用户名: 密码: 验证码:
茂锆诱导的苯衍生物和喹啉衍生物的合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究苯衍生物的合成在合成化学和实际应用中都有非常重要的意义,关键问题是选择性比较差,目前没有关于3,6位取代基相同并且4,5位取代基相同的六取代苯的合成报道。本文首次提出了合成该类新型化合物的新方法。首先对3,6-二三甲基硅基邻二甲酸二甲酯进行本位碘脱硅基作用,得到3,6-二碘邻二甲酸二甲酯,然后与亲电试剂发生取代反应,对3,6位的碘进行取代得到目标化合物。当亲电试剂为碘代烷烃时,对3,6-二碘邻二甲酸二甲酯进行锂化,再用亲电试剂淬灭得到了3,6-二烷基邻二甲酸二甲酯;亲电试剂为碘代噻吩和碘代芳烃时用锂化方法不能得到目标产物。3,6-二碘邻二甲酸二甲酯与有机锌试剂进行Negishi偶联反应制得了3,6-二噻吩邻二甲酸二甲酯; 3,6-二碘邻二甲酸二甲酯与有机硼试剂进行Suzuki偶联反应制得了3,6-二芳基邻二甲酸二甲酯。三种方法都高选择性高收率的得到了3,6位取代基相同并且4,5位取代基相同的六取代苯。
     喹啉类化合物在医药、分子生物学、染料工业等各领域都有着重要的应用,因此喹啉化合物的合成在方法学和实际应用中都有重要意义。本文首次采用氮杂锆杂环戊二烯与二碘苯进行偶联反应,合成了一系列喹啉衍生物,其中氮杂锆杂环戊二烯由二茂锆与一分子炔烃和一分子腈制得。并且研究了氮杂锆杂环戊二烯的取代基和二碘苯的取代基对反应的影响。
Studies on synthesis of benzene derivatives are very important in the synthetic chemistry and practical application. The key issue is the relatively poor selectivity. To the present there is no report for preparation hexasubstituted benzenes which have the same substituent in the 3 and 6 positions, and the same substituent in 4 and 5 positions. The new method on systhesis of these new kind of compounds is reported first in this dissertation. In the dissertation, 3,6-diiodo-phthalic acid dimethyl esters are prepared by bis ipso iododesilylation of 3,6-bis-trimethylsilanyl-phthalic acid dimethyl esters. Then 3,6-diiodo-phthalic acid dimethyl esters occur substitution reaction with electrophiles and we can get the target compounds. When the electrophile is alkyl iodide, lithiation on 3,6-diiodo-phthalic acid dimethyl ester and then quenching with excess electrophile give the 3,6-dialkyl-phthalic acid dimethyl ester. When the electrophile is thienyl iodide and aryl iodide, we can’t prepare the target compounds using lithiation. We prepare 3,6-dithienyl- phthalic acid dimethyl ester using Negishi coupling and 3,6-diaryl- phthalic acid dimethyl ester using Suzuki coupling. The three methods all get hexasubstituted benzenes which have the same substituent in the 3 and 6 positions, and the same substituent in 4 and 5 positions with excellent selectivity in high yields.
     Quinoline derivatives have important areas of applications in pharmaceutical, molecular biology and dyestuff insudtry, so the systhesis of quinoline derivatives have important significance both in methodology and practical application. In this dissertation, we carry out the coupling reaction of azazirconacyclopentadienes, which are conveniently prepared from zirconocene with one internal alkyne and one nitrile,with substituted diiodobenzenes at the first time,and get a series of quinoline derivatives. We also study the effects of azazirconacyclopentadiene substituents and diiodobenzene substituents on the coupling reaction.
引文
[1]王积涛,宋礼成,金属有机化学,上海:高等教育出版社,1989,1~3。
    [2]黄耀曾,钱延龙,金属有机化学进展,北京:化学工业出版社,1987,3~5。
    [3](a)Wudl F, Bendikov M, Tetrathiafulvalenes, Oligoacenes, and Their Buckminsterfullerene Derivatives: The Brick and Mortar of Organic Electronics, Chem.Rev,2004,104,4891~4945. (b)Roncali J, Synthetic Principles for Bandgap Control in Linearπ-Conjugated Systems, Chem.Rev, 1997, 97(1) ,173~205. (c) Luch, A, Schober W, Raab G et al, Chem.Res.Toxicol, 1999, 12(4) ,353~364.
    [4]Mikael B, Gerard M, Gary W et al, Modified BINAP: The How and the Why, Chem.Rev, 2005, 105, 1801~1836.
    [5](a) Genet J-P, Asymmetric Catalytic Hydrogenation. Design of New Ru Catalysts and Chiral Ligands: From Laboratory to Industial Application, Acc.Chem.Res, 2003, 36(12), 908~918. (b)Noyori R, Yamakawa M, Hashiguchi S, Metal-Ligand Bifunctional Catalysis: A Nonclassical Mechanism for Asymmetric Hydrogen Transfer between Alcohols and Carbonyl Compounds, J.Org.Chem, 2001, 66(24), 7931~7944.
    [6]Kumobashi H, Miura T, Sayo N et al, Recent Advances of BINAP Chemistry in the Industrial Aspects, Synlett, 2001, 1055~1064.
    [7]Tanaka K, Miura T, Umezawa N, Rational Design of Fluorescein-Based Fluorescence Probes. Mechanism-Based Design of a Maximum Flurescence Probe for Singlet Oxygen, J.Am.Chem.Soc, 2001, 123(11), 2530~2536.
    [8] Jame T D, Sandanayake K R A S, Iguchi R et al, Novel Saccharide- Photoinduced Electron Transfer Sensors Based on the Interaction of Boronic Acid and Amine, J.Am.Chem.Soc, 1995, 117(35), 8982~8987.
    [9](a)Gundlach D J, Lin Y Y, Jackson T N et al, Pentacene Organic Thin-Film Transistors-Molecular Ordering and Mobility, IEEE Electron Device Letters, 1997, 18(3), 87~89. (b)Lin Y Y, Gundlach D J, Nelson S F et al, Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics, IEEE Electron Device Letters, 1997, 18(12), 606~608. (c)Lin Y Y, Gundlach D J, Nelson S F et al, Pentacene-Baced Organic Thin-Film Transistors, IEEE Electron Device Letters, 1997, 44(8), 1325~1331. (d)Lin Y Y, Gundlach D J, Jackson T N, Temperature-independent transport in high-mobility pentacene transistors, Applied Physics Letters, 1998, 72(15), 1854~1856.
    [10](a) Engstrom R C, Johnson K W, DesJarlais S, Characterization of Electrode Heterogeneity with Electrogenerated Chemiluminescence, Anal.Chem, 1987, 59(4), 670~673. (b) Adam W, Cueto O, Yany F, On the Mechanism of the Rubrene-Enhanced Chemilunescence ofα-Peroxylactines, J.Am.Chem.Soc, 1978, 100(8), 2587~2589.(c) Yee W A, Kuzmin V A, Kliger D S et al, Quenching of the Fluorescent State of Rubrene Directly to the Ground State, J.Am.Chem.Soc, 1979, 101(17), 5104~5106. (d) Liu D K K, Faulkner L R, P-Type Delayed Fluorescence from Rubrene, J.Am.Chem.Soc, 1977, 99(14), 4594~4599 .
    [11]Reppe W, Klager K, Toepel T, Chem, 1948, 560.
    [12]Schore N E, Transition Metal-Mediated Cycloaddition Reactions of Alkynes in Organic Synthesis, Chem.Rev, 1989, 88(7) ,1081-1119.
    [13]Wakatsuki Y, Kuranistu T, Yamazaki H, Cobaltacyclopentadiene Complexes as Starting Materials in the Systhesis of Substituted Benzenes, Cyclohexadienes, Thiophenes, Selenophenes and Pyrroles, Tetrahedron Letters, 1974, 15(51-52), 4549~4552.
    [14]Hillard R L, Peter K, Vollhardt C, Substituted Benzocyclobutenes, Indans, and Tetralins via Cobalt-Catalyzed Cooligomerization ofα,ω-Diynes with Substituted Acetylenes. Formation and Synthetic Utility of Trimethylsilylated Benzocycloalkenes, Journal of the American Chemical Society, 1977, 4058~4069.
    [15]席振峰,高桥保,过渡金属促进的从三种不同的炔烃高效合成苯衍生物的策略,化学学报,2000,58(10):1177~1185。
    [16] Takahashi T, Kageyama M, Denisov V et al, Facile Cleavage of the Cβ-Cβ’
    [17] Takahashi T, Tamura M, Saburi M et al, J.Chem.Soc.Chem.Commun, 1989,852. Bond of Zirconacyclopentadiene. Convenient Method for Selectively Coupling Alkynes with Alkynes, Nitriles, and Aldehydes, Tetrahedron Letters, 1993, 34(4), 687~690.
    [18] Xi Z F, Hara R, Takahashi T, Highly Selective and Practical Alkyne-Alkyne Cross-Coupling Using Cp2ZrBu2
    [19]Takahashi T, Xi Z F, Yamazaki A et al, Cycloaddition Reaction of Zirconacyclopentadienes to Alkynes: Highly Selective Formation of Benzene Derivatives from Three Different Alkynes, J.Am.Chem.Soc, 1998, 120(8), 1672~1680. and Ethylene, J.Org.Chem, 1995, 60(14), 4444~4448.
    [20]陈杏芬,新型喹啉衍生物的合成及其性质研究,硕士学位论文,华南师范大学,2007。
    [21]王天一彦,Friedlander法合成喹啉衍生物以及生物活性研究,硕士学位论文,2009。
    [22]中华人民共和国药典(1990年版二部)药典注释,北京:化学工业出版社,1993,568,592,611。
    [23]张珍明,李树安,葛洪玉,8-羟基喹啉制备技术进展,广州化学,2007,32(2),62~65。
    [24]Wang C Z, Mehendale S R, Yuan C U, Commonly Used Antioxidant Botanicals: Active Constituents and Their Potential Pole in Cardiovascular Illness, The Amer- ican Joural of Chinese Medicine, 2007, 4(35), 543~558.
    [25]杜鼎,方建新,具有生物活性的喹啉类化合物的最新进展,有机化学,2007,11(27):1318~1336。
    [26]Edward A, Fennel, Friedlander Syntheses with o-Aminoaryl Kotones.I.Acid- Catalyzed Condensations of o-Aminobenzophenone with Ketones, Presentd at the First Middle Atlantic Regional Meeting of American Cjemical Society, Philadelpaia, 1966, 2899~2902.
    [27]Ali A, Mohammadi, Javad Azizian et al, Green Protocol for the Friedlander Synthesis: KAl(SO4)2?12H2O-SiO2
    [28]Mahmoud Al-Talib, Johannes C.Jochims, Quanrui Wang et al, On the Reaction of N-Arylnitrilium Salts with Acetylenes:Synthesis of Substituted Quinolines, Synthesis, 1992, 875~878. a highly efficient Catalyst in the Synthesis of Quinolines, Heterocycles, 2008, 75(4), 947~954.
    [29]Shi Li, Hongmei Qu, Lishan Zhou et al, Zircomium-Mediated Selective Synthesis of 1,2,4,5-Tetrasubstituted Benzenes from Two Sily-Substituted Alkynes and One Internal Alkyne, Organic Letters, 2009, 11(15), 3318~3321.
    [30]Mills R J, Horvath R F, Sibi M P et al, Dilithiated Synthons of Tertiary Benzamides, Phthalamides, and o,o’-Aryl Dicarbamates, Tetrahedron Letters, 1985, 26(9), 1145~1148.
    [31]Tamao K, Sumitani K, Kumada M, Selective Carbon-Carbon Formation by Cross-Coupling of Grignard Reagents with Organic Halides. Catalysis by Nickel- Phosphine Complexes, J.Am.Chem.Soc, 1972, 94(12), 4374~4376.
    [32]Negishi E, Baba S, A Novel Stereoselective Alkenyl-Aryl Cross-Coupling by a Palladium- or Nickel-Catalyzed Reaction of Alkenylalanes with Alkenyl Halides, J.Am. Chem.Soc, 1976, 98(21), 6729~6731.
    [33]Milstein D, Stille J K, A general,selective and facile Method for Ketone Synt- hesis from Acid Chlorides and Organotin Compounds Catalyzed by Palladium, A.am. Chem.Soc, 1978, 100(11), 3636~3638.
    [34]Miyaura N, Yanagi T, Suzuki A, The Palladium-Catalyzed Cross-Coupling Reaction of Phenylboronic Acid with Haloarenes in the presence of Base, Synth.Commun,1981,11(7),513~519.
    [35]Lang R-J D, Hooijdonk M J C M, Brandsma L, Transition Metal Catalyzed Cross-Coupling between Benzylic Halides and Aryl Nucleophiles. Synthesis of some Toxicologically Interesting Tetrachlorobenzyltoluenes, Tetrahedron, 1998, 54(12), 2953~2966.
    [36]Shouquan Huo, Highly Efficient, General Procedure for the Preparation of Alkylzinc Reagents from Unactivated Alkyl Bromides and Chlorides, Org.Lett, 2003, 5(4), 423~425.
    [37]Vettel S, Vaupel A, Knochel P, Nickel-Catalyzed Preparations of Functionalized Organozincs, J.Org.Chem, 1996, 61(21), 7473~7481.
    [38]M Iyoda, K Nakao, Kondo T et al, (1,8)Naphthalenophane Containing 2,2’-bithineyl-5,5’- ylene Bridges, Tetrahedron Letters, 2001, 42, 6869~6872.
    [39]Mario Rottlander, Nick Palmer, Paul Kochel, Selective Pd(0)-Catalyzed Arylation with New Electrophilic or Nucleophilic Multi-Coupling Reagents, Synlett, 1996, 573~575.
    [40]Ilga Mutule, Edgars Suna, A Convenient Microwave Assisted Arylzinc Generation-Negishi Coupling Protocol, Tetrahedron Letters, 2004, 45, 3909~3912.
    [41]程格,陶全华,杨琼辉等,Suzuki芳基偶联反应的研究进展,有机化学,2000,20(6),874~881。
    [42]卢刚,Pd/C催化、四芳基硼酸盐参与的Suzuki反应及其在药物合成中的应用,硕士学位论文,沈阳药科大学,2005。
    [43]Korolev D N, Bumagin N A, An improved Protocol for Ligandless Suzuki-Miyaura Coupling in Water, Tetrahedron Letters, 2006, 47, 4225~4229.
    [44]Takahashi T, Hara R, Nishihara Y, Copper-Mediated Coupling of Zirconacyclopentadiene with Dihalo Aromatic Compounds. Formation of Fused Aromatic Rings, J.Am.Chem.Soc, 1996, 118(21), 5154~5155.
    [45]Takahashi T, Yanzhong Li, Stepnicka P ect, Coupling Reaction of Zircona- cyclopentadienes with Dihalonaphthalenes and Dihalopyridines:A New Procedure for the Preparation of Substituted Anthracenes, Quinolines, and Isoquinolines, J.Am. Chem.Soc, 2002, 124(4), 576~582.
    [46]Takahashi T, Kageyama M, Denisov V et al, Facile Cleavage of the Cβ-Cβ’Bond of Zirconacyclopentenes. Convenient Method for selectively Coupling Alkynes with Alkynes, Nitriles, and Aldehydes, Tetrahedron Letters, 1993, 34(4), 687~690

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700