铬渣的矿物属性框架及其化学处理方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铬的化合物在钢铁制造业、纺织业、皮革制造业及其他行业有着广泛的应用。铬盐制作过程中会产生大量的铬渣,铬渣中的六价铬能导致人体多种器官产生病变、甚至癌症。由于我国工业的快速发展,每年产生的铬渣量已达近百万吨,加上历年产生的铬渣,已严重威胁到了我国多个地区的自然环境和人的健康。因此,系统地研究我国的铬渣的特点及相应的处理方法有着重要的理论和工程应用价值。
     本文的研究内容包括三个方面:1)利用先进的矿物分析技术,如X射线荧光试验(XRF)、X射线衍射试验(XRD)和环境扫描电子显微镜试验(ESEM)等,对铬渣进行系统的分析,构建铬渣的矿物属性框架;2)考虑铬渣与酸溶液的反应时间、铬渣的粒径等因素,通过批次试验,系统地研究酸溶液(H2SO4和HNO3)对铬渣中六价铬溶出的影响,为研究铬渣的化学处理方法奠定基础;3)采用化学还原法,用硫酸亚铁(FeSO4)和多阳离子聚硫化物试剂混合(CaSx)作还原剂的柱式试验,研究有效的铬渣处理方法。
     本文的研究主要取得了以下成果:
     (一)系统地建立了铬渣的矿物属性框架。研究了铬渣的元素组成、矿物成分、颗粒形貌及元素分布特点等,结果表明,铬渣的主要元素组成按含量从大到小依次为钙、铁、镁、铝、硅和铬,其中铬的含量约为6%。组成铬渣的主要矿物为钙铁石、方镁石、方解石、白云石、水钙铁榴石、铬铁矿、石英,可能还有含量很少的水铝钙石和斜硅钙石。包含六价铬的矿物为水钙铁榴石,且存在于颗粒内部,而被认为含三价铬的钙铁石存在于铬渣颗粒的外围。从整体上看,铬较均匀的分布于铬渣中,但在颗粒内部的浓度稍高。
     (二)通过两组批次试验系统地研究了铬渣中六价铬的滤出特性。试验结果表明,滤出液中铬浓度的大部分为六价铬。与酸的种类相比,铬渣的颗粒粒径六价铬释放的影响更大,粗颗粒很难与酸完全反应。与硝酸相比,硫酸更容易降低pH值并释放铬渣中的六价铬。铬渣中铬的溶出有很强的持续性。铬渣的酸中和能力很强,这意味着用酸处理铬渣可能成本偏高。
     (三)采用化学还原法对铬渣的处理效果进行了系统的研究。结果表明,当渗透液为FeSO4和H2SO4混合溶液时,在短期内能有效地控制滤出液中六价铬的含量,但随后铬渣容易结块,会阻碍后续的反应。被CaSx处理过的铬渣,再用去离子水渗透的过程中,滤出l液中始终没有检测出六价铬,结合XRD和ESEM的试验结果,表明用CaSx处理铬渣的效果比用FeSO4和H2SO4混合溶液处理更好。
     本文系统地建立了铬渣的矿物属性框架、分析了铬渣中六价铬的溶出特性、对采用化学还原法处理铬渣的效果进行了系统的研究,为今后大规模地处理铬渣奠定了坚实的理论基础。
Chromate is widely applied in steel, textile, leather and other manufacturing industries. In chromate making process, chromite ore processing residue (COPR) would be made as by-product. Hexavalent chromium (Cr(VI)) in COPR could cause disease, so much as cancer in human organs. As the rapid development of industry in our country, nearly one million tons of COPR are produced every year. Considering the COPR produced over the years, natural environment and human health at various locations in China are seriously threatened. Therefore, it is very important in theory research field and engineering practice to systematically study the characteristics and appropriate treatment methods of the COPR produced in our country.
     Three aspects of the research contents of this thesis are:1) applying advanced techniques such as X-ray fluorescence (XRF), X-ray diffraction technology (XRD) and environmental scanning electron microscopy (ESEM) to systematically analyse COPR, and consequently developing the mineralogical framework for China-based COPR; 2) studying the effects of acid solutions (HNO3 or H2SO4) on the leach of Cr(VI) from COPR by batch tests respect to reaction time and COPR particle size, and laying the foundation of the subsequent research for chemical treatment methods; 3) using chemical reduction methods to study the effectiveness of treatment methods with ferrous sulfate (FeSO4) or a cationic polysulfide reagent (CaSx) as reducing agents.
     The main achievements of this thesis are as follows:
     (1) The mineralogical framework for China-based COPR was developed. Elemental composition, mineral composition and surface feature of COPR were identified, respectively. The result shows that the dominant elements of COPR are Ca, Fe, Mg, Al, Si and Cr by descending order of the content, which are evenly distributed throughout of COPR particles. The weight percentage of chromium is around 6%. COPR particle consists of brownmillerite, periclase, calcite, dolomite, hydroandradite, chromite and quartz. Hydrocalumite and larnite are possibly contained in COPR. Cr(Ⅵ) possibly exists in hydroandradite which presents inside COPR particle. Cr(Ⅲ)-bearing brownmillerite occurs in the rim of COPR particles. As a whole, a low content of Cr evenly distributes in COPR particles, while slightly high concentration of Cr occurs inside particles.
     (2) The leaching behavior of Cr(Ⅵ) from COPR was investigated by batch leaching tests. According to the test results, aqueous Cr(Ⅵ) accounted for most of the content of total Cr in leachate. It was difficult for coarse-sized particles in this study completely reacting with acid. Comparing with acid type used, the particle size may have a more significant impact on the release of Cr(Ⅵ) from COPR. It was easier to lower the pH value in leachate and release Cr(Ⅵ) from COPR with H2SO4 relative to HNO3. In addition, the leach of Cr(Ⅵ) from COPR was persistent. The acid neutralization capacity of COPR was relatively large, which suggests that the application of acid treatment method for COPR disposal may be costly.
     (3) Chemical reduction treatment methods of COPR were studied systematically. When COPR was permeated with FeSO4-H2SO4 solution, Cr(Ⅵ) concentration in leachate could be controlled to a low value in a relatively short time. However, the subsequently blocking remanent COPR prevented further reaction with FeSO4. In the whole column experiment process, Cr(Ⅵ) concentrations could not be detected in leachates from COPR treated with CaSx and permeated with DI water. Complemented with the results of XRD and ESEM, the treatment with CaSx and permeated with DI water is more effective compared with the treatment using FeSO4-H2SO4 solution.
     This thesis systematically developed a mineralogical framework for China-based COPR, investigated leaching characteristics of Cr(Ⅵ) and evaluated the effectiveness of chemical reduction treatments of COPR. They lay the foundation for future large-scale treatment of COPR.
引文
[1]袁建新.环境岩土葛洪程问题综述.岩土力学.1996,(03):86-93.
    [2]苏燕,周健.环境岩土工程研究现状与展望.岩土力学.2004,(09):1510-1514.
    [3]吴学安.铬渣污染:环境安全警钟再鸣.环境保护.2011,(17):56.
    [4]郝凤桐.铬污染与健康损害.安全与健康.2011,(19):27.
    [5]丁翼.铬渣治理工作回顾及经验教训.化工环保.1994,(04):210-215.
    [6]杨扬.专家警告:铬盐化工污染整治刻不容缓 中国铬盐废渣污染触目惊心民众强烈要求国家有关部门切实加强行业管理.化工管理.2003,(01):4-5.
    [7]王连升.环境健康化学.北京:科学出版社,1994.
    [8]江澜,王小兰.铬的生物作用及污染治理.重庆工商大学学报(自然科学版).2004,(04):325-328.
    [9]周保学,周定.铬与人体健康.化学世界.2000,(02):112.
    [10]胡舒为.民丰农化危机重重.知识经济.2003,(12):42-45.
    [11]刘健,张琴,代群.昔日不排污,今偿环境巨债.沿海经济.2003,(12):38-39.
    [12]Hillier S, Roe M J, Geelhoed J S, et al. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue. Science of The Total Environment. 2003,308(1-3):195-210.
    [13]Chrysochoou M, Fakra S C, Marcus M A, et al. Microstructural Analyses of Cr(Ⅵ) Speciation in Chromite Ore Processing Residue (COPR). Environ Sci Technol. 2009,43(14):5461-5466.
    [14]Higgins T E, Halloran A R, Dobbins M E, et al. In situ reduction of hexavalent chromium in alkaline soils enriched with chromite ore processing residue. Journal of the Air & Waste Management Association.1998,48(11):1100-1106.
    [15]Thomas R P, Hillier S J, Roe M J, et al. Analytical Characterisation of Solid-and Solution-Phase Chromium Species at Copr-Contaminated Sites. Environmental Geochemistry and Health.2001,23(3):195-199.
    [16]Chrysochoou M, Dermatas D, Grubb D G, et al. Importance of Mineralogy in the Geoenvironmental Characterization and Treatment of Chromite Ore Processing Residue. Journal of Geotechnical and Geoenvironmental Engineering.2010, 136(3):510-521.
    [17]James B R. Peer Reviewed:The Challenge of Remediating Chromium-Contaminated Soil. Environ Sci Technol.1996,30(6):248A-251A.
    [18]Geelhoed J S, Meeussen J C L, Hillier S, et al. Identification and geochemical modeling of processes controlling leaching of Cr(Ⅵ) and other major elements from chromite ore processing residue. Geochimica Et Cosmochimica Acta.2002, 66(22):3927-3942.
    [19]Geelhoed J S, Meeussen J C L, Lumsdon D G, et al. Modelling of Chromium Behaviour and Transport at Sites Contaminated with Chromite ore Processing Residue:Implications For Remediation Methods. Environmental Geochemistry and Health.2001,23(3):261-265.
    [20]Weng C H, Huang C P, Allen H E, et al. Chromium leaching behavior in soil derived from chromite ore processing waste. Science of The Total Environment. 1994,154(1):71-86.
    [21]Weng C-H, Huang C P, Sanders P F. Effect of pH on Cr(Ⅵ) Leaching from Soil Enriched in Chromite ore Processing Residue. Environmental Geochemistry and Health.2001,23(3):207-211.
    [22]Farmer J G, Thomas R P, Graham M C, et al. Chromium speciation and fractionation in ground and surface waters in the vicinity of chromite ore processing residue disposal sites. Journal of Environmental Monitoring.2002,4(2): 235-243.
    [23]Su C, Ludwig R D. Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite. Environmental Science and Technology.2005,39(16):6208-6216.
    [24]Graham A M, Wadhawan A R, Bouwer E J. Chromium occurrence and speciation in Baltimore Harbor sediments and porewater, Baltimore, Maryland, USA. Environmental Toxicology and Chemistry.2009,28(3):471-480.
    [25]Burke T, Fagliano J, Goldoft M, et al. Chromite ore processing residue in Hudson County, New Jersey. Environ Health Perspect. 1991,92.
    [26]Farmer J G, Graham M C, Thomas R P, et al. Assessment and Modelling of the Environmental Chemistry and Potential for Remediative Treatment of Chromium-Contaminated Land. Environmental Geochemistry and Health.1999, 21(4):331-337.
    [27]Thomas R P, Eades L J, Graham M C, et al. Investigation of chromium speciation at contaminated sites in SE Glasgow. Scotland:Contam Soil,2000.
    [28]Darrie G. Commercial Extraction Technology and Process Waste Disposal in the Manufacture of Chromium chemicals From Ore. Environmental Geochemistry and Health.2001,23(3):187-193.
    [29]Truini J. N.J. urges chromium cleanup. Waste News.2005,11(1):3.
    [30]Weng C-H, Huang C P, Sanders P F. Transport of Cr(Ⅵ) in soils contaminated with chromite ore processing residue (COPR). Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2002,6(1):6-13.
    [31]Chrysochoou M, Moon D H, Wazne M, et al., Mineralogical analysis of chromite ore processing residue by X-ray powder diffraction. in:8th International In-situ and On-site Bioremediation Symposium, Baltimore, Maryland,6-9 June 2005.
    [32]Dermatas D, Chrysochoou M, Moon D H, et al., Mineralogical characterization of chromite ore processing residue at Dundalk Marine Terminal Area 1800. in:8th International In-situ and On-site Bioremediation Symposium, Battelle, Columbus, Ohio,2005.
    [33]Kamolpornwijit W, Meegoda J N, Hu Z. Characterization of Chromite Ore Processing Residue. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management 2007,11(4):234-239.
    [34]Taylor H F W. Cement chemistry. London:Thomas Telford,1997.
    [35]Hewlet P C. Lea's chemistry of cement and concrete.4th. London:Arnold,1998.
    [36]Palmer C D. Precipitates in a Cr(Ⅵ)-Contaminated Concrete. Environ Sci Technol. 2000,34(19):4185-4192.
    [37]龙腾发,柴立元,傅海洋等.铬渣浸出毒性试验研究.环境工程.2004,(06):71-73+75.
    [38]Graham M C, Farmer J G, Anderson P, et al. Calcium polysulfide remediation of hexavalent chromium contamination from chromite ore processing residue. Science of The Total Environment 2006,364(1-3):32-44.
    [39]蔡木林,景学森,杨亚提.铬渣酸溶性六价铬浸出动力学研究.环境工程学报.2007,(10):90-93.
    [40]刘大银,蔡鹤生,孙小静等.风化铬渣与新鲜铬渣中六价铬溶出特性的研究.安全与环境工程.2002,(04):1-5.
    [41]张晟,彭莉,王定勇等.酸雨淋溶对铬渣中Cr6+释放的影响.环境化学.2007,(04):512-515.
    [42]江澜,王小兰,单振秀.化工铬渣六价铬浸出试验方法研究.重庆工商大学学报(自然科学版).2005,(02):139-142.
    [43]秦利玲,李强,王天贵.铬渣中六价铬浸出方法对比实验研究.无机盐工业.2012,(02):51-52.
    [44]Yalcin S, Unlu K. Modeling chromium dissolution and leaching from chromite ore-processing residue. Environmental Engineering Science.2006,23(1):187-201.
    [45]黄健,邱胜鹏,魏榕等.动电技术在铬污染土壤修复中的应用及研究现状.工业安全与环保.2006,(08):6-9.
    [46]Reddy K R, Chinthamreddy S. Effects of initial form of chromium on electrokinetic remediation in clays. Advances in Environmental Research.2003, 7(2):353-365.
    [47]Reddy K R, Parupudi U S, Devulapalli S N, et al. Effects of soil composition on the removal of chromium by electrokinetics. Electrochemical Decontamination of Soil and Water.1997,55(1-3):135-158.
    [48]Reddy K R, Chinthamreddy S. Electrokinetic remediation of heavy metal-contaminated soils under reducing environments.1999,19(4):269-282.
    [49]Reddy K R, Xu C Y, Chinthamreddy S. Assessment of electrokinetic removal of heavy metals from soils by sequential extraction analysis.2001,84(2-3):279-296.
    [50]Sanjay K, Arora A, Shekhar R, et al. Electroremediation of Cr(VI) contaminated soils:kinetics and energy efficiency.2003,222(1):253-259.
    [51]Gent D B, Bricka R M, Alshawabkeh A N, et al. Bench- and field-scale evaluation of chromium and cadmium extraction by electrokinetics.2004,110(1-3):53-62.
    [52]周东美,仓龙,邓昌芬.络合剂和酸度控制对土壤铬电动过程的影响.中国环境科学.2005,(01):11-15.
    [53]Zhou D-M, Cang L, Alshawabkeh A N, et al. Pilot-scale electrokinetic treatment of a Cu contaminated red soil.2006,63(6):964-971.
    [54]王业耀,孟凡生.铬(Ⅵ)污染高岭土电动修复实验研究.生态环境.2005,(06):855-859.
    [55]孟凡生,王业耀,陈锋.施加电压对铬污染土壤电动修复的影响.环境工程学报.2007,(03):111-115.
    [56]陈锋,王业耀,孟凡生等.阴极pH控制对电动修复Cr(Ⅵ)污染高岭土影响研究.环境科学与技术.2007,(06):35-36+41+117.
    [57]张瑞华,孙红文.电动力和铁PRB技术联合修复铬(Ⅵ)污染土壤.环境科学.2007,(05):1131-1136.
    [58]江澜.微生物治理铬污染的应用与发展.重庆工商大学学报(自然科学版).2006,(02):132-135.
    [59]Pattanapipitpaisal P P, Brown N B, Macaskie L M. Chromate reduction and 16S rRNA identification of bacteria isolated from a Cr(Ⅵ)-contaminated site. Applied Microbiology and Biotechnology.2001,57(1):257-261.
    [60]池振明.现代微生物生态学.北京:科学出版社,2005.
    [61]Camargo F A O, Okeke B C, Bento F M, et al. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Applied Microbiology and Biotechnology.2003,62(5):569-573.
    [62]McLean J S, Beveridge T J, Phipps D. Isolation and characterization of a chromium-reducing bacterium from a chromated copper arsenate-contaminated site. Environmental Microbiology.2000,2(6):611-619.
    [63]Ackerley D F, Gonzalez C F, Park C H, et al. Chromate-Reducing Properties of Soluble Flavoprotcins from Pseudomonas putida and Escherichia coli. Applied and Environmental Microbiology.2004,70(2):873-882.
    [64]Viera M, Curutchet G, Donati E. A combined bacterial process for the reduction and immobilization of chromium.2003,52(1):31-34.
    [65]韩怀芬,蒲凤莲,裘娟萍.生物法修复铬污染土壤的研究.能源环境保护.2003,(02):7-9.
    [66]常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件实验研究.环境保护科学.2007,(01):42-44.
    [67]冯易军,谢家理,向芹等.共存离子对硫酸盐还原菌(SRB)处理含铬废水的影响研究.环境污染与防治.1995,17(4):15-17.
    [68]高宗军,高洪阁,李白英等.不同类型岩土对六价铬的抗污染性分析.中国地质灾害与防治学报.2003,(04):111-114.
    [69]李敬梅,李飒,王丽娟等.铬渣的物理力学性质及在工程应用中的研究.粉煤灰.2003,(03):25-27.
    [70]古昌红,单振秀,王瑞琪.铬渣对土壤污染的研究.矿业安全与环保.2005,(6):18-20+89.
    [71]李晶晶,彭恩泽.综述铬在土壤和植物中的赋存形式及迁移规律.工业安全与环保.2005,(03):31-33.
    [72]Mulligan C N, Yong R N, Gibbs B F. Remediation technologies for metal-contaminated soils and groundwater:an evaluation. Engineering Geology. 2001,60(1-4):193-207.
    [73]Polettini A, Pomi R, M. V. Remediation of a Heavy Metal-Contaminated Soil by Means of Agglomeration. Journal of Environmental Science and Health, Part A. 2004,39(4):999-1010.
    [74]Meegoda J N, Ezeldin A S, Fang H Y, et al. Waste immobilization technologies. Practice Periodieal of Hazardous, Toxic, and Radioactive Waste Management 2002,7(1):46-58.
    [75]Xu W, Li X, Zhou Q, et al. Remediation of chromite ore processing residue by hydrothermal process with starch. Process Safety and Environmental Protection. 2011,89(3):179-185.
    [76]李丹丹,郝秀珍,周东美等.淋洗法修复铬渣污染场地实验研究.农业环境科 学学报.2011,(12):2451-2457.
    [77]Piehtel J, Piehtel T M. Comparison of solvents for ex situ removal of chromium and lead from contaminated soil. Environmental engineering science.1997,14(2): 97-104.
    [78]张梅龙,李良木.铬渣的干法解毒与综合利用.无机盐工业.1987,(05):30-32.
    [79]李涛,王忠海.还原铬渣做水泥混合材.无机盐工业2003,(04):44-45.
    [80]汪志,“甘肃铬渣干法解毒工程化害为利,”2008-03-05,6.
    [81]张胜田,林玉锁,华小梅等.中国污染场地管理面临的问题及对策.环境科学与管理.2007,(06):5-7+29.
    [82]Broadway A, Cave M R, Wragg J, et al. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. 2010,409(2):267-277.
    [83]Chrysochoou M, Moon D H, Fakra S, et al. Use of micro X-ray absorption spectroscopy and diffraction to delineate Cr(Ⅵ) speciation in COPR. Glob. Nest. J. 2009,11(3):318-324.
    [84]Elzinga E J, Cirmo A. Application of sequential extractions and X-ray absorption spectroscopy to determine the speciation of chromium in Northern New Jersey marsh soils developed in chromite ore processing residue (COPR). J. Hazard. Mater.2010,183(1-3):145-154.
    [85]Moon D H, Dermatas D, Sanchez A M, et al. Assessment of brownmillerite and periclase hydration in chromite ore processing residue at elevated temperature. Geotechnical Special Publication.2008, (177):375-382.
    [86]Meegoda J N, Kamolpornwijit W, Vaccari D A, et al. Remediation of Chromium-Contaminated Soils:Bench-Scale Investigation. Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management. 1999,3(3):124-131.
    [87]Dermatas D, Chrysochoou M, Moon D H, et al., Mineralogical characterization of chromite ore processing residue at Dundalk Marine Terminal Area 1800. in: Proceedings of the 8th International In-situ and On-site Bioremediation Symposium, Battelle, Columbus, Ohio,2005.
    [88]Perkins R B, Palmer C D. Solubility of ettringite (Ca6[Al(OH)6]2(SO4)3·26H2O) at 5-75℃.1999,63(13-14):1969-1980.
    [89]Battle P D, Bollen S K, Gibb T C, et al. The crystal and magnetic structures of CaCrFeO at 2.1K. Journal of Solid State Chemistry.1991,90:42-46.
    [90]Gibb T C. Study of calcium-chromium-iron oxides by extended X-ray absorption fine structure spectroscopy. J. Mater. Chem.1992,2(1):105-110.
    [91]Kindness A, Macias A, Glasser F P. Immobilization of chromium in cement matrices.1994,14(1):3-11.
    [92]Hillier S, Lumsdon D G, Brydson R, et al. Hydrogarnet:A host phase for Cr(Ⅵ) in chromite ore processing residue (COPR) and other high pH wastes. Environ Sci Technol.2007,41(6):1921-1927.
    [93]Fletcher D A, McMeeking R F, Parkin D. The United Kingdom Chemical Database Service. J. Chem. Inf. Comput. Sci.1996,36(4):746-749.
    [94]Chrysochoou M, Dermatas D. Application of the Rietveld method to assess chromium(Ⅵ) speciation in chromite ore processing residue. J. Hazard. Mater. 2007,141(2):370-377.
    [95]Meller N, Hall C, Jupe A C, et al. The paste hydration of brownmillerite with and without gypsum:a time resolved synchrotron diffraction study at 30,70,100 and 150℃. J. Mater. Chem.2004,14(3):428-435.
    [96]Moon D, Dermatas D, Wazne M, et al. Swelling related to ettringite crystal formation in chromite ore processing residue. Environmental Geochemistry and Health.2007,29(4):289-294.
    [97]Jupe A C, Cockcroft J K, Barnes P, et al. The site occupancy of Mg in the brownmillerite structure and its effect on hydration properties:an X-ray/neutron diffraction and EXAFS study. Journal of Applied Crystallography.2001,34(1): 55-61.
    [98]Redhammer G J, Tippelt G, Roth G, et al. Structural variations in the brownmillerite series Ca2(Fe2-xAlx)O5:Single-crystal X-ray diffraction at 25℃ and high-temperature X-ray powder diffraction (25℃≤T≤1000℃). Am Mineral.2004,89(2-3):405-420.
    [99]Mirtic B. Calcium chromate mineral phases with high CaO content. Krystalinikum. 1997,23:95-115.
    [100]Alvarez-Ayuso E, Nugteren H W. Purification of chromium(Ⅵ) finishing wastewaters using calcined and uncalcined Mg-Al-CO3-hydrotalcite. Water Research.2005,39(12):2535-2542.
    [101]James B R. Hexavalent Chromium Solubility and Reduction in Alkaline Soils Enriched with Chromite Ore Processing Residue. J. Environ. Qual.,23(2): 227-233.
    [102]Wazne M, Jagupilla S C, Moon D H, et al. Leaching Mechanisms of Cr(Ⅵ) from Chromite Ore Processing Residue. Journal of Environmental Quality.2008,37(6): 2125-2134.
    [103]Geelhoed J S, Meeussen J C L, Roe M J, et al. Chromium remediation or release? Effect of iron(Ⅱ) sulfate addition on chromium(Ⅵ) leaching from columns of chromite ore processing residue. Environ Sci Technol.2003,37(14):3206-3213.
    [104]Geelhoed J S, Meeussen J C L, Lumsdon D G, et al. Processes determining the behaviour of chromium in chromite ore processing residue used as landfill. Land Contamination & Reclamation. 1999,40(18):271-279.
    [105]GB/T 7467-1987.水质六价铬的测定 二苯碳酰二肼分光光度法[S].北京:国家质检总局,1987.
    [106]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研究:[博士学位论文].长沙:中南大学,2009.
    [107]吴性良,朱万森,马林.分析化学原理.北京:化学工业出版社,2004.
    [108]杨金和,陈文敏,段云龙.煤炭化验手册.北京:煤炭工业出版社,1998.
    [109]王辉.浅析电感耦合等离子体发射光谱仪.煤质技术.2009,(01):26-29.
    [110]Kosson D S, van der Sloot H A, Sanchez F, et al. An integrated framework for evaluating leaching in waste management and utilization of secondary materials. Environmental Engineering Science.2002,19(3):159-204.
    [111]Xiao K, Li G, Mineralogical Characterization of Chromium Ore Processing Residue, in:2011 International Conference on Electric Technology and Civil Engineering (ICETCE),22-24 April 2011, Piscataway, NJ, USA,2011, 4217-4221.
    [112]Dermatas D, Chrysochoou M, Pardali S, et al. Influence of X-Ray Diffraction Sample Preparation on Quantitative Mineralogy. J. Environ. Qual.2007,36(2): 487-497.
    [113]柴立元,陈丽鹃,黄燕等.表而活性剂对Achromobacter sp. CH-1解毒铬渣的影响.中南大学学报(自然科学版).2009,(01):41-47.
    [114]柴立元,许友泽,王海鹰等Pannonibacter phragmitetus对Cr(Ⅵ)污染土壤的修复效应.中国有色金属学报.2009,(12):2230-2236.
    [115]荣伟英,周启星.铬渣堆放场地土壤的污染过程、影响因索及植物修复.生态学杂志.2010,(03):598-604.
    [116]Brown R A, Leaby M C, Pyrih R Z. In situ Remediation of Metals Comes of Age. Remediation Journal.1998,8(3):81-96.
    [117]Whittleston R A, Stewart D I, Mortimer R J G, et al. Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue. J. Hazard. Mater.2011,194(0):15-23.
    [118]Yahikozawa K, Aratani T, Ito R, et al. Kinetic studies on the lime sulfated solution (Calcium Polysulfide) process for removal of heavy metals from wastewater. Bulletin of the Chemical Society Japan. 1978,51(2):613-617.
    [119]Pakzadeh B, Batista J R. Chromium removal from ion-exchange waste brines with calcium polysulfide. Water Research.2011,45(10):3055-3064.
    [120]Moon D H, Wazne M, Jagupilla S C, et al. Particle size and pH effects on remediation of chromite ore processing residue using calcium polysulfide (CaS5). Science of The Total Environment.2008,399(1-3):2-10.
    [121]Velasco A, Ramirez M, Hernandez S, et al. Pilot scale treatment of chromite ore processing residue using sodium sulfide in single reduction and coupled reduction/stabilization processes. J. Hazard. Mater.2012,207-208(0):97-102.
    [122]Chrysochoou M, Ting A. A kinetic study of Cr(Ⅵ) reduction by calcium polysulfide. Science of The Total Environment.2011,409(19):4072-4077.
    [123]Jagupilla S C, Moon D H, Wazne M, et al. Effects of particle size and acid addition on the remediation of chromite ore processing residue using ferrous sulfate. J. Hazard. Mater.2009,168(1):121-128.
    [124]Dermatas D, Chrysochoou M, Moon D II, et al. Ettringite-induced heave in chromite ore processing residue (COPR) upon ferrous sulfate treatment. Environ Sci Technol.2006,40(18):5786-5792.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700