二苯乙烯类化合物E2的降糖作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
糖尿病是一种以高血糖为特征的胰岛素缺乏或相对缺乏导致的内分泌代谢疾病,并发的多种慢性合并症是病人致残或致死的主要原因。已有的口服降糖药均不能完全有效的改善糖尿病的病理异常,因此,寻找预防和治疗糖尿病的有效药物已成为世界范围内的一个重大课题。
     二苯乙烯类化合物E2是我室从大黄根茎中提取纯化的一类结构全新的具有自主知识产权的降糖药物,作用机制不明。为此,我们开展了E2的降糖以及相关并发症的改善作用实验研究,系统的研究其可能的作用机制,同时对糖尿病发病机理进行了探索性研究。目的是评价E2的降糖作用,阐明其降糖作用机制,包括E2对多种糖尿病模型的降糖效果,对靶细胞的生物学效应和分子调控,为开发新型降糖药物提供理论基础;并在国内外首次进行鞘氨醇激酶(sphingosine kinase,SPK)在糖代谢调控中的作用研究,探讨其作为调控糖代谢新靶标的可能性,为糖尿病发病机制研究提供实验基础。
     本文首先采用5种不同类型的糖尿病实验动物模型系统研究了E2对糖尿病及其并发症的治疗效果,研究结果表明:E2能明显降低不同糖尿病动物的血糖血脂水平,显著改善葡萄糖耐量的异常,血清生化指标检测证实E2不能促进胰岛素分泌,病理形态学结果显示E2对胰岛细胞具有保护作用,血液动力学和电镜观察超微结构结果表明E2对受损的心脏、肾脏、肝脏和脾脏的结构具有修复和保护作用;E2能显著增加糖尿病大鼠肝脏和心肌组织的糖原合成;血流动力学结果表明,E2能有效裂解糖基化形成的终产物AGEs从而能显著提高大鼠心输出量,降低总外周阻力,提高全身动脉顺应性;Western Blot结果显示E2能明显提高肝脏胰岛素受体含量,活化肝脏和心肌组织Akt、GSK-3β信号通路。
     在上述药效学实验的基础上,我们对E2降糖降脂改善并发症的细胞和分子机理进行了较为系统的探索研究。
     首先对调控糖代谢的靶细胞进行了筛选,发现E2能明显的促进高糖状态下的肝L0-2细胞的葡萄糖消耗,而对肌母C2C12细胞作用不明显,提示E2作用的靶细胞可能是肝细胞。选用βTC3胰岛细胞观察E2是否具有促胰岛分泌作用,结果证实,E2不能促进胰岛细胞分泌胰岛素。其次我们对E2调控糖代谢的分子机理进行了探讨,研究结果表明:E2在体外可以激活Akt、GSK-3β激酶磷酸化,促进肝细胞的葡萄糖调控。同时我们也首次发现胰岛素和E2能明显增强SPK激酶活性,SPK和磷脂酰肌醇-3激酶(Phosphoinositide 3-kinase,PI-3K)同属脂质激酶,而PI-3K激酶是调控糖代谢的一个关键分子,结合脂质激酶在糖代谢中的重要地位,我们大胆推测,SPK很有可能是糖代谢调控的另一个新的关键分子。
     为此,我们又对鞘氨醇激酶SPK在糖代谢调控中的作用进行了探索性研究,试图阐明SPK是否是除PI-3K外的另一个与糖代谢密切相关的分子。首先用腺病毒介导的SPK1基因转染肝L0-2细胞和C2C12肌母细胞,结果表明,SPK1基因转染可以直接刺激细胞的葡萄糖吸收,也能明显促进胰岛素刺激的细胞对糖的吸收,SPK阻断剂DMS抑制SPK1表达及其酶活性,能够导致细胞摄取葡萄糖的能力减弱,并且也使细胞在胰岛素刺激下的葡萄糖吸收显著地降低。其次用腺病毒介导的SPK1基因转染原发2型糖尿病KK-Ay小鼠,在整体动物水平观察并确定SPK对糖代谢的调控作用,研究结果发现,SPK1能够明显降低2型糖尿病KK-Ay小鼠的血糖;改善胰岛素抵抗,SPK1在肝组织、心肌组织、骨骼肌组织中都有较高的表达,这些结果提示SPK1是参与糖代谢调控的一个关键分子,有望成为糖尿病防治的新靶点。
     通过以上结果,我们可以得出:(1)E2能明显的降低糖尿病模型的血糖和血脂,显著改善心功能,逆转血管硬化,对肝脏、脾脏和肾脏损伤具有较为明显的保护作用,因此,E2是预防和治疗糖尿病及其相关并发症的一种新的行之有效的药物(2)E2的作用机制是:①不刺激胰岛细胞分泌胰岛素,对胰岛细胞具有保护作用;②增加肝脏胰岛素受体数目;③通过激活Akt、GSK-3β激酶磷酸化促进肝糖原和心肌糖原合成;④促进肝细胞的葡萄糖消耗;⑤通过裂解糖基化终产物AGEs改善血管硬化;⑥活化鞘氨醇激酶(sphingosine kinase,SPK),提高对糖代谢的调控;(3)SPK可能是除PI-3K外的另一个与糖代谢密切相关的脂质激酶。
Diabetes is characterized by hyperglycemia, which results from impaired insulin secretion and/or insulin action. It is also the leading cause of many clinical chronic complications, which lead to a markedly increased morbidity and mortality. Drugs currently used in clinical practices could not correct the abnormality of diabetes with satisfaction. Therefore, it is still an important mission in the world to find a more effective agent in the treatment and prophylaxis of diabetes.
     Stilbenoids E2, a derivate from rheum officinal rootstock, is a kind of glucose-lowering agent owned by our laboratory. However, we know little about its glucose-lowering mechanism and complication improving effects. In order to evaluate its glucose-lowering effects and clarify the underlying mechanisms, we performed a systemic research using several experimental diabetic animal models.. Meantime, we investigated the role of SPK in the regulation of glucose metabolism, and tested the possibility of taking it as a new target in managing the diabetes mellitus..
     First, we observed the functions of Stilbenoids E2 on glucose-lowering and complication controlling by using 5 kind experimental animal models The results showed that Stilbenoids E2 could decrease the serum glucose, triglyceride and cholesterol levels, and could markedly improve the oral glucose tolerance of the diabetic animals. Stilbenoids E2 could not promote the secretion of insulin but protect the islet cells. Stilbenoids E2 showed a potent ability to protect and reconstruct many organs, such as the heart, kidney, liver and spleen. Glucogen synthesis in the rat liver and heart was accelerated after the administration of Stilbenoids E2. Stilbenoids E2 could also improve the rat's heart output through the decomposing glycosylating terminal products-AGEs, decreasing the distal resistance of blood vessels, and improving the compliances of the arteries. Western Blot results showed that stilbenoids E2 could increase the expression of insulin receptor in the liver and activate the signaling pathways of Akt、GSK-3βin the liver and heart tissues. we then probed the molecular and cellular mechanisms of stilbenoids E2 for its abilities to decrease the serum levels of triglyceride and cholesterol, and its controlling on the related complications. Stilbenoids E2 enhanced the consumption of hepatin in the L0-2 liver cells but not in the C2C12 muscle cells, impling that the liver cells might be a target of stilbenoids E2. We found that stilbenoids E2 could not induce insulin secretion of theβTC3 islet cells, but could active the phosphorylation of Akt and GSK-3βin the SMMC-7721 hepatoma cells. We also found that stilbenoids E2 could activate the SPK, another important lipid kinase as PI3K. To clarify whether SPK is really a key molecule involved in the glucose metabolism, we prepared the Ad-SPK1, the recombinant adenovirus harboring SPK1 gene, then transfected the SMMC-7721 hepatoma cells and C2C12 myoblasts with Ad-SPK1. We found that SPK1 gene tranfer could significantly increase both basal and insulin-induced glucose uptake, and DMS, a potent inhibitor of SPK1, inhibited both basal and insulin-induced glucose uptake. We further investigated the role of SPK1 in glucose metabolism in the spontaneous KK-Ay type 2 diabetic mice model using a adenoviral-mediated gene transfer approach. It was found that the adenoviral-mediated gene transfer of SPK1 markedly decreased blood glucose levels and alleviated their insulin-resistance of the animals. All these findings strongly suggest that SPK1 is a key molecule in modulating the glucose metabolism, and stimulating activation of SPK may be an important mechanism of the anti-diabetic action of stilbenoids E2.
     In conclusion, our results demonstrate that: (1) Stilbenoids E2 can decrease the blood glucose and lipid levels, improve the structures and functions of the heart, liver, spleen and kidney, so it is a new and effective agent in the treatment of diabete. (2) The glucose-lowering mechanism of Stilbenoids E2 are:①Protect the islet cells but do not stimulate the secretion of insulin;②Increase the expression of insulin receptors;③Accelerate the glycogen synthesis in the liver and the heart through activating Akt and GSK-3βsignaling;④stimulating activation of SPK is an important mechanism of the anti-diabetic action of stilbenoids E2. (3) SPK is a another lipid kinase involved in the regulation of glucose metabolism and homeostasis.
引文
[1] Taylor R. Causation of type 2 diabetes—the Gordian knot unravels. N Engl J Med 2004; 350: 639-641.
    [2] Xu AW, Kaelin CB, Takeda K, etal. PI3K integrates the action of insulin and leptin on hypothalamic neurons. J Clin Invest. 2005;115:951-958.
    [3] Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005;5:560-570.
    [4] Wang L, Xing XP, Holmes A, et al. Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinflammatory phenotype of endothelial cells. Circ Res. 2005;97:891-899.
    [5] Summers SA.. Ceramides in insulin resistance and lipotoxicity. Progress in Lipid Research 2006;45:42-72.
    [6] Summers SA, Nelson DH. A Role for Sphingolipids in Producing the Common Features of Type 2 Diabetes, Metabolic Syndrome X, and Cushing's Syndrome. DIABETES 2005; 54:591-602.
    [7] 宋菊敏,毛良等.黄连素对非胰岛素依赖型糖尿病大鼠的抗氧化作用.中草药,1992;23(11):590—1.
    [8]韩娜,王芸等.大蒜新素对实验性糖尿病作用机理的研究.中国药理学通报,1991;7(6):450.
    [9] 柳占彪,王鼎等.齐墩果酸的降糖作用.中国药学杂志,1994;29(12):725-6.
    [10] 王爱芹,吴祖泽,袁丽珍等。一种新型降低血糖化合物[P]中国专利:1294912,2001—05—16
    [11] 大浦彦吉。大黄的药理药效。国外医学中医中药分册1992;14(3):17-20.
    [12] 徐光,张礼萍,陈力芳等。二苯乙烯类化合物对蛋白激酶C的抑制作用。药学学报1994;29(11):818-822.
    [13] Thon L, Mohlig H, Mathieu S, Lange A, et al. Ceramide mediates caspaseindependent programmed cell death. FASEB J. 2005;19:1945-1956.
    [14] Lee WJ, Yoo HS, Suh PG, et al. Sphingosine mediates FTY720-induced apoptosis in LLC-PK1 cells. Exp Mol Med. 2004;36:420-427.
    [15] Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol. 2005;5:560-570.
    [16] Thon L, Mohlig H, Mathieu S, Lange A, et al. Ceramide mediates caspaseindependent programmed cell death. FASEB J. 2005;19:1945-1956.
    [17] Joffe Ⅱ, Travers KE, Perreault-Micale CL, Hampton T, Katz SE, Morgan JP, Douglas PS: Abnormal cardiac function in the streptozotocin-induced, non-insulindependent diabetic rat. J Am Coll Card 1999;34:2111-2119.
    [18] Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003;13:10297-10303.
    
    [19] Gorska M, Dobrzyn A, Zendzian-Piotrowska M, et al. Effect of streptozotocin-diabetes on the functioning of the sphingomyelin-signalling pathway in skeletal muscles of the rat. Horm Metab Res 2004;36:14-21.
    
    [20] Straczkowski M, Kowalska I, Nikolajuk A. et al. Relationship between insulin sensitivity and sphingomyelin signaling pathway in human skeletal muscle. Diabetes 2004;53:1215-21.
    
    [21] Poornima IG, Pratik R and Shannon P. Diabetic Cardio- myopathy: The Search for a Unifying Hypothesis.Circ. Res. 2006;98:596-605.
    
    [22] Pota M,LeCapitaineN,Hosoda T, et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res. 2006 Jul 7;99(1):42-52.
    
    [23] Tanahashi N,Sato H,Noqawa S, et al. A case report of giant cell myocarditis and myositis observed during the clinical course of invasive thymoma associated with myasthenia gravis. Keio J Med .2004 Mar;53(1):30-42
    
    [24] Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell. 2003; 114: 763—776
    
    [25] Pfister O, Mouquet F, Jain M, et al. CD31- but not CD31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circ Res. 2005; 97:52-61.
    
    [26] Panizo A , Pardo J , Hemandez M , et al . Quina Pril decrease ,myocardial ,accumulation of extracelluler , matrix compoments inspontaneously hypertensive rats.Am J Hypertens 1995; 68 (8) :815-817.
    
    [27] Moller DE. New drug targets for type 2 diabetes and the metabolic syndrome.Nature 2001; 414:821-827.
    
    [28] Marx J. Unraveling the causes of diabetes. Science 2002;296:686-689.
    
    [29] Vasan S,Foiles P.Therapeutic potential of breakers of advanced glycation end product-protein crosslinks[J].Arch Biochem Biophys,2003,Novl;419(1):89-96.
    
    [30] Inoue K,Kawahara K,Biswas KK,et al. HMGB1 expression by activated vascular smooth muscle cells in advanced human atherosclerosis plaques.Cardiovasc Pathol.2007 May-Jun;16(3): 136-43.
    
    [31]Coccheri S. Approaches to prevention of cardiovascular complications and events in diabetes mellitus. Drugs.2007;67(7):997-1026.
    
    [32]Couqhlan MT,Thallas-Bonke V,Pete J,et al. Combination therapy with the advanced glycation end product cross-link breaker, alagebrium, and angiotensin converting enzyme inhibitors in diabetes: synergy or redundancy. Endocrinology.2007 Feb;148(2):886-95.
    
    [33]Zieman SJ,Melenovsky V,Clattenburg L,et al. Advanced glycation endproduct crosslink breaker (alagebrium) improves endothelial function in patients with isolated systolic hypertension. J Hypertens.2007 Mar;25(3):577-8.
    
    [34]Horiuchi S ,Araki N ,Morino Y.Immunochemical approach to characterize advanced glycation end products of the Malliard reaction.Evidence for the presence of a common structure [J].J Biol Chem,1991,266(12):7329-7332.
    
    [35] Ulrich P,Cerami A.Protein glycation ,diabetes,and aging. [J].Recent Prog Horm Res.2001;56:l-21.
    
    [36] Peppa M,Brem H,Cai W,et al. Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711). Am J Nephrol.2006;26(5):430-6.
    [37]Little WC,Zile MR,Kitzman DW,et al. The effect of alagebrium chloride (ALT-711), a novel glucose cross-link breaker, in the treatment of elderly patients with diastolic heart failure. J Card Fail. 2005 Apr;l l(3):191-5
    
    [38]Jandeleit-Dahm KA,Lassila M,Allen TJ. Advanced glycation end products in diabetes-associated atherosclerosis and renal disease: interventional studies. Ann N Y Acad Sci. 2005 Jun;1043:759-66
    
    [39] Sara Vasan er al.An agent cleaving glucose-derived protein crosslinks in vitro and in invo[J].Nature,July,1996,vol.382:275-278.
    
    [40] Asif M, Egan J, Vasan S, et aL An advanced glycation endproduct cross-link breaker can reverse age-related increases in myocardial stiffness. [J]. Proc Natl Acad Sci USA 2000;97:2809-13.
    
    [41] Vasan S,Foiles P,Founds H .Therapeutic potential of breakers of advanced glycationendproduct-proteincrosslinks. [J]. ArchBiochemBiophys.2003,Nov1;419(1):89-96.
    
    [42] Candido R,Forbes JM,Thomas MC ,et al.A breaker of advanced glycation end products attenuates diabetes-induced myocardial structural changes. [J].Circ Res.2003 Apr 18:92(7):785-92
    
    [43] Liu J,Masurekar MR,Vatner DE,et al.A glycation end-product cross link breaker reduces collagen and improves cardiac function in the aging diabetic heart.Am J Physiol Heart Circ Physiol.2003 Aug28.
    
    [44] Doggrell SA.ALT-711 decreases cardiovascular stiffness and haspotential in diabetes,hypertension and heart failure. [J].Expert Opin Investing Drugs.2001 May;10(5);981-3.
    
    [45] Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance.Diabetologia 2003; 46:1594-1603.
    
    [46] Ahima RS, Flier JS. Leptin. Annu Rev Physiol 2000;62:413- 437.
    
    [47] Yamauchi T, Kamon J, Minokoshi Y, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med2002;8:1288-1295.
    
    [48] Banerjee RR, Rangwala SM, Shapiro JS, et al. Regulation of fasted blood glucose by resistin. Science 2004;303:1195-1198.
    
    [49] Hotamisligil GS, Peraldi P, Budavari A, Ellis R, et al. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNFα and obesity-induced insulin resistance. Science 1996; 271:665-668.
    
    [50] Mittelman SD, Bergman RN. Inhibition of lipolysis causes suppression of endogenous glucose production independent of change in insulin. Am J Physiol Endocrinol Metab 2000; 279: E630-E637.
    
    [51] Banerjee RR, Rangwala SM, Shapiro JS, et al. Regulation of fasted blood glucose by resistin. Science 2004;303:1195-1198.
    
    [52] Schrauwen P, Hesselink MK. Oxidative capacity, lipotoxicity, and mitochondrial damage in type 2 diabetes.Diabetes 2004;53:1412-1417.
    
    [53] Bradford B, Lowell and Gerald IS. Mitochondrial Dysfunction and Type 2 Diabetes. Science January 2005;307:384 -387.
    
    [54] McGarry JD. Banting lecture 2001: dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002;51:7-18.
    
    [55] Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003;13:10297-10303.
    
    [56] Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003;13:10297-10303.
    
    [57] Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 2000;103:211-225.
    
    [58] White MF, Kahn CR. The insulin signaling system. J. Biol. Chem. 1994;269: 1-4.
    
    [59] White MF. The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol. Cell. Biochem. 1998; 182, 3-11.
    
    [60] Ogawa W, Matozaki T and Kasuga M. Role of binding proteins to IRS-1 in insulin signalling. Mol. Cell. Biochem. 1998;182:13-22.
    
    [61] Pessin JE, Thurmond DC, Elmendorf JS, et al. Molecular basis of insulin-stimulated GLUT4 vesicle trafficking. Location! Location! Location! J. Biol. Chem.1999;274: 2593-2596.
    
    [62] Summers SA, Garza LA, Zhou H, et al. Regulation of insulin-stimulated glucose transporter GLUT4 translocation and Akt kinase activity by ceramide. Mol Cell Biol 1998;18:5457-5464.
    
    [63] Salinas M, Lopez-Valdaliso R, Martin D, et al. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol Cell Neurosci 2000;15:156-169.
    
    [64] Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3—L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 2003;419:101-109.
    [65] Andrieu-Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis.Biochim Biophys Acta 2002;1585:126 -134.
    
    [66] Ritov VB, Menshikova EV, He J,et al. Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 2005;54:8-14.
    
    [67] Summers SA, Kao AW, Kohn AD, et al. The role of glycogen synthase kinase 3beta in insulinstimulated glucose metabolism. J Biol Chem 1999;274:17934-17940.
    
    [68] Maceyka M, Payne SG, Milstien S, et al. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta. 2002;1585:193-201.
    
    [69] Schmitz-Peiffer C, Craig DL, Bidn TJ. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J Biol Chem. 1999;274:24202-24210.
    
    [70] Chavez JA, Knotts TA, Wang LP, et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J Biol Chem 2003;13:10297-10303.
    
    [71] Chavez JA, Summers SA. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch Biochem Biophys 2003;419:101-109.
    
    [72]Andrieu-Abadie N, Levade T. Sphingomyelin hydrolysis during apoptosis.Biochim Biophys Acta 2002;1585:126 -134.
    
    [73] Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide.Biochem J 1998;335:465-480.
    
    [74] Schutze S, Wiegmann K, Machleidt T, et al. TNF-induced activation of NF-kappa B. Immunobiology 1995;193:193-203.
    
    [75] Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M. Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 1994;78:1005-1015.
    
    Hajduch E, Balendran A, Batty IH, et al. Ceramide impairs the insulin- dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 2001;44:173-183.
    
    [76] Kralik SF, Liu P, Leffler BJ, Elmendorf JS. Ceramide and glucosamine antagonism of alternate signaling pathways regulating insulin- and osmotic shock-induced glucose transporter 4 translocation. Endocrinology 2002;143:37-46.
    
    [77] Wang CN, O'Brien L, Brindley DN. Effects of cell-permeable ceramides and tumor necrosis factor-a on insulin signaling and glucose uptake in 3T3-L1 adipocytes.Diabetes 1998;47:24-31.
    
    [78] Summers SA, Yin VP, Whiteman EL, et al. Signaling pathways mediating insulin-stimulated glucose transport. Ann N Y Acad Sci 1999;892:169-86.
    
    [79] Liu P, Leffler BJ, Weeks LK, et al. Sphingomyelinase activates GLUT4 translocation via a cholesterol-dependent mechanism. Am J Physiol Cell Physiol 2004;286:C317-329.
    
    [80] Resjo S, Goransson O, Harndahl L, et al. Protein phosphatase 2A is the main phosphatase involved in the regulation of protein kinase B in rat adipocytes. Cell Signal 2002;14:231-238.
    
    [81] Gorski J, Dobrzyn A, Zendzian-Piotrowska M. The sphingomyelin-signaling pathway in skeletal muscles and its role in regulation of glucose uptake. Ann N Y Acad Sci. 2002;967:236-248.
    
    [82] Chavez JA, Holland WL, Bar J, Sandhoff K, Summers SA. Acid ceramidase overexpression prevents the inhibitory effects of saturated fatty acids on insulin signaling. J Biol Chem. 2005;280(20):20148-53.
    
    [83] Summers SA.. Ceramides in insulin resistance and lipotoxicity. Progress in Lipid Research 2006;45:42-72.
    
    [84] Summers SA, Nelson DH. A Role for Sphingolipids in Producing the Common Features of Type 2 Diabetes, Metabolic Syndrome X, and Cushing's Syndrome.DIABETES 2005; 54:591-602.
    
    [85] Wang L, Xing XP, Holmes A, et al. Activation of the sphingosine kinase-signaling pathway by high glucose mediates the proinfiammatory phenotype of endothelial cells. Circ Res. 2005;97:891-899.
    
    [86] Shimizu H, Okajima F, Kimura T, Ohtani K, Tsuchiya T, Takahashi H, Kuwabara A, Tomura H, Sato K, Mori M. Sphingosine 1 -phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets.Endocr J. 2000;47(3):261-9.
    
    [87] Lee WJ, Yoo HS, Suh PG, et al. Sphingosine mediates FTY720-induced apoptosis in LLC-PK1 cells. Exp Mol Med. 2004;36:420-427.
    
    [88] Thon L, Mohlig H, Mathieu S, Lange A, et al. Ceramide mediates caspase-independent programmed cell death. FASEB J. 2005;19:1945-1956.
    
    [89] Cuvillier O. Suppression of ceramide-mediated programmed cell death by sphingosine -1- phosphate. Nature 1996;381:800-803.
    
    [90] Powell DJ, Turban S, Gray A, et al. Intracellular ceramide synthesis and protein kinase Czeta activation play an essential role in palmitate-induced insulin resistance in rat L6 skeletal muscle cells. Biochem J. 2004;382:619-629.
    [1] 许曼音,陆广华,陈名道,糖尿病学,上海:上海科学技术出版社,2003,51-56.
    [2] Bennett, S.T. & Todd, J.A. Human type 1 diabetes and the insulin gene: principles of mapping polygenes. Annu. Rev. Genet. 1996;30: 343-370.
    [3] Gottlieb, P.A. & Eisenbarth, G.S. Diagnosis and treatment of pre-insulin dependent diabetes. Annu. Rev. Med. 1998;49:391-405.
    [4] Saltiel, A.R. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes. Cell. 2001 ;104:517-529.
    [5] Chunsun Dai, Yingjian Li, Junwei Yang. Hepatocyte Growth Factor Preserves Beta Cell Mass and Mitigates Hyperglycemia in Streptozotocin-induced Diabetic Mice THE JOURNAL OF BIOLOGICAL CHEMISTRY 2003;278: 27080-27087.
    [6] 李宗友.胡芦巴抗糖尿病和降胆固醇作用.国外医学中医中药分册,1999,21(4):9~13
    [7] 李真,马高峰.生地黄连液对四氧嘧啶小鼠影响的实验研究1.辽宁中医杂志,2000,27(12):573~574
    [8]宋福印.消渴停对胰岛β细胞凋亡及相关基因Bcl-2,Fas蛋白表达的影响1.中国中医药信息杂志,2001,8(6):24
    [9]尚文斌,金妙方,方泰惠1.糖渴清降血糖机制的实验研究.中药药理与临床,1996,(4):31~33
    [10] 李惠林,熊曼琪,邓尚平,等1加味桃核承气汤对实验性糖尿病大鼠胰岛素受体的影响.中国中西医结合杂志,1995,15:338~340
    [11]宋丽晶,周丹,母英术,等l三消诒治疗糖尿病的药理研究.中成药,1993,15(4):29~31
    [12]熊曼琪1加味桃核承气汤对Ⅱ型糖尿病大鼠胰岛素抵抗的影响.中国中西医结合杂志,1997,17(3):165
    [13] 鲁瑾,邹大进,张家庆.黄芪预防肿瘤坏死因子-2 所致胰岛素抵抗.中国中西结合杂志.1999,19(7):420
    [14]王凌,李秋贵,浦信行,等.参地降糖颗粒对高果糖大鼠胰岛素抵抗的影响.中医杂志,2001,42(11):686
    [15] 钱东生.山茱萸乙醇提取液对NIDDN大鼠骨骼肌GLUT4表达影响的实验研究.中国中药杂志,2001,26(12):859
    [16] 刘张冰,高光艳,江佩芬.菊苣胶囊对小鼠血糖水平的影响.北京中医药大学学报,1999,22(1):28~30
    [17] 沈忠明,李英,姜宏.降糖中药对α- 葡萄糖苷酶抑制
    [18] Huwiler A, Kolter T, Pfeilschifter J. Physiology and pathophy- siology of sphingolipid metabolism and Signaling.Biochimica et Biophysica Acta 2000;1485:63-99.
    
    [19] Spiegel S, Milstien S. SPHINGOSINE-1-PHOSPHATE: AN ENIGMATIC SIGNALLING LIPID. NATURE REVIEWS: MOLECULAR CELL BIOLOGY. 2003;4: 297-407.
    
    [20] Hannun YA, Luberto C and Argraves KM. Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 2001;40:4893-4903.
    
    [21 ] Kohama T, Olivera A, Edsall L, et al. Molecular cloning and functional characterization of murine sphingosine kinase. J. Biol. Chem. 1998;273:23722-23728.
    
    [22] Maceyka M, Payne SG, Milstien S, et al. Sphingosine kinase, sphingosine-1-phosphate, and apoptosis. Biochim Biophys Acta. 2002;1585:193-201.
    
    [23] Cuvillier O. Suppression of ceramide-mediated programmed cell death by sphingosine -1- phosphate. Nature 1996;381:800-803.
    
    [24] Mao C, Saba JD and Obeid LM. The dihydrosphingosine-1-phosphate phosphatases of Saccharomyces cerevisiae are important regulators of cell proliferation and heat stress responses. Biochem. J. 1999;342: 667-675.
    
    [25] Kolesnick R, Hannun YA. Ceramide and apoptosis. Trends Biochem. Sci. 1999;24: 224-225.
    
    [26] Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem. J. 1998;335:465-480.
    
    [27] Levade T, Jaffrezou JP. Biochim. Biophys. Acta 1999;1438: 1-17.
    
    [28] Nagiec MM, Skrzypek M, Nagiec EE, et al. The LCB4 (YOR171c) and LCB5 (YLR260w) genes of Saccharomyces encode sphingoid long chain base kinases. J. Biol. Chem. 1998; 273:19437-19442.
    
    [29] Olivera A, Kohama T, Tu Z, et al. Purification and characterization of rat sphingosine kinase. J. Biol. Chem. 1999;273:12576-12583.
    
    [30] Taha TA, Hannun YA, Obeid LM. Sphingosine Kinase: Biochemical and Cellular Regulation and Role in Disease.Journal of Biochemistry and Molecular Biology 2006;39:113-131.
    
    [31] Duan HF, Wu CT, Lu Y, et al. Sphingosine kinase activation regulates hepatocyte growth factor induced migration of endothelial cells. Exp Cell Res.2004;298 (2):593-601.
    
    [32] Nakade Y, Banno Y, T-Koizumi K, et al. Regulation of sphingosine kinase 1 gene expression by protein kinase C in a human leukemia cell line, MEG-O1. Biochem Biophys Acta. 2003;1635(2-3):104-116.
    [33] Pitson SM, Moretti PA, Zebol JR, et al. Activation of sphingosine kinase 1 by ERK1/2-mediated phosphorylation. EMBO J. 2003;22(20):5491-5500
    [34] Meyer zu Heringdorf D, Lass H, Alemany R, et al. Sphingosine kinase- mediated Ca2+ signalling by G-protein-coupled receptors. EMBO J. 1998; 17: 2830-2837.
    
    [35] Miura Y, Yatomi Y, Rile G, et al. Rho-mediated phosphorylation of focal adhesion kinase and myosin light chain in human endothelial cells stimulated with sphingosine 1-phosphate, a bioactive lysophospholipid released from activated platelets. J. Biochem. (Tokyo) 2000;127:909-914.
    
    [36] Fukushima N, Ishii I, Contos JJ, Weiner J.A. and Chun J. Lysophos- pholipid receptors. Annu. Rev. Pharmacol. Toxicol. 2001;41, 507-534.
    
    [37] English D, Welch Z, Kovala AT. Sphingosine-1-phosphate released from platelets during clotting accounts for the potent endothelial cell chemotactic activity of blood serum and provides a novel link between hemostasis and angiogenesis. FASEB J.2000;14: 2255-2265.
    
    [38] Wang F, Van Brocklyn JR, Hobson JP. Sphingosine-1-phosphate stimulates cell migration through a Gi-coupled cell surface receptor. J Biol Chem. 1999; 274:35343-35350.
    
    [39] Geoffroy K, Troncy L, Wiernsperger N, et al. Glomerular proliferation during early stages of diabetic nephropathy is associated with local increase of sphingosine-1-phosphate levels. FEBS Lett. 2005;579: 1249-1254.
    
    [40] Murray DK, Hill ME, Nelson DH. Inhibitory action of sphingosine, sphinganine and dexamethasone on glucose uptake: studies with hydrogen peroxide and phorbol ester. Life Sci. 1990;46:1843-1849.
    
    [41] Arnold RS, Newton AC. Inhibition of the insulin receptor tyrosine kinase by sphingosine. Biochemistry. 1991;30:7747-7754.
    
    [42] Nelson DH, Murray DK. Dexamethasone and sphingolipids inhibit concanavalin A stimulated glucose uptake in 3T3-L1 fibroblasts. Endocr Res. 1988-89;14:305-318.
    
    [43] Shimizu H, Okajima F, Kimura T, et al. Sphingosine 1-phosphate stimulates insulin secretion in HIT-T 15 cells and mouse islets. Endocr J. 2000;47:261-269

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700