糖尿病视网膜病变患者纤维血管膜中SIRT1的表达及其相关机制初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
[目的]糖尿病视网膜病变(Diabetic retinopathy, DR)是常见的糖尿病微血管并发症,为发达国家工作年龄人群中致盲率最高的疾病。SIRT1属于第Ⅲ组蛋白去乙酰化酶,与DR发病相关。本实验的目的为初步探讨SIRT1在DR纤维血管膜形成中的作用,研究SIRT1激动剂白藜芦醇是否对高糖培养的RPE细胞具有保护效应,及其相关机制。同时初步研究与白藜芦醇结构相近的二苯乙烯苷是否具有类似作用。
     [方法]采集DR伴眼底纤维血管膜患者、非糖尿病伴特发性黄斑前膜患者眼部标本,石蜡包埋切片,行免疫组化检测两组患者SIRT1表达的差异。体外培养人视网膜色素上皮细胞,加入5.5mmol/L葡萄糖,5.5mmol/L葡萄糖加上甘露醇,25mmol/L葡萄糖,25mmol/L葡萄糖及不同浓度白藜芦醇、二苯乙烯苷,分别检测以下指标的变化情况:(1)CCK-8法检测细胞活力;(2)RT-PCR检测SIRT1、PGC-1α基因表达水平;(3)Western blot检测乙酰化NF-κB p65含量及AMPK活性;(4)ELISA法检测VEGF分泌量。
     [结果]共收集DR患者纤维血管膜12例,非糖尿病患者黄斑前膜7例,纤维血管膜中SIRT1阳性率高于黄斑前膜组织(100%vs28.6%),去掉年龄因素影响后,差异具有统计学意义(p=0.021)。25mmol/L葡萄糖能降低人视网膜色素上皮细胞活力、抑制SIRT1及PGC-1α转录,激活NF-κB、抑制AMPK活性,促进VEGF分泌。加入一定浓度的白藜芦醇或二苯乙烯苷,可抑制高糖引起的细胞活力下降,减少SIRT1转录下降的水平,减少NF-κB的激活,VEGF分泌量也相应降低。同时,一定浓度的白藜芦醇及二苯乙烯苷可以减少高糖对PGC-1α转录的抑制作用,其幅度与对应的SIRT1、NF-κB改变水平并不完全一致,但与AMPK的活性变化量基本一致。
     [结论]DR患者纤维血管膜中SIRT1表达升高,提示SIRT1与DR新生血管有一定关系。但高糖可抑制体外培养的人视网膜色素上皮细胞中SIRT1的表达,上述实验结果提示体外实验可能不能完全反映视网膜的生理情况;或者DR病情进展过程中,SIRT1的含量在不断变化。本实验数据提示二苯乙烯苷可能也具有SIRT1激动剂的作用,且白藜芦醇及二苯乙烯苷可能是通过SIRT1—NF-κB通路降低VEGF分泌。同时PGC-1α mRNA水平可能与AMPK活性相关。
Purpose:Diabetic retinopathy (DR) is a severe complication of diabetes and the leading cause of blindness among working adults worldwide. The class Ⅲ Histone deacetylases SIRT1plays crucial roles in the development of DR. We aimed to investigate the role of SIRT1in the pathogenesis of neovascularization in DR, and the protective effects of resveratrol, a SIRT1activator, on RPE and the underlying mechanisms by using an in vitro model of hyperglycemia. We also investigate whether2,3,4',5-Tetrahydroxystilbene-2-O-p-D-glucoside (TSG), a resveratrol analog, has the same effect.
     Method:The expression of SIRT1was assessed via immunohistochemistry in excised neovascular membranes from DR patients and epiretinal membrane from non-diabetic patients. Retinal (ARPE-19) cells were incubated with5.5mmol/L glucose,5.5mmol/L glucose and mannitol,25mmol/L glucose,25mmol/L glucose and different concentrations of resveratrol or25mmol/L glucose and different concentrations of TSG. Cell viability was determined by the CCK-8assay. The mRNA expression of SIRTl and PGC-lα was done by real-time PCR. The protein expression of acetylated NF-κB p65and AMPK activity was done by Western blot. The level of vascular endothelial growth factor (VEGF) was determined by the enzyme-linked immunosorbent assay (ELISA).
     Results:Formalin-fixed paraffin-embedded sections of neovascular membranes were excised from12patients with DR and epiretinal membranes from7non-diabetic patients. SIRT1was more frequently expressed in neovascular membranes than epiretinal membranes (100%vs28.6%). This difference was statistically significant after adjustments for age (p=0.021).25mmol/L glucose significantly induced the accumulation of VEGF, activation of NF-κB, reduction of SIRT1and PGC-la expression and AMPK activity. Incubation of ARPE-19cells with25mmol/L glucose in the presence of resveratrol or TSG reduced the inhibition effect of hyperglycemia on cell viability, SIRT1and PGC-1α expression, and AMPK activity. They also reduced the activation effect of hyperglycemia on NF-κB and VEGF. Moreover, the change of VEGF was consistent with that of SIRT1and NF-κB. The change of PGC-la was consistent with that of AMPK activity.
     Discussion:SIRT1levels appear elevated in human neovascular membranes in DR eyes compared with control eyes. These data support a potential role for SIRT1in the pathogenesis of neovasculation in DR. On the other hand,hyperglycemia inhibited the expression of SIRT1in ARPE-19. These data indicate that in vitro model may be different from the in vivo physiological conditions. It is also possible that SIRT1levels fluctuate during the course of disease. Our results also suggest that TSG can function as a SIRT1activator. Resveratrol and TSG can protect the retinal pigment epithelial cells against hyperglycemia induced damage. They efficiently reduce VEGF secretion through SIRT1—NF-κB pathway. Furthermore, the level of PGC-1α may be associated with AMPK activity.
引文
[1]Fong DS, Aiello L, Gardner TW, et al. Retinopathy in diabetes [J]. Diabetes care, 2004,27 (Suppl 1)84-87.
    [2]Wild S, Roglic G, Green A, et al. Global prevalence of diabetes:estimates for the year 2000 and projections for 2030 [J]. Diabetes care,2004,27(5):1047-1053.
    [3]Brownlee M. Biochemistry and molecular cell biology of diabetic complications [J]. Nature,2001,414(6865):813-820.
    [4]Nightingale KP, O'neill LP, Turner BM. Histone modifications:signalling receptors and potential elements of a heritable epigenetic code [J]. Current opinion in genetics & development,2006,16(2):125-136.
    [5]Marks P, Rifkind R A, Richon VM, et al. Histone deacetylases and cancer:causes and therapies [J]. Nature reviews Cancer,2001,1(3):194-202.
    [6]Fulco M, Cen Y, Zhao P, et al. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt [J]. Developmental cell,2008,14(5):661-673.
    [7]Bordone L, Cohen D, Robinson A, et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction [J]. Aging cell,2007,6(6):759-767.
    [8]Yoshizaki T, Milne JC, Imamura T, et al. SIRT1 exerts anti-inflammatory effects and improves insulin sensitivity in adipocytes [J]. Molecular and cellular biology,2009,29(5): 1363-1374.
    [9]Kume S, Thomas MC, Koya D. Nutrient sensing, autophagy, and diabetic nephropathy [J]. Diabetes,2012,61(1):23-29.
    [10]Kume S, Uzu T, Kashiwagi A, et al. SIRT1, a calorie restriction mimetic, in a new therapeutic approach for type 2 diabetes mellitus and diabetic vascular complications [J]. Endocrine, metabolic & immune disorders drug targets,2010,10(1):16-24.
    [11]Dong F, Ren J. Fidarestat improves cardiomyocyte contractile function in db/db diabetic obese mice through a histone deacetylase Sir2-dependent mechanism [J]. Journal of hypertension,2007,25(10):2138-2147.
    [12]Lu C, He JC, Cai W, et al. Advanced glycation endproduct (AGE) receptor 1 is a negative regulator of the inflammatory response to AGE in mesangial cells [J]. Proceedings of the National Academy of Sciences of the United States of America,2004, 101(32):11767-11772.
    [13]Uribarri J, Cai W, Ramdas M, et al. Restriction of advanced glycation end products improves insulin resistance in human type 2 diabetes:potential role of AGER1 and SIRT1[J]. Diabetes care,2011,34(7):1610-1616.
    [14]Brownlee M. The Pathobiology of Diabetic Complications:A Unifying Mechanism [J]. Diabetes,2005,54(6):1615-1625.
    [15]Ishii H, Jirousek MR, Koya D, et al. Amelioration of Vascular Dysfunctions in Diabetic Rats by an Oral PKC β Inhibitor [J]. Science,1996,272(5262):728-731.
    [16]Dioum EM, Chen R, Alexander MS, et al. Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1 [J]. Science,2009, 324(5932):1289-1293.
    [17]Lim J H, Lee YM, Chun YS, et al. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor lalpha [J]. Molecular cell,2010,38(6): 864-878.
    [18]Balaiya S, Khetpal V, Chalam KV. Hypoxia initiates sirtuinl-mediated vascular endothelial growth factor activation in choroidal endothelial cells through hypoxia inducible factor-2alpha [J]. Molecular vision,2012(18):114-120.
    [19]Feng B, Chen S, Mcarthur K, et al. Mir-146a-Mediated extracellular matrix protein production in chronic diabetes complications [J]. Diabetes,2011,60(11):2975-2984.
    [20]Dhar SK, St Clair DK. Manganese superoxide dismutase regulation and cancer [J]. Free radical biology & medicine,2012,52(11-12):2209-2222.
    [21]Zhong Q, Kowluru RA. Epigenetic changes in mitochondrial superoxide dismutase in the retina and the development of diabetic retinopathy [J]. Diabetes,2011,60(4): 1304-1313.
    [22]Zheng Z, Chen H, Li J, et al. Sirtuin 1-mediated cellular metabolic memory of high glucose via the LKB1/AMPK/ROS pathway and therapeutic effects of metformin [J]. Diabetes,2012,61(1):217-228.
    [23]Howitz K T, Bitterman KJ, Cohen HY, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan [J]. Nature,2003,425(6954):191-196.
    [24]Wood JG, Rogina B, Lavu S, et al. Sirtuin activators mimic caloric restriction and delay ageing in metazoans [J]. Nature,2004,430(7000):686-689.
    [25]Bauer JH, Goupil S, Garber GB, et al. An accelerated assay for the identification of lifespan-extending interventions in Drosophila melanogaster [J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(35): 12980-12985.
    [26]Jarolim S, Millen J, Heeren G, et al. A novel assay for replicative lifespan in Saccharomyces cerevisiae [J]. FEMS yeast research,2004,5(2):169-177.
    [27]Valenzano DR, Terzibasi E, Genade T, et al. Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate [J]. Current biology CB,2006,16(3):296-300.
    [28]Pearson KJ, Baur JA, Lewis KN, et al. Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span [J]. Cell metabolism,2008,8(2):157-168.
    [29]Peng CH, Chang YL, Kao CL, et al. Sirtl--a sensor for monitoring self-renewal and aging process in retinal stem cells [J]. Sensors (Basel, Switzerland),2010,10(6): 6172-6194.
    [30]Khan RS, Fonseca-Kelly Z, Callinan C, et al. SIRT1 activating compounds reduce oxidative stress and prevent cell death in neuronal cells [J]. Frontiers in cellular neuroscience,2012, (6):63.
    [31]Chen S, Fan Q, Li A, et al. Dynamic mobilization of PGC-la mediates mitochondrial biogenesis for the protection of RGC-5 cells by resveratrol during serum deprivation [J]. Apoptosis,2013,1-14.
    [32]Anekonda TS, Adamus G. Resveratrol prevents antibody-induced apoptotic death of retinal cells through upregulation of Sirtl and Ku70 [J]. BMC research notes,2008,1 122.
    [33]Kubota S, Kurihara T, Ebinuma M, et al. Resveratrol prevents light-induced retinal degeneration via suppressing activator protein-1 activation [J]. The American journal of pathology,2010,177(4):1725-1731.
    [34]Soufi FG, Vardyani M, Sheervalilou R, et al. Long-term treatment with resveratrol attenuates oxidative stress pro-inflammatory mediators and apoptosis in streptozotocin-nicotinamide-induced diabetic rats [J]. General physiology and biophysics, 2012,31(4):431-438.
    [35]Kubota S, Ozawa Y, Kurihara T, et al. Roles of AMP-activated protein kinase in diabetes-induced retinal inflammation [J]. Investigative ophthalmology & visual science, 2011,52(12):9142-9148.
    [36]Kubota S, Kurihara T, Mochimaru H, et al. Prevention of ocular inflammation in endotoxin-induced uveitis with resveratrol by inhibiting oxidative damage and nuclear factor-kappab activation [J]. Investigative ophthalmology & visual science,2009,50(7): 3512-3519.
    [37]Fonseca-Kelly Z, Nassrallah M, Uribe J, et al. Resveratrol neuroprotection in a chronic mouse model of multiple sclerosis [J]. Frontiers in neurology,2012,384.
    [38]Shindler KS, Ventura E, Rex TS, et al. SIRT1 activation confers neuroprotection in experimental optic neuritis [J]. Investigative ophthalmology & visual science,2007, 48(8):3602-3609.
    [39]Chang MJ, Xiao JH, Wang Y, et al.2,3,5,4'-Tetrahydroxystilbene-2-O-beta-D-glucoside improves gastrointestinal motility disorders in STZ-induced diabetic mice [J]. Plos one,2012,7(12):e50291.
    [40]Han X, Ling S, Gan W, et al.2,3,5,4'-tetrahydroxystilbene-2-O-beta-d-glucoside ameliorates vascular senescence and improves blood flow involving a mechanism of p53 deacetylation [J]. Atherosclerosis,2012,225(1):76-82.
    [41]Li C, Cai F, Yang Y, et al. Tetrahydroxystilbene glucoside ameliorates diabetic nephropathy in rats:involvement of SIRT1 and TGF-betal pathway [J]. European journal of pharmacology,2010,649(1-3):382-389.
    [42]Li XN, Song J, Zhang L, et al. Activation of the AMPK-FOXO3 pathway reduces fatty acid-induced increase in intracellular reactive oxygen species by upregulating thioredoxin [J]. Diabetes,2009,58(10):2246-2257.
    [43]Colombo SL, Moncada S. Ampkalphal regulates the antioxidant status of vascular endothelial cells [J]. The Biochemical journal,2009,421(2):163-169.
    [44]Nemoto S, Fergusson MM, Finkel T. SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha} [J]. The Journal of biological chemistry,2005,280(16):16456-16460.
    [45]Valle I, Alvarez-Barrientos A, Arza E, et al. PGC-lalpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells [J]. Cardiovascular research, 2005,66(3):562-573.
    [46]Soslow RA, Dannenberg AJ, Rush D, et al. COX-2 is expressed in human pulmonary, colonic, and mammary tumors [J]. Cancer,2000,89(12):2637-2645.
    [47]Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins [J]. Biochemical and biophysical research communications,2000,273(2):793-8.
    [48]Hou J, Chong ZZ, Shang YC, et al. Early apoptotic vascular signaling is determined by Sirtl through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation [J]. Current neurovascular research,2010,7(2):95-112.
    [49]Jaliffa C, Ameqrane I, Dansault A, et al. Sirtl involvement in rd10 mouse retinal degeneration [J]. Investigative ophthalmology & visual science,2009,50(8):3562-3572.
    [50]Maloney SC, Antecka E, Odashiro AN, et al. Expression of SIRT1 and DBC1 in Developing and Adult Retinas [J]. Stem cells international,2012,2012 908 183.
    [51]Mortuza R, Chen S, Feng B, et al. High glucose induced alteration of sirts in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway [J].Plos one, 2013,8(1):e54514.
    [52]Potente M, Ghaeni L, Baldessari D, et al. SIRT1 controls endothelial angiogenic functions during vascular growth [J]. Genes & development,2007,21(20):2644-2658.
    [53]Cheng HL, Mostoslavsky R, Saito S, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice [J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(19):10794-10799.
    [54]Peng CH, Cherng JY, Chiou GY, et al. Delivery of Oct4 and sirtl with cationic polyurethanes-short branch PEI to aged retinal pigment epithelium [J]. Biomaterials, 2011,32(34):9077-9088.
    [55]Maloney SC, Antecka E, Granner T, et al. Expression of SIRT1 in choroidal neovascular membranes [J]. Retina (Philadelphia, Pa),2013,33(4):862-866.
    [56]Ban N, Ozawa Y, Inaba T, et al. Light-dark condition regulates sirtuin mrna levels in the retina [J]. Experimental gerontology,2013,6
    [57]Lin TJ, Peng CH, Chiou SH, et al. Severity of lens opacity, age, and correlation of the level of silent information regulator T1 expression in age-related cataract [J]. Journal of cataract and refractive surgery,2011,37(7):1270-1274.
    [58]Reddy MA, Sahar S, Villeneuve LM, et al. Role of Src tyrosine kinase in the atherogenic effects of the 12/15-lipoxygenase pathway in vascular smooth muscle cells [J]. Arteriosclerosis, thrombosis, and vascular biology,2009,29(3):387-393.
    [59]Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats [J]. Diabetes,2004,53(12):3233-3238.
    [60]Sasaki M, Ozawa Y, Kurihara T, et al. Neurodegenerative influence of oxidative stress in the retina of a murine model of diabetes [J]. Diabetologia,2010,53(5):971-979.
    [61]Nagai N, Izumi-Nagai K, Oike Y, et al. Suppression of diabetes-induced retinal inflammation by blocking the angiotensin II type 1 receptor or its downstream nuclear factor-kappab pathway [J]. Investigative ophthalmology & visual science,2007,48(9): 4342-4350.
    [62]Yeung F, Hoberg JE, Ramsey CS, et al. Modulation of NF-kappab-dependent transcription and cell survival by the SIRT1 deacetylase [J]. The EMBO journal,2004, 23(12):2369-2380.
    [63]Canto C, Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways [J]. Cellular and molecular life sciences:CMLS,2010,67(20):3407-3423.
    [64]Devaraj S, Torok N, Dasu MR, et al. Adiponectin decreases C-reactive protein synthesis and secretion from endothelial cells:evidence for an adipose tissue-vascular loop [J]. Arteriosclerosis, thrombosis, and vascular biology,2008,28(7):1368-1374.
    [65]Hattori Y, Suzuki K, Tomizawa A, et al. Cilostazol inhibits cytokine-induced nuclear factor-kappab activation via AMP-activated protein kinase activation in vascular endothelial cells [J]. Cardiovascular research,2009,81(1):133-139.
    [66]Lan F, Cacicedo JM, Ruderman N, et al. SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation [J]. The Journal of biological chemistry,2008,283(41):27628-27635.
    [67]Petrovic MG, Kunej T, Peterlin B, et al. Gly482Ser polymorphism of the peroxisome proliferator-activated receptor-y coactivator-1 gene might be a risk factor for diabetic retinopathy in Slovene population (Caucasians) with type 2 diabetes and the Pro12A1a polymorphism of the PPARy gene is not [J]. Diabetes/Metabolism Research and Reviews, 2005,21(5):470-474.
    [68]Lee WJ, Kim M, Park HS, et al. AMPK activation increases fatty acid oxidation in skeletal muscle by activating pparalpha and PGC-1 [J]. Biochemical and biophysical research communications,2006,340(1):291-295.
    [69]Alvarez-Guardia D, Palomer X, Coll T, et al. The p65 subunit of NF-kappab binds to PGC-1 alpha, linking inflammation and metabolic disturbances in cardiac cells [J]. Cardiovascular research,2010,87(3):449-458.
    [70]Balaiya S, Ferguson LR, Chalam K.V. Evaluation of sirtuin role in neuroprotection of retinal ganglion cells in hypoxia [J]. Investigative ophthalmology & visual science,2012, 53(7):4315-4322.
    [71]Kowluru RA. Diabetic retinopathy:mitochondrial dysfunction and retinal capillary cell death [J]. Antioxidants & redox signaling,2005,7(11-12):1581-1587.
    [72]Bhattacharya S, Chaum E, Johnson DA, et al. Age-related susceptibility to apoptosis in human retinal pigment epithelial cells is triggered by disruption of p53-Mdm2 association [J]. Investigative ophthalmology & visual science,2012,53(13):8350-8366.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700