE, Keller ET, Mesirov JP, von Euler H, Kampe O, Hedhammar A, Lander ES, Andersson G, Andersson L, Lindblad-Toh K. Efficient mapping of mendelian traits in dogs through genome-wide association[J]. Nature Genetics.2007, 39(11):1321-1328.
    [33]Xiong M., and S. Guo., Fine-scale mapping of quantitative trait loci using historical recombinations[J]. Genetics,1997,145:1201-1218。
    [34]李玉华.仔猪大肠杆菌F4受体基因的精细定位[D].北京:中国农业大学,2006.
    [35]Hyne V, Kearsey M J, Pike D J. QTL analysis:unreliability and bias in estimation procedures. Molecular Breeding.1995.1:273-282.
    [36]刘会英.利用连锁不平衡信息精细定位QTL[D].北京:中国农业大学,2003.
    [37]Tom Druet and Michel Georges. A Hidden Markov Model Combining Linkage and Linkage Disequilibrium Information for Haplotype Reconstruction and Quantitative Trait Locus Fine Mapping. Genetics.2010,184(3):789-798.
    [38]Karim L, Takeda H, Lin L, Druet T, Arias JA, Baurain D, Cambisano N, Davis SR, Farnir F, Grisart B, Harris BL, Keehan MD, Littlejohn MD, Spelman RJ, Georges M, Coppieters W. (2011) Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat. Gene 43,405-413.
    [39]Te Meerman GJ., Van der Meulen M.A., Sandkuijl L.A.. Perspectives of identity by descent (IBD) mapping in founder populations[J]. Clinical and Experimental Allergy,1995.25(suppl 2):97-102
    [40]张勤.采用IBD方法在家畜群体中进行QTL精细定位[C],《第六届动物遗传学讨论会论文集》,2002.
    [41]Riquet J., Coppieters W., Cambisano N., Arranz J.J., Berzi P., Davis S.K., Grisart B., Farnir F.D.R., Karim L., Mni M., Simon P., Taylor J.F., Vanmanshoven P., Wagenaar D., Womack J.E.& Georges M. Fine-mapping of quantitative trait loci by identity by desent in outbred population:application to milk production in dairy cattle[J]. Proceedings of the National Academy of Sciences USA 1999,96(16):9252-9257.
    [42]Ren J., Duan Y.Y., Qiao R.M., Yao F. Zhang Z.Y., Yang B., Guo Y.M, Xiao S.J., Wei R.X., Ouyang Z.X., Ding N.S., Ai H.S. & Huang L.S. A missense mutation in PPARD causes a major QTL effect on ear size in pigs[J]. Plos Genetics 2011 PLoS Genet.2011 May; 7(5):e1002043
    [43]Nielsen R. Molecular signatures of natural selection[J]. Annual Review of Genetics.2005,39: 197-218.
    [44]张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉深,李振声.选择牵连效应分析:发掘重要基因的新思路[J].中国农业科学,2006,39(8):1526-1535.
    [45]Anne-Sophie Van Laere, Minh Nguyen, Martin Braunschweig, Carine Nezer, Catherine Collette, Laurence Moreau, Alan L. Archibald, Chris S. Haley, Nadine Buys, Michael Tally, Goran Andersson, Michel Georges & Leif Andersson A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig[J]. Nature.2003,425(6960):832-836.
    [46]Clop A, Marcq F, Takeda H. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep[J]. Nature Genetics.2006,38(7):813-818.
    [47]Sutter NB, Bustamante CD, Chase K, Gray MM, Zhao K, Zhu L, Padhukasahasram B, Karlins E, Davis S, Jones PG, Quignon P, Johnson GS, Parker HG, Fretwell N, Mosher DS, Lawler DF, Satyaraj E, Nordborg M, Lark KG, Wayne RK, Ostrander EA.A single IGF1 allele is a major determinant of small size in dogs.Science.2007,316:112-115.
    [48]Rubin CJ, Zody MC, Eriksson J, Meadows JR, Sherwood E, Webster MT, Jiang L, Ingman M, Sharpe T, Ka S, Hallbook F, Besnier F, Carlborg O, Bed'hom B,Tixier-Boichard M, Jensen P, Siegel P, Lindblad-Toh K, Andersson L. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature.2010,25 (7288):587-591.
    [49]Mikawa S, Morozumi T, Shimanuki S, Hayashi T, Uenishi H, Domukai M, Okumura N, Awata T. Finemapping of a swinequantitativetraitlocus for number of vertebrae and analysis of an orphannuclearreceptor, germcellnuclearfactor (NR6A1). Genome Research.2007;17(5):586-593.
    [50]Darvasi A., A. Weinreb, V. Minke, et al. Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic map. Genetics.1993.134:943-951.
    [51]Montgomery M K, Fire A. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-suppression[J]. Trends in Genetics,1998,14(7):255-258.
    [52]汤在祥,徐辰武.复杂性状遗传分析策略和方法研究进展[J]。中国农业科学,2008,41(5):1255-1266.
    [53]Milan D, Jeon JT, Looft C, Amarger V, Robic A, Thelander M, Rogel-Gaillard C, Paul S, lannuccelli N, Rask L, Ronne H, Lundstrom K, Reinsch N, Gellin J, Kalm E, Roy PL, Chardon P, Andersson L. A mutation in PRKAG3 associated with excess glycogen content in pig skeletal muscle.Science.2000,288(5469):1248-1251.
    [54]Li J, Burmeister M. Genetical genomics:combining ge-netics with gene expression analysis. Human Molecular Genetics,2005,14(S1):R163-R169.
    [55]刘刚,彭惠茹,倪中福,秦丹丹,宋方威,宋广树,孙其信.遗传与基因表达数据的整合—eQTL的方法及应用[J]。遗传,2008,30(9):1228-1236.
    [56]Heinig M, Petretto E, Wallace C, Bottolo L, Rotival M, Lu H, Li Y, Sarwar R, Langley SR, Bauerfeind A, Hummel O, Lee YA, Paskas S, Rintisch C, Saar K, Cooper J, Buchan R, Gray EE, Cyster JG; Cardiogenics Consortium, Erdmann J, Hengstenberg C, Maouche S, Ouwehand WH, Rice CM, Samani NJ, Schunkert H, Goodall AH, Schulz H, Roider HG, Vingron M, Blankenberg S, Munzel T, Zeller T, Szymczak S, Ziegler A, Tiret L, Smyth DJ, Pravenec M, Aitman TJ, Cambien F, Clayton D, Todd JA, Hubner N, Cook SA. A trans-acting locus regulates an anti-viral expression network and type 1 diabetes risk[J]. Nature.2010,23 (7314):460-464.
    [57]Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, Edwards S, Phillips JW, Sachs A, Schadt EE. Genetic in-heritance of gene expression in human cell lines[J], American Journal of Human Genetics,2004,75(6):1094-1105
    [58]Morley M, Molony CM, Weber TM, Davlin JL, Ewens KG, Spielman RS, Cheung VG. Genetic analysis of genome-wide variation in human gene expression[J]. Nature,2004,430(7001): 743-747.
    [59]Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM, Pirruccello JP, Muchmore B, Prokunina-Olsson L, Hall JL, Schadt EE, Morales CR, Lund-Katz S, Phillips MC, Wong J, Cantley W, Racie T, Ejebe KG, Orho-Melander M, Melander O, Koteliansky V, Fitzgerald K, Krauss RM, Cowan CA, Kathiresan S, Rader DJ. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature.2010 Aug 5;466(7307):714-719.
    [60]Jeon JT, Carlborg O, Tornsten A, Giuffra E, Amarger V, Chardon P, Andersson-Eklund L, Andersson K, Hansson I, Lundstrom K, Andersson L. A paternally expressed QTL affecting skeletal and cardiac muscle mass in pigs maps to the IGF2 locus. Nature Genetics,1999,21(2): 157-158.
    [61]Nezer C, Moreau L, Brouwers B, Coppieters W, Detilleux J, Hanset R, Karim L, Kvasz A, Leroy P, Georges M. An imprinted QTL with major effect on muscle mass and fat deposition maps to the 1GF2 locus in pigs. Nature Genetics,1999,21(2):155-156.
    [62]Knott S.A., Marklund L., Haley C.S., Adersson K., Davies W., Ellegren H., Fredholm M., Hansson I., Hoyheim B., Lundstrom K., Moller M. and Andersson L. Multiple marker mapping of quantitative trait loci in a cross between outbred wild boar and Large White pigs. Genetics. 1998,149,1069-1080.
    [63]Darwin C. The variation of animals and plants under domestication (John Murray, London, ed.2, 1882),1,77.
    [64]Petersson H., Hakansson J., Eriksson S. (1979) A preliminary study of the length, area and dry weight of the small intestine in slaughter pigs. Swedish. J. Agric. Res.,9,75-82.
    [65]Ge Y.S., Chen J., Xu J.Y., Yang R., Xu J.X., Yang C.J., Wang M.C., Tan J.L., Wang G.L. (1980) Rsearch on Fatness and development in Erhualian pigs. J. Agr. Sci. Jiangshu.,3,50-53.
    [66]Gun S.B., Fu Y.K., Ma D.W. (2007) Digestibility and digestive tract measurement of wild boar (Sus scrofa). J. Anim. Sci. Veter. Med.,26,11-13.
    [67]Guo Y.M., Mao H.R., Ren J., Yan X.M., Duan Y.Y., Yang G.C., Ren D.R., Zhang Z.Y., Yang B., Brenig B., Haley C., Huang L.S. (2009) A linkage map of the porcine genome from a large scale White Duroc × Erhualian resource population and evaluation of factors affecting recombination rates. Anim. Genet.,40,47-52.
    [68]Bidanel J.P., Milan D., Iannuccelli N., Amigues Y., Boscher M.Y., Bourgeois F., Caritez J.C., Gruand J., Le Roy P., Lagant H., Quintanilla R., Renard C, Gellin J., Ollivier L., Chevalet C. (2001) Detection of quantitative trait loci for growth and fatness in pigs. Genet. Sel. Evol.,33, 289-309.
    [69]Green P., Falls K., Crook S. (1990) Documentation for CRIMAP, Version 2.4, Washington university school of medicine, St. Louis, MO.
    [70]Haley, C.S., Knott S.A., Elsen J.M. (1994) Mapping quantitative trait loci in crosses between outbred lines using least squares. Genetics.,136,1195-1207.
    [71]Churchill G.A., Doerge R.W. (1994) Empirical threshold values for quantitative trait loci mapping. Genetics.,138,963-971.
    [72]Visscher P.M., Thompson R., Haley C.S. (1996) Confidence intervals in QTL mapping by bootstrapping. Genetics.,143,1013-1020.
    [73]Rohrer G.A., Alexander L.J., Hu Z., Smith T.P., Keele J.W., Beattie C.W. (1996) A comprehensive map of the porcine genome. Genome. Res.,6,371-391.
    [74]Walling G.A., Archibald A.L., Cattermole J.A., Downing A.C., Finlayson H.A., Nicholson D., Visscher P.M., Walker C.A., Haley C.S. (1998) Mapping of quantitative trait loci on porcine chromosome 4. Anim. Genet.,29,415-424.
    [75]Sanchez M.P., Riquet J, Iannuccelli N., Gogue J., Billon Y., Demeure O., Caritez J.C., Burgaud G., Feve K., Bonnet M., Pery C., Lagant H., Roy L.P., Bidanel J.P., Milan D. (2006) Effects of quantitative trait loci on chromosomes 1,2,4, and 7 on growth, carcass, and meat quality traits in backcross Meishan x Large White pigs. J. Anim. Sci.,84,526-537.
    [76]Marklund L., Nystrom P. E., Stern S., Andersson-Eklund L., Andersson L. (1999) Confirmed quantitative trait loci for fatness and growth on pig chromosome 4. Heredity.,82,134-141.
    [77]De Koning D.J., Rattink A.P., Harlizius B., Groenen M.A.M., Brascamp E.W., van Arendonk J.A. (2001) Detection and characterization of quantitative trait loci for growth and reproduction traits in pigs. Livest. Prod. Sci.,72,185-198.
    [78]Milan D., Bidanel J.P., Iannuccelli N., Riquet J., Amigues Y., Gruand J., Le Roy P., Renard C., Chevalet C. (2002) Detection of quantitative trait loci for carcass composition traits in pigs. Genet. Sel. Evol.,34,705-728.
    [79]Mercade'A., Estelle'J., Noguera J. L., Folch J. M., Varona L., Silio L., Sanchez A., Perez-Enciso M. (2005) On growth, fatness and form:A further look at porcine's chromosome 4 in an Iberian × Landrace cross. Mamm. Genome.,16,374-382.
    [80]Rohrer G.A. (2000) Identification of quantitative trait loci affecting birth characters and accumulation of backfat and weight in a Meishan-White composite resource population. J. Anim. Sci.,78,2547-2553.
    [81]Malek M., Dekkers J.C.M., Lee H.K., Baas T.J., Rothschild M.F. (2001) A molecular genome scan analysis to identify chromosomal regions influencing economic traits in the pig. I. Growth and body composition. Mamm. Genome.,12,630-636.
    [82]Gao J., Ren J., Zhou L.H., Ren D.R., Li L., Xiao S.J., Yang B. & Huang L.S. (2010) A genome scan for quantitative trait loci affecting the length of small intestine in a White Duroc x Chinese Erhualian intercross resource population. J Anim Breed Genet 127,119-124.
    [83]Ledur M.C., Navarro N. & Perez-Enciso M. (2010) Large-scale SNP genotyping in crosses between outbred lines:how useful is it? Heredity (Edinb) 105,173-182.
    [84]Fan B., Onteru S.K., Du Z.Q., Garrick D.J., Stalder K.J. & Rothschild M.F. (2011) Genome-wide association study identifies Loci for body composition and structural soundness traits in pigs. PLoS One 6,e14726.
    [85]Gregeren V.R., Conley L.N., Sorensen K.K., Culdbrandtsen B., Velander I.H., and Bendixen C. (2012) Genome-wide association scan and phased haplotype construction for quantitative trait loci affecting boar taint in three pig breeds. BMC Genomics 13:22.
    [86]Schadt E.E., Lamb J., Yang X., Zhu J., Edwards S., Guhathakurta D., Sieberts S.K., Monks S., Reitman M., Zhang C, Lum P.Y., Leonardson A., Thieringer R., Metzger J.M., Yang L., Castle J., Zhu H., Kash S.F., Drake T.A., Sachs A. & Lusis A.J. (2005) An integrative genomics approach to infer causal associations between gene expression and disease. Nat Genet 37,710-717.
    [87]Chaibub Neto E., Ferrara C.T., Attie A.D. & Yandell B.S. (2008) Inferring causal phenotype networks from segregating populations. Genetics 179,1089-1100.
    [88]Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.A., Bender D., Maller J., Sklar P., de Bakker P.I., Daly M.J. & Sham P.C. (2007) PLINK:a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81,559-575.
    [89]Aulchenko Y.S., Ripke S., Isaacs A. & van Duijn C.M. (2007) GenABEL:an R library for genome-wide association analysis. Bioinformatics 23,1294-1296.
    [90]Ramayo-Caldas Y., Mercade A., Castello A., Yang B., Rodriguez C., Alves E., Diaz I., Ibanez-Escriche N., Noguera J.L., Perez-Enciso M., Fernandez A.I., Folch J.M. (2012) Genome-wide association study for intramuscular fatty acid composition in an Iberian x Landrance Cross. In press.
    [91]Meuwissen T.H.E., Hayes B.J., Goddard M.E. (2001) Prediction of total genetic value using genome wide dense marker maps. Genetics 157,1819-1829.
    [92]Liu G., Jennen D.G..J., Tholen E., Juengst H., Kleinwachter T., Holker M., Tesfaye D., Un G., Schreinemachers H. J., Murani E., Ponsuksili S., Kim J.J., Schellander K., Wimmers K. (2007) A genome scan reveals QTL for growth, fatness, leanness and meat quality in a Duroc-Pietrain resource population. Anim. Genet.,38,241-252.
    [93]Fan B., Onteru S.K., Plastow G.S., Rothschild M.F. (2009) Detailed characterization of the porcine MC4R gene in relation to fatness and growth. Animal Genet 40(4):401-409.
    [94]Zhang Z.Y., Ren J., Ren D.R., Ma J.W., Guo Y.M., Huang L.S. (2009) Mapping quantitative trait loci for feed consumption and feeding behaviors in a White Duroc × Chinese Erhualian resource population. J Anim Sci.87(11):3458-3463

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700