全基因组关联分析揭示主效基因及修饰基因共同作用决定中国地方猪两头乌毛色
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
毛色是农业动物品种的重要特征之一;“两头乌”是我国地方猪种代表性毛色表型之一,广泛分布于我国长江中下游地区,该类猪种头颈与臀尾部皮毛通常呈黑色,其余为白色,故称”两头乌”。目前影响中国地方猪两头乌毛色表型的分子遗传基础仍不清楚。
     本研究选用全黑的二花脸猪和两头乌毛色猪构建了二花脸×沙子岭猪、二花脸×巴马香猪、二花脸×通城猪和二花脸×荣昌猪4个F2资源群体,通过全基因组高通量SNP60芯片的扫描,采用全基因组关联分析(GWAS)定位两头乌毛色遗传位点。资源群体F2代个体毛色表型呈连续变化,且不符合单基因性状孟德尔遗传模式,表明两头乌毛色是多基因控制的复杂性状。经全基因组关联分析发现4个F2资源群体的毛色定位结果有着相似之处,即都在SSC5、SSC11、SSC17等染色体上检测到与两头乌毛色表型显著关联的位点,同时每个资源群体也存在若干特异性关联位点,说明不同地理类型两头乌猪种在毛色遗传位点上可能有着共同的起源,但经过长期选育遗传机理不尽相同。对4个F2资源群体合并分析后,发现在SSC11上存在一个影响效应非常显著的基因位点,临近功能已知的毛色基因EDNRB,提示EDNRB基因很可能是影响中国地方猪两头乌毛色的主效基因位点。
     将EDNRB基因效应固定后再次进行GAWS分析,揭示出关联性最强的标记临近SSC17上已知的毛色基因EDN3,提示EDN3是除EDNRB主效基因外另一修饰基因位点。对EDN3基因进行深度重测序,发现一个1.6Kb的沙子岭猪共享IBD区域,鉴别到11个区别沙子岭猪和二花脸、杜洛克猪的候选因果SNPs。进一步固定EDNRB基因和EDN3基因效应,在二花脸×沙子岭猪F2资源家系中SSC5和SSC8检测到显著最关联的SNP位点,分别临近毛色基因KITLG和KIT。
     本研究揭示出中国地方猪两头乌毛色受一个主效基因位点(EDNRB)和多个修饰基因位点(EDN3、KIT、KITLG等)的共同作用。推测EDNRB基因控制两头乌毛色的基本轮廓,其他基因修饰两头乌的程度及躯干黑斑的出现及大小。荣昌猪毛色表型遗传机理更为复杂,受多个遗传位点控制,涉及黑色素细胞发育3个主要信号通路多个相关基因。研究结果改变了人们对毛色质量性状往往受单基因控制的传统认识,为深入鉴别导致两头乌毛色形成的因果突变位点奠定了重要前期工作基础。
Coat color is a breed characteristic in farm animals. Two-end-black coat color is one of representative coat colors in Chinese local pigs and the pig breeds are widely distributed in middle and lower areas of the Yangtze River in China. These pigs show black heads and hips and white belt bodies. So far, the molecular and genetic basis of the two-end-black phenotype remains elusive.
     In this study, four F2resource populations including Erhualian×Shaziling, Erhualian×Bamaxiang, Erhualian×Tongcheng and Erhualian×Rongchang were constructed. We genotyped all F0/F1/F2animals in these four resource populations using the porcine60K SNP chip and performed a genome-wide linkage analysis to identify the genetic loci underlying the two-end-black coat color. The phenotypes of F2animals showed continuous variation and were not consistent with the monogenic Mendelian inheritance, indicating that the two-end-black phenotype is a multifactorial complex trait. GWAS revealed that several significantly loci on SSC5, SSC11and SSC17were detected in all four resource populations. A meta-analysis of these resource populations identified the most significantly locus proximal to EDNRB on SSC11, suggesting that EDNRB is a major candidate locus affecting the two-end-black phenotype in pigs.
     When we fix the EDNRB effect in the farther GWAS analysis, several modifier genes effects at SSC5, SSC8, SSC17were identified. Among which gene EDN3adjacent the SSC17locus showed the most significant signal. By deep sequencing the EDN3gene, we found a1.6Kb IBD region shared by all Shaziling pigs and identified11diagnostic mutations distinguishing Shaziling from Erhualian and Duroc pigs. Further analysis by fixing the EDNRB and EDN3effects, we identified two other significantly loci on SSC5and SSC8in the Erhualian×Shaziling F2resource population. The two loci were adjacent to two coat color genes KITLG and KIT, respectively.
     This study showed that the two-end-black coat color is governed by a major gene (EDNRB) and several modifier genes including EDN3, KIT and KITLG. We speculate that EDNRB control the basic conformation of two-end-black coat color, and other modifer genes affect the extent of white belt and spot sizes. The genetic mechanism of Rongchang coat color is even more complex, which were involved with three major signaling pathway of melanocytes development. The results renewed our traditional understanding of coat colors as monogenic traits, and paved the load to ultimately identify the causal variants leading to the two-end-black phenotype in Chinese indigenous pigs.
引文
[1]施启顺,马海明,猪的毛色遗传研究进展.国外畜牧科技,2000.27(6):p.29-33.
    [2]毛辉荣,猪7号染色体四肢骨骼长度QTL精细定位及中国地方猪种棕褐毛色的遗传解析.[博士学位论文].南昌:江西农业大学,2010.
    [3]国家畜禽遗传资源委员会,中国畜禽遗传资源志猪志.中国农业出版社,2011.
    [4]吴买生,沙子岭猪种质资源的保护和利用.猪业科学,2007.24(9):p.82-86.
    [5]罩能斌,我国地方猪种的一颗明珠_监利猪.黑龙江动物繁殖,1994.2(2):p.4-5.
    [6]徐三平,彭中镇,通城猪的特点及其保种利用.猪业科学,2006(4):p.74-77.
    [7]李英伟,邹亚民,江西省萍乡县秋江猪种的调查报告.畜牧与兽医,1955(5):p.187-189.
    [8]范禹华,介绍一种瘦肉率较高的良种猪——蒙山猪.江西畜牧兽医杂志,1986(1):p.31-32.
    [9]曾年英,王仁辉,临桂县地方品种东山猪的调查报告.中国畜禽种业,2008(11):p.26-28.
    [10]莫玉萍,广西巴马香猪的种质特性及开发利用.猪业科学,2011(10):p.116-118.
    [11]蓝锡仁,官庄花猪品种资源现状调查报告.福建畜牧兽医,2006.28(5):p.98-99.
    [12]金华猪.中国畜禽种业,2008(9):p.20.
    [13]杨小保,赵珺,樊英莉,谈谈荣昌猪遗传资源保护.河南畜牧兽医(综合版),2008.29(11):p.16-18.
    [14]谢水华,广东大花白猪种质特性及保护利用研究.广东畜牧兽医科技,2007.32(1):p.21-26.
    [15]江西省农业局,江西省农科所,乐平县农业局调查组,乐平猪.江西农业科技,1973(3):p.17-19.
    [16]万明春,尹德凤,东乡花猪的保护与利用.畜牧与兽医,2010.42(1):p.49-52.
    [17]侯宇,绥宁花猪主要种质特性的调查研究.猪业科学,2011(2):p.108-110.
    [18]鲍思永,杨忠诚,贵州优良地方品种黔东花猪的调查.贵州农业科学,2007.35(1):p.55-56.
    [19]LaBonne, C. and M. Bronner-Fraser, Induction and patterning of the neural crest, a stem cell-like precursor population. J Neurobiol,1998.36(2):p.175-89.
    [20]蔡文琴,李标海,发育神经生物学.北京:科学出版社,1999:p.120-138.
    [21]张红卫,发育生物学.北京:高等教育出版社,2001:p.221-228.
    [22]Hirobe, T., Histochemical survey of the distribution of the epidermal melanoblasts and melanocytes in the mouse during fetal and postnatal periods. Anat Rec,1984.208(4):p.589-94.
    [23]林翔,色素细胞发育分化的分子调控机制.福州大学学报:自然科学版,2011.39(5):p.649-657.
    [24]曾文楷,中草药对于痤疮病原菌与黑色素生成的影响.[硕士学位论文].台湾:静宜大学,2002.
    [25]Yamaguchi, Y., M. Brenner, and V.J. Hearing, The regulation of skin pigmentation. J Biol Chem, 2007.282(38):p.27557-61.
    [26]师科荣,猪毛色性状遗传机制研究进展.养猪,2003(4):p.24-28.
    [27]Potterf, S.B., et al., Cysteine transport in melanosomes from murine melanocytes. Pigment Cell Res,1999.12(1):p.4-12.
    [28]Westbroek, W., J. Lambert, and J.M. Naeyaert, The dilute locus and Griscelli syndrome:gateways towards a better understanding of melanosome transport. Pigment Cell Res,2001.14(5):p.320-7.
    [29]Slominski, A., et al., Hair follicle pigmentation. J Invest Dermatol,2005.124(1):p.13-21.
    [30]Lamoreux, M., K. Wakamatsu, and S. Ito, Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Research,2001.14(1): p.23-31.
    [31]Barsh, G.S., The genetics of pigmentation:from fancy genes to complex traits. Trends Genet,1996. 12(8):p.299-305.
    [32]Hou, L. and W.J. Pavan, Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development:do all roads lead to Mitf? Cell Res,2008.18(12):p.1163-76.
    [33]Logan, C.Y. and R. Nusse, The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol,2004.20:p.781-810.
    [34]Jin, E.J., et al., Wnt and BMP signaling govern lineage segregation of melanocytes in the avian embryo. Dev Biol,2001.233(1):p.22-37.
    [35]Dorsky, R.I., R.T. Moon, and D.W. Raible, Control of neural crest cell fate by the Wnt signalling pathway. Nature,1998.396(6709):p.370-3.
    [36]Hari, L., et al., Lineage-specific requirements of beta-catenin in neural crest development. J Cell Biol,2002.159(5):p.867-80.
    [37]Moon, R.T., et al., WNT and beta-catenin signalling:diseases and therapies. Nat Rev Genet,2004. 5(9):p.691-701.
    [38]Sakurai, T., M. Yanagisawa, and T. Masaki, Molecular characterization of endothelin receptors. Trends Pharmacol Sci,1992.13(3):p.103-8.
    [39]Imokawa, G., T. Kobayasi, and M. Miyagishi, Intracellular signaling mechanisms leading to synergistic effects of endothelin-1 and stem cell factor on proliferation of cultured human melanocytes. Cross-talk via trans-activation of the tyrosine kinase c-kit receptor. J Biol Chem, 2000.275(43):p.33321-8.
    [40]Lee, H.O., J.M. Levorse, and M.K. Shin, The endothelin receptor-B is required for the migration of neural crest-derived melanocyte and enteric neuron precursors. Developmental biology,2003. 259(1):p.162-175.
    [41]Hosoda, K., et al., Targeted and natural (piebald-lethal) mutations of endothelin-B receptor gene produce megacolon associated with spotted coat color in mice. Cell,1994.79(7):p.1267-76.
    [42]Baynash, A.G., et al., Interaction of endothelin-3 with endothelin-B receptor is essential for development of epidermal melanocytes and enteric neurons. Cell,1994.79(7):p.1277-85.
    [43]Blume-Jensen, P., et al., Kit/stem cell factor receptor-induced activation of phosphatidylinositol 3'-kinase is essential for male fertility. Nat Genet,2000.24(2):p.157-62.
    [44]Grichnik, J.M., et al., The SCF/KIT pathway plays a critical role in the control of normal human melanocyte homeostasis. J Invest Dermatol,1998.111(2):p.233-8.
    [45]Kimura, Y., et al., Targeted mutations of the juxtamembrane tyrosines in the Kit receptor tyrosine kinase selectively affect multiple cell lineages. Proc Natl Acad Sci U S A,2004.101(16):p. 6015-20.
    [46]Scott, G., H. Liang, and D. Luthra, Stem cell factor regulates the melanocyte cytoskeleton. Pigment Cell Res,1996.9(3):p.134-41.
    [47]Staser, K., F.C. Yang, and D.W. Clapp, Mast cells and the neurofibroma microenvironment. Blood, 2010.116(2):p.157-164.
    [48]Goding, C.R., Commentary. A picture of Mitf in melanoma immortality. Oncogene,2011.30(20):p. 2304-6.
    [49]Bejar, J., Y. Hong, and M. Schartl, Mitf expression is sufficient to direct differentiation of medaka blastula derived stem cells to melanocytes. Development,2003.130(26):p.6545-6553.
    [50]McGill, G.G., et al., c-Met expression is regulated by Mitf in the melanocyte lineage. Journal of Biological Chemistry,2006.281(15):p.10365.
    [51]Lang, D., et al., Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature, 2005.433(7028):p.884-887.
    [52]Takayama, H., et al.. Scatter factor/hepatocyte growth factor as a regulator of skeletal muscle and neural crest development. Proceedings of the National Academy of Sciences,1996.93(12):p. 5866.
    [53]Yonetani, S., et al., In vitro expansion of immature melanoblasts and their ability to repopulate melanocyte stem cells in the hair follicle. Journal of Investigative Dermatology,2007.128(2):p. 408-420.
    [54]Pinnix, C.C. and M. Herlyn, The many faces of Notch signaling in skin-derived cells. Pigment Cell Res,2007.20(6):p.458-65.
    [55]Moriyama, M., et al., Notch signaling via Hes1 transcription factor maintains survival of melanoblasts and melanocyte stem cells. J Cell Biol,2006.173(3):p.333-9.
    [56]Schouwey, K., et al., Notch1 and Notch2 receptors influence progressive hair graying in a dose-dependent manner. Dev Dyn,2007.236(1):p.282-9.
    [57]Haass, N.K. and M. Herlyn, Normal human melanocyte homeostasis as a paradigm for understanding melanoma. J Investig Dermatol Symp Proc,2005.10(2):p.153-63.
    [58]Mountjoy, K.G., et al., The cloning of a family of genes that encode the melanocortin receptors. Science,1992.257(5074):p.1248-51.
    [59]Mao, H., et al., Genetic variation within coat color genes of MC1R and ASIP in Chinese brownish red Tibetan pigs. Animal Science Journal,2010.81(6):p.630-634.
    [60]Southern, E., K. Mir, and M. Shchepinov, Molecular interactions on microarrays. Nat Genet,1999. 21(1 Suppl):p.5-9.
    [61]Alonso, S., et al., Complex signatures of selection for the melanogenic loci TYR, TYRP1 and DCT in humans. BMC Evol Biol,2008.8:p.74.
    [62]Spillman, W.J., Inheritance of Color Coat in Swine. Science,1906.24(614):p.441-3.
    [63]Spillman, W.J., Inheritance of the Belt in Hampshire Swine. Science,1907.25(640):p.541-3.
    [64]Hetzer, H.O., Inheritance of coat color in swine. Journal of Heredity,1945.36(4):p.121-128.
    [65]Hetzer, H.O., Inheritance of coat color in swine; results of Landrace by Duroc-Jersey crosses. J Hered,1946.37(7):p.217-24.
    [66]Hetzer, H.O., Inheritance of coat color in swine; results of Yorkshire by Duroc-Jersey crosses. J Hered,1947.38(4):p.121-4.
    [67]Hetzer, H.O., Inheritance of coat color in swine; results of Landrace by Hampshire crosses. J Hered, 1948.39(4):p.122-8.
    [68]Hetzer, H.O., Effectiveness of selection for extension of black-spotting. Journal of Heredity,1954. 45(5):p.215-223.
    [69]Johansson, M., et al., The gene for dominant white color in the pig is closely linked to ALB and PDGRFRA on chromosome 8. Genomics,1992.14(4):p.965-9.
    [70]Wentworth, E.N. and J.L. Lush, Inheritance in swine. Journal of Agricultural Research 1923.23:p. 557-582.
    [71]Rothschild, G., et al., A role for kit receptor signaling in Leydig cell steroidogenesis. Biol Reprod, 2003.69(3):p.925-32.
    [72]Okumura, N., et al., Sequencing, mapping and nucleotide variation of porcine coat colour genes EDNRB, MYO5A, KITLG, SLC45A2, RAB27A, SILV and MITF. Anim Genet,2006.37(1):p. 80-2.
    [73]Hadjiconstantouras, C., et al., Characterization of the porcine KIT ligand gene:expression analysis, genomic structure, polymorphism detection and association with coat colour traits. Anim Genet, 2008.39(3):p.217-24.
    [74]Johansson Moller, M., et al., Pigs with the dominant white coat color phenotype carry a duplication of the KIT gene encoding the mast/stem cell growth factor receptor. Mamm Genome,1996.7(11): p.822-30.
    [75]Fontanesi, L., et al.. Genetic heterogeneity and selection signature at the KIT gene in pigs showing different coat colours and patterns. Anim Genet,2010.41(5):p.478-492.
    [76]Giuffra, E., et al., A large duplication associated with dominant white color in pigs originated by homologous recombination between LINE elements flanking KIT. Mamm Genome,2002.13(10): p.569-77.
    [77]Marklund. S., et al., Molecular basis for the dominant white phenotype in the domestic pig. Genome Res,1998.8(8):p.826-33.
    [78]Pielberg, G., et al., Unexpectedly high allelic diversity at the KIT locus causing dominant white color in the domestic pig. Genetics,2002.160(1):p.305-11.
    [79]Pielberg, G., et al., A sensitive method for detecting variation in copy numbers of duplicated genes. Genome Res,2003.13(9):p.2171-7.
    [80]Seo, B.Y., et al.. An accurate method for quantifying and analyzing copy number variation in porcine KIT by an oligonucleotide ligation assay. BMC Genet,2007.8:p.81.
    [81]Giuffra, E., et al., The Belt mutation in pigs is an allele at the Dominant white (I/KIT) locus. Mamm Genome,1999.10(12):p.1132-6.
    [82]Berrozpe, G., et al., The W(sh), W(57), and Ph Kit expression mutations define tissue-specific control elements located between -23 and -154 kb upstream of Kit. Blood,1999.94(8):p.2658-66.
    [83]Lai, F., et al., Chinese white Rongchang pig does not have the dominant white allele of KIT but has the dominant black allele of MC1R. J Hered,2007.98(1):p.84-7.
    [84]Xu, G.L., et al., Genetic analysis of the KIT and MC1R genes in Chinese indigenous pigs with belt-like coat color phenotypes. Anim Genet,2006.37(5):p.518-9.
    [85]Mariani, P., et al., The extension coat color locus and the loci for blood group O and tyrosine aminotransferase are on pig chromosome 6. J Hered,1996.87(4):p.272-6.
    [86]Li, J., et al., Artificial selection of the melanocortin receptor 1 gene in Chinese domestic pigs during domestication. Heredity (Edinb),2010.105(3):p.274-81.
    [87]Kijas, J.M., et al., Melanocortin receptor 1 (MC1R) mutations and coat color in pigs. Genetics, 1998.150(3):p.1177-85.
    [88]Kijas, J.M., et al., A frameshift mutation in MC1R and a high frequency of somatic reversions cause black spotting in pigs. Genetics,2001.158(2):p.779-85.
    [89]Fang, M., et al., Contrasting mode of evolution at a coat color locus in wild and domestic pigs. PLoS Genet,2009.5(1):p. e1000341.
    [90]邓素华,猪黑素皮质素受体1(MC1R)基因与毛色表型的研究..遗传学报,2003.30(10):p.949-954.
    [91]Kijas, J.M., et al., Porcine Agouti gene map position SSC 17q21. Chromosome Res,1998.6(3):p. 243.
    [92]Leeb, T., et al., Genomic structure and nucleotide polymorphisms of the porcine agouti signalling protein gene (ASIP). Anim Genet,2000.31(5):p.335-6.
    [93]Kim, T.H., B.H. Choi, and J.E. Beever, Polymorphism in the porcine agouti signalling protein (ASIP) gene. Anim Genet,2004.35(5):p.418-20.
    [94]Drogemuller, C., et al., The mutation causing the black-and-tan pigmentation phenotype of Mangalitza pigs maps to the porcine ASIP locus but does not affect its coding sequence. Mamm Genome,2006.17(1):p.58-66.
    [95]Ren, J., et al., A 6-bp deletion in the TYRP1 gene causes the brown colouration phenotype in Chinese indigenous pigs. Heredity,2011.106(5):p.862-868.
    [96]Okumura, N., et al., Sequences and mapping of genes encoding porcine tyrosinase (TYR) and tyrosinase-related proteins (TYRP1 and TYRP2). Anim Genet,2005.36(6):p.513-6.
    [97]Legault, C., Genetics of colour variation. In:Rothschild, M.F. and Ruvinsky, A. (eds). The Genetics of the Pig,1998. CAB International, Wallingford, UK.:p.51-69.
    [98]Searle, A.G., Comparative Genetics of Coat Colour in Mammals. Logos Press,London,1968.
    [99]Roberts, E. and J.L. Krider, Inheritance of red-eye in swine. Journal of Heredity 1949.40:p.306.
    [100]Fernandez, A., et al., Physical and linkage mapping of the porcine pink-eye dilution gene (OCA2). Anim Genet,2002.33(5):p.392-4.
    [101]Karlsson, E.K., et al., Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet,2007.39(11):p.1321-1328.
    [102]Candille, S.I., et al., A β-Defensin Mutation Causes Black Coat Color in Domestic Dogs. Science, 2007.318(5855):p.1418-1423.
    [103]Norris, B.J. and V.A. Whan, A gene duplication affecting expression of the ovine ASIP gene is responsible for white and black sheep. Genome research,2008.18(8):p.1282-1293.
    [104]Rosengren Pielberg, G., et al., A cis-acting regulatory mutation causes premature hair graying and susceptibility to melanoma in the horse. Nat Genet,2008.40(8):p.1004-1009.
    [105]Sundstrom, E., et al., Identification of a melanocyte-specific, microphthalmia-associated transcription factor-dependent regulatory element in the intronic duplication causing hair greying and melanoma in horses. Pigment Cell Melanoma Res,2012.25(1):p.28-36.
    [106]Durkin, K., et al., Serial translocation by means of circular intermediates underlies colour sidedness in cattle. Nature,2012.482(7383):p.81-84.
    [107]Dorshorst, B., et al., A Complex Genomic Rearrangement Involving the Endothelin 3 Locus Causes Dermal Hyperpigmentation in the Chicken. PLoS Genet,2011.7(12):p. e1002412.
    [108]Andersson, L., Genome-wide association analysis in domestic animals:a powerful approach for genetic dissection of trait loci. Genetica,2009.136(2):p.341-9.
    [109]Awano, T., et al., Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. Proc Natl Acad Sci U S A, 2009.106(8):p.2794-9.
    [110]Drogemuller, C., et al., A mutation in hairless dogs implicates FOX13 in ectodermal development. Science,2008.321(5895):p.1462.
    [111]Barendse, W., et al., A validated whole-genome association study of efficient food conversion in cattle. Genetics,2007.176(3):p.1893-905.
    [112]Charlier, C., et al., Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat Genet,2008.40(4):p.449-54.
    [113]Feugang, J.M., et al., Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genomics,2009.10:p.176.
    [114]Becker, D., et al., Microphthalmia in Texel sheep is associated with a missense mutation in the paired-like homeodomain 3 (PITX3) gene. PLoS One,2010.5(1):p. e8689.
    [115]Brooks, S.A., et al., Whole-genome SNP association in the horse:identification of a deletion in myosin Va responsible for Lavender Foal Syndrome. PLoS Genet,2010.6(4):p.e1000909.
    [116]Druet, T. and M. Georges, A hidden markov model combining linkage and linkage disequilibrium information for haplotype reconstruction and quantitative trait locus fine mapping. Genetics,2010. 184(3):p.789-98.
    [117]Dupuis, M.C., et al., Results of a haplotype-based GWAS for recurrent laryngeal neuropathy in the horse. Mamm Genome,2011.22(9-10):p.613-20.
    [118]Karim, L., et al., Variants modulating the expression of a chromosome domain encompassing PLAG1 influence bovine stature. Nat Genet,2011.43(5):p.405-13.
    [119]Little, C.C., The Inheritance of Coat Colour in Dogs. Ithaca, NY. Comstock,1957.
    [120]Klein, R.J., et al., Complement factor H polymorphism in age-related macular degeneration. Science,2005.308(5720):p.385-9.
    [121]Yu, J., et al., A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet,2006.38(2):p.203-8.
    [122]Yamada, T., et al., Reduced expression of the endothelin receptor type B gene in piebald mice caused by insertion of a retroposon-like element in intron 1. J Biol Chem,2006.281(16):p. 10799-807.
    [123]Lane, P.W., Association of megacolon with two recessive spotting genes in the mouse. J Hered, 1966.57(1):p.29-31.
    [124]Shin, M.K., et al., The temporal requirement for endothelin receptor-B signalling during neural crest development. Nature,1999.402(6761):p.496-501.
    [125]Mayer, T.C., The development of piebald spotting in mice. Dev Biol,1965.11(3):p.319-34.
    [126]Schaible, R.H., Clonal distribution of melanocytes in piebald-spotted and variegated mice. J Exp Zool,1969.172(2):p.181-99.
    [127]Bennett, D.C. and M.L. Lamoreux, The color loci of mice--a genetic century. Pigment Cell Res, 2003.16(4):p.333-44.
    [128]Lister, J.A., et al., nacre encodes a zebrafish microphthalmia-related protein that regulates neural-crest-derived pigment cell fate. Development,1999.126(17):p.3757-67.
    [129]Silver, D.L., et al., The secreted metalloprotease ADAMTS20 is required for melanoblast survival. PLoS Genet,2008.4(2):p. e1000003.
    [130]Yoshida, H., et al., Review:melanocyte migration and survival controlled by SCF/c-kit expression. J Investig Dermatol Symp Proc,2001.6(1):p.1-5.
    [131]Yoshida, H., et al., Distinct stages of melanocyte differentiation revealed by anlaysis of nonuniform pigmentation patterns. Development,1996.122(4):p.1207-14.
    [132]Nishikawa, S., et al., In utero manipulation of coat color formation by a monoclonal anti-c-kit antibody:two distinct waves of c-kit-dependency during melanocyte development. EMBO J,1991. 10(8):p.2111-8.
    [133]Lahav, R., Endothelin receptor B is required for the expansion of melanocyte precursors and malignant melanoma. Int J Dev Biol,2005.49(2-3):p.173-180.
    [134]Steingrimsson, E., et al., Interallelic complementation at the mouse Mitf locus. Genetics,2003. 163(1):p.267-276.
    [135]Leegwater, P.A., M.A. van Hagen, and B.A. van Oost, Localization of white spotting locus in Boxer dogs on CFA20 by genome-wide linkage analysis with 1500 SNPs. J Hered,2007.98(5):p. 549-52.
    [136]Dourmishev, A.L., et al., Waardenburg syndrome. Int J Dermatol,1999.38(9):p.656-63.
    [137]Smith, S.D., et al., Tietz syndrome (hypopigmentation/deafness) caused by mutation of MITF. J Med Genet,2000.37(6):p.446-8.
    [138]Motohashi, H., et al., Dysgenesis of melanocytes and cochlear dysfunction in mutant microphthalmia (mi) mice. Hear Res,1994.80(1):p.10-20.
    [139]Strain, G.M., Deafness prevalence and pigmentation and gender associations in dog breeds at risk. Vet J,2004.167(1):p.23-32.
    [140]Philipp, U., et al., A MITF mutation associated with a dominant white phenotype and bilateral deafness in German Fleckvieh cattle. PLoS One,2011.6(12):p. e28857.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700